Search results for: Adaptive decision feedback equalizer
2052 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing
Authors: Daniel M. Muntean, Viorel Ungureanu
Abstract:
More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.
Keywords: Adaptive building, energy efficiency, retrofitting, residential buildings, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10352051 Application of Adaptive Network-Based Fuzzy Inference System in Macroeconomic Variables Forecasting
Authors: Ε. Giovanis
Abstract:
In this paper we apply an Adaptive Network-Based Fuzzy Inference System (ANFIS) with one input, the dependent variable with one lag, for the forecasting of four macroeconomic variables of US economy, the Gross Domestic Product, the inflation rate, six monthly treasury bills interest rates and unemployment rate. We compare the forecasting performance of ANFIS with those of the widely used linear autoregressive and nonlinear smoothing transition autoregressive (STAR) models. The results are greatly in favour of ANFIS indicating that is an effective tool for macroeconomic forecasting used in academic research and in research and application by the governmental and other institutionsKeywords: Linear models, Macroeconomics, Neuro-Fuzzy, Non-Linear models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17932050 Aircraft Supplier Selection using Multiple Criteria Group Decision Making Process with Proximity Measure Method for Determinate Fuzzy Set Ranking Analysis
Authors: C. Ardil
Abstract:
Aircraft supplier selection process, which is considered as a fundamental supply chain problem, is a multi-criteria group decision problem that has a significant impact on the performance of the entire supply chain. In practical situations are frequently incomplete and uncertain information, making it difficult for decision-makers to communicate their opinions on candidates with precise and definite values. To solve the aircraft supplier selection problem in an environment of incomplete and uncertain information, proximity measure method is proposed. It uses determinate fuzzy numbers. The weights of each decision maker are equally predetermined and the entropic criteria weights are calculated using each decision maker's decision matrix. Additionally, determinate fuzzy numbers, it is proposed to use the weighted normalized Minkowski distance function and Hausdorff distance function to determine the ranking order patterns of alternatives. A numerical example for aircraft supplier selection is provided to further demonstrate the applicability, effectiveness, validity and rationality of the proposed method.
Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, determinate fuzzy sets, intuitionistic fuzzy sets, proximity measure method, Minkowski distance function, Hausdorff distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3872049 Model-Based Small Area Estimation with Application to Unemployment Estimates
Authors: Hichem Omrani, Philippe Gerber, Patrick Bousch
Abstract:
The problem of Small Area Estimation (SAE) is complex because of various information sources and insufficient data. In this paper, an approach for SAE is presented for decision-making at national, regional and local level. We propose an Empirical Best Linear Unbiased Predictor (EBLUP) as an estimator in order to combine several information sources to evaluate various indicators. First, we present the urban audit project and its environmental, social and economic indicators. Secondly, we propose an approach for decision making in order to estimate indicators. An application is used to validate the theoretical proposal. Finally, a decision support system is presented based on open-source environment.
Keywords: Small area estimation, statistical method, sampling, empirical best linear unbiased predictor (EBLUP), decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17122048 Multi-Criteria Decision-Making Selection Model with Application to Chemical Engineering Management Decisions
Authors: Mohsen Pirdashti, Arezou Ghadi, Mehrdad Mohammadi, Gholamreza Shojatalab
Abstract:
Chemical industry project management involves complex decision making situations that require discerning abilities and methods to make sound decisions. Project managers are faced with decision environments and problems in projects that are complex. In this work, case study is Research and Development (R&D) project selection. R&D is an ongoing process for forward thinking technology-based chemical industries. R&D project selection is an important task for organizations with R&D project management. It is a multi-criteria problem which includes both tangible and intangible factors. The ability to make sound decisions is very important to success of R&D projects. Multiple-criteria decision making (MCDM) approaches are major parts of decision theory and analysis. This paper presents all of MCDM approaches for use in R&D project selection. It is hoped that this work will provide a ready reference on MCDM and this will encourage the application of the MCDM by chemical engineering management.Keywords: Chemical Engineering, R&D Project, MCDM, Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40882047 The Emotions in Consumers’ Decision Making: Review of Empirical Studies
Authors: Mikel Alonso López
Abstract:
This paper explores, in depth, the idea that emotions are present in all consumer decision making processes, meaning that purchase decisions have never been purely cognitive or as they traditionally have been defined, rational. Human beings, in all kinds of decisions, has "always" used neural systems related to emotions along with neural systems related to cognition, regardless of the type of purchase or the product or service in question. Therefore, all purchase decisions are, at the same time, cognitive and emotional. This paper presents an analysis of the main contributions of researchers in this regard.
Keywords: Emotions, decision making, consumer behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14902046 Airline Quality Rating Using PARIS and TOPSIS in Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper presents a multiple criteria evaluation analysis for airline quality rating using the preference analysis for reference ideal solution (PARIS) and the technique for order of preference by similarity to ideal solution (TOPSIS) approaches. The airline quality rating was developed as an objective method for assessing airline quality on combined multiple performance criteria and the importance weights of criteria. The selected multiple performance criteria were determined as on-time arrivals, mishandled baggage, involuntary denied boardings, and consumer complaints. The multiple criteria decision making analysis results show that the alternative ( a2) airline is the best-rated airline.
Keywords: airline quality rating, multiple criteria decision making, multiple criteria decision making analysis, entropy weight, MCDMA, PARIS, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5832045 A Model for Bidding Markup Decisions Making based-on Agent Learning
Authors: W. Hou, X. Shan, X. Ye
Abstract:
Bidding is a very important business function to find latent contractors of construction projects. Moreover, bid markup is one of the most important decisions for a bidder to gain a reasonable profit. Since the bidding system is a complex adaptive system, bidding agent need a learning process to get more valuable knowledge for a bid, especially from past public bidding information. In this paper, we proposed an iterative agent leaning model for bidders to make markup decisions. A classifier for public bidding information named PIBS is developed to make full use of history data for classifying new bidding information. The simulation and experimental study is performed to show the validity of the proposed classifier. Some factors that affect the validity of PIBS are also analyzed at the end of this work.Keywords: bidding markup, decision making, agent learning, information similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24152044 Multi-Criteria Decision Analysis in Planning of Asbestos-Containing Waste Management
Authors: E. Bruno, F. Lacarbonara, M. C. Placentino, D. Gramegna
Abstract:
Environmental decision making, particularly about hazardous waste management, is inherently exposed to a high potential conflict, principally because of the trade-off between sociopolitical, environmental, health and economic factors. The need to plan complex contexts has led to an increasing request for decision analytic techniques as support for the decision process. In this work, alternative systems of asbestos-containing waste management (ACW) in Puglia (Southern Italy) were explored by a multi-criteria decision analysis. In particular, through Analytic Hierarchy Process five alternatives management have been compared and ranked according to their performance and efficiency, taking into account environmental, health and socio-economic aspects. A separated valuation has been performed for different temporal scale. For short period results showed a narrow deviation between the disposal alternatives “mono-material landfill in public quarry" and “dedicate cells in existing landfill", with the best performance of the first one. While for long period “treatment plant to eliminate hazard from asbestos-containing waste" was prevalent, although high energy demand required to achieve the change of crystalline structure. A comparison with results from a participative approach in valuation process might be considered as future development of method application to ACW management.Keywords: Multi-criteria decision analysis, Hazardous wastemanagement, Asbestos.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18712043 The Impact of the Knowledge-Sharing Factors on Improving Decision-Making at Sultan Qaboos University Libraries
Authors: Aseela Alhinaai, Suliman Abdullah, Adil Albusaidi
Abstract:
Knowledge has been considered an important asset in private and public organizations. It is utilized in the libraries sector to run different operations of technical services and administrative works. This study aims to identify the impact of the knowledge-sharing factors (technology, collaboration, management support) to improve decision-making at Sultan Qaboos University Libraries. This study conducted a quantitative method using a questionnaire instrument to measure the impact of technology, collaboration, and management support on knowledge sharing that lead to improved decision-making. The study population is the Sultan Qaboos University (SQU) libraries (Main Library, Medical Library, College of Economic and Political Science Library, and Art Library). The results showed that management support, collaboration, and technology use have a positive impact on the knowledge-sharing process, and knowledge sharing positively affects decision making process.
Keywords: Knowledge sharing, decision making, information technology, management support, corroboration, Sultan Qaboos University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562042 Learning and Evaluating Possibilistic Decision Trees using Information Affinity
Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi
Abstract:
This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15152041 EHW from Consumer Point of View: Consumer-Triggered Evolution
Authors: Yerbol Sapargaliyev, Tatiana Kalganova
Abstract:
Evolvable Hardware (EHW) has been regarded as adaptive system acquired by wide application market. Consumer market of any good requires diversity to satisfy consumers- preferences. Adaptation of EHW is a key technology that could provide individual approach to every particular user. This situation raises a question: how to set target for evolutionary algorithm? The existing techniques do not allow consumer to influence evolutionary process. Only designer at the moment is capable to influence the evolution. The proposed consumer-triggered evolution overcomes this problem by introducing new features to EHW that help adaptive system to obtain targets during consumer stage. Classification of EHW is given according to responsiveness, imitation of human behavior and target circuit response. Home intelligent water heating system is considered as an example.
Keywords: Actuators, consumer-triggered evolution, evolvable hardware, sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14862040 Assessing Community Participation in Decision-Making Process under Co-Management: A Case Study on Hail Haor, Bangladesh
Authors: R. Ferdous
Abstract:
Power, responsibility sharing, and democratic decision-making are the central ethos to co-management. It is assumed that involving local community in the decision-making process can create a sense of ownership and responsibility of that community and motivate the community towards collective action. But this paper demonstrated that the process to involve local community is not simple and straightforward as it is influenced by structural aspects, power relations among the actors, and social embedded institutions. These factors shape the process in that way who will participate, how they will participate and how the local community maneuvers their agency in the decision-making process. To grasp the complexities that materialize in the process of participation and to understand the inclusionary and exclusionary nature of participation, this paper examines the subjective understanding of different stakeholders concerning participation and furthermore observes the enabling or constraining factors that affect the community to exercise their agency.
Keywords: Participation, social embeddedness, power, structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16872039 Adaptive Kernel Filtering Used in Video Processing
Authors: Rasmus Engholm, Eva B. Vedel Jensen, Henrik Karstoft
Abstract:
In this paper we present a noise reduction filter for video processing. It is based on the recently proposed two dimensional steering kernel, extended to three dimensions and further augmented to suit the spatial-temporal domain of video processing. Two alternative filters are proposed - the time symmetric kernel and the time asymmetric kernel. The first reduces the noise on single sequences, but to handle the problems at scene shift the asymmetric kernel is introduced. The performance of both are tested on simulated data and on a real video sequence together with the existing steering kernel. The proposed kernels improves the Rooted Mean Squared Error (RMSE) compared to the original steering kernel method on video material.
Keywords: Adaptive image filtering, noise reduction, kernel methods, video processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14702038 Adaptive Dynamic Time Warping for Variable Structure Pattern Recognition
Authors: S. V. Yendiyarov
Abstract:
Pattern discovery from time series is of fundamental importance. Particularly, when information about the structure of a pattern is not complete, an algorithm to discover specific patterns or shapes automatically from the time series data is necessary. The dynamic time warping is a technique that allows local flexibility in aligning time series. Because of this, it is widely used in many fields such as science, medicine, industry, finance and others. However, a major problem of the dynamic time warping is that it is not able to work with structural changes of a pattern. This problem arises when the structure is influenced by noise, which is a common thing in practice for almost every application. This paper addresses this problem by means of developing a novel technique called adaptive dynamic time warping.
Keywords: Pattern recognition, optimal control, quadratic programming, dynamic programming, dynamic time warping, sintering control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20422037 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: Approach instance-based, area Under the ROC Curve, Patient-specific Decision Path, clinical predictions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15802036 Qualitative Modelling for Ferromagnetic Hysteresis Cycle
Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira
Abstract:
In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15872035 A Method under Uncertain Information for the Selection of Students in Interdisciplinary Studies
Authors: José M. Merigó, Pilar López-Jurado, M.Carmen Gracia, Montserrat Casanovas
Abstract:
We present a method for the selection of students in interdisciplinary studies based on the hybrid averaging operator. We assume that the available information given in the problem is uncertain so it is necessary to use interval numbers. Therefore, we suggest a new type of hybrid aggregation called uncertain induced generalized hybrid averaging (UIGHA) operator. It is an aggregation operator that considers the weighted average (WA) and the ordered weighted averaging (OWA) operator in the same formulation. Therefore, we are able to consider the degree of optimism of the decision maker and grades of importance in the same approach. By using interval numbers, we are able to represent the information considering the best and worst possible results so the decision maker gets a more complete view of the decision problem. We develop an illustrative example of the proposed scheme in the selection of students in interdisciplinary studies. We see that with the use of the UIGHA operator we get a more complete representation of the selection problem. Then, the decision maker is able to consider a wide range of alternatives depending on his interests. We also show other potential applications that could be used by using the UIGHA operator in educational problems about selection of different types of resources such as students, professors, etc.Keywords: Decision making, Selection of students, Uncertainty, Aggregation operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13952034 PSS with Multiple FACTS Controllers Coordinated Design and Real-Time Implementation Using Advanced Adaptive PSO
Authors: Rajendraprasad Narne, P. C. Panda
Abstract:
In this article, coordinated tuning of power system stabilizer (PSS) with static var compensator (SVC) and thyristor controlled series capacitor (TCSC) in multi-machine power system is proposed. The design of proposed coordinated damping controller is formulated as an optimization problem and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization (AAPSO). The objective function is framed with the inter-area speed deviations of the generators and it is minimized using AAPSO to improve the dynamic stability of power system under severe disturbance. The proposed coordinated controller performance is evaluated under a wide range of system operating conditions with three-phase fault disturbance. Using time domain simulations the damping characteristics of proposed controller is compared with individually tuned PSS, SVC and TCSC controllers. Finally, the real-time simulations are carried out in Opal-RT hardware simulator to synchronize the proposed controller performance in the real world.
Keywords: Advanced adaptive particle swarm optimization, Coordinated design, Power system stabilizer, Real-time implementation, static var compensator, Thyristor controlled series capacitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25912033 Robust H State-Feedback Control for Uncertain Fuzzy Markovian Jump Systems: LMI-Based Design
Authors: Wudhichai Assawinchaichote, Sing Kiong Nguang
Abstract:
This paper investigates the problem of designing a robust state-feedback controller for a class of uncertain Markovian jump nonlinear systems that guarantees the L2-gain from an exogenous input to a regulated output is less than or equal to a prescribed value. First, we approximate this class of uncertain Markovian jump nonlinear systems by a class of uncertain Takagi-Sugeno fuzzy models with Markovian jumps. Then, based on an LMI approach, LMI-based sufficient conditions for the uncertain Markovian jump nonlinear systems to have an H performance are derived. An illustrative example is used to illustrate the effectiveness of the proposed design techniques.
Keywords: Robust H, Fuzzy Control, Markovian Jump Systems, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14772032 Adaptive Fuzzy Control on EDF Scheduling
Authors: Xiangbin Zhu
Abstract:
EDF (Early Deadline First) algorithm is a very important scheduling algorithm for real- time systems . The EDF algorithm assigns priorities to each job according to their absolute deadlines and has good performance when the real-time system is not overloaded. When the real-time system is overloaded, many misdeadlines will be produced. But these misdeadlines are not uniformly distributed, which usually focus on some tasks. In this paper, we present an adaptive fuzzy control scheduling based on EDF algorithm. The improved algorithm can have a rectangular distribution of misdeadline ratios among all real-time tasks when the system is overloaded. To evaluate the effectiveness of the improved algorithm, we have done extensive simulation studies. The simulation results show that the new algorithm is superior to the old algorithm.
Keywords: Fuzzy control, real-time systems, EDF, misdeadline ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14942031 A New Multi-Target, Multi-Agent Search-and-Rescue Path Planning Approach
Authors: Jean Berger, Nassirou Lo, Martin Noel
Abstract:
Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.
Keywords: Search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24802030 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.
Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18702029 Association Rule and Decision Tree based Methodsfor Fuzzy Rule Base Generation
Authors: Ferenc Peter Pach, Janos Abonyi
Abstract:
This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the a priori fuzzy clustering based partitioning of the continuous input variables. An application study is also presented, where the developed methods are tested on the well known Wisconsin Breast Cancer classification problem. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23042028 Restoration of Noisy Document Images with an Efficient Bi-Level Adaptive Thresholding
Authors: Abhijit Mitra
Abstract:
An effective approach for extracting document images from a noisy background is introduced. The entire scheme is divided into three sub- stechniques – the initial preprocessing operations for noise cluster tightening, introduction of a new thresholding method by maximizing the ratio of stan- dard deviations of the combined effect on the image to the sum of weighted classes and finally the image restoration phase by image binarization utiliz- ing the proposed optimum threshold level. The proposed method is found to be efficient compared to the existing schemes in terms of computational complexity as well as speed with better noise rejection.
Keywords: Document image extraction, Preprocessing, Ratio of stan-dard deviations, Bi-level adaptive thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14572027 State of Charge Estimator Based On High-Gain Observer for Lithium-Ion Batteries
Authors: Jaeho Han, Moonjung Kim, Won-Ho Kim, Chang-Ho Hyun
Abstract:
This paper introduces a high-gain observer based state of charge(SOC) estimator for lithium-Ion batteries. The proposed SOC estimator has a high-gain observer(HGO) structure. The HGO scheme enhances the transient response speed and diminishes the effect of uncertainties. Furthermore, it guarantees that the output feedback controller recovers the performance of the state feedback controller when the observer gain is sufficiently high. In order to show the effectiveness of the proposed method, the linear RC battery model in ADVISOR is used. The performance of the proposed method is compared with that of the conventional linear observer(CLO) and some simulation result is given.
Keywords: SOC, high-gain, observer, uncertainties, robust
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15532026 Multidimensional Compromise Optimization for Development Ranking of the Gulf Cooperation Council Countries and Turkey
Authors: C. Ardil
Abstract:
In this research, a multidimensional compromise optimization method is proposed for multidimensional decision making analysis in the development ranking of the Gulf Cooperation Council Countries and Turkey. The proposed approach presents ranking solutions resulting from different multicriteria decision analyses, which yield different ranking orders for the same ranking problem, consisting of a set of alternatives in terms of numerous competing criteria when they are applied with the same numerical data. The multiobjective optimization decision making problem is considered in three sequential steps. In the first step, five different criteria related to the development ranking are gathered from the research field. In the second step, identified evaluation criteria are, objectively, weighted using standard deviation procedure. In the third step, a country selection problem is illustrated with a numerical example as an application of the proposed multidimensional compromise optimization model. Finally, multidimensional compromise optimization approach is applied to rank the Gulf Cooperation Council Countries and Turkey.
Keywords: Standard deviation, performance evaluation, multicriteria decision making, multidimensional compromise optimization, vector normalization, multicriteria decision making, multicriteria analysis, multidimensional decision analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8112025 Adaptive Neural Network Control of Autonomous Underwater Vehicles
Authors: Ahmad Forouzantabar, Babak Gholami, Mohammad Azadi
Abstract:
An adaptive neural network controller for autonomous underwater vehicles (AUVs) is presented in this paper. The AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. In this regards, a nonlinear neural network is used to approximate the nonlinear uncertainties of AUV dynamics, thus overcoming some limitations of conventional controllers and ensure good performance. The uniform ultimate boundedness of AUV tracking errors and the stability of the proposed control system are guaranteed based on Lyapunov theory. Numerical simulation studies for motion control of an AUV are performed to demonstrate the effectiveness of the proposed controller.Keywords: Autonomous Underwater Vehicle (AUV), Neural Network Controller, Composite Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25292024 A New Block-based NLMS Algorithm and Its Realization in Block Floating Point Format
Authors: Abhijit Mitra
Abstract:
we propose a new normalized LMS (NLMS) algorithm, which gives satisfactory performance in certain applications in comaprison with con-ventional NLMS recursion. This new algorithm can be treated as a block based simplification of NLMS algorithm with significantly reduced number of multi¬ply and accumulate as well as division operations. It is also shown that such a recursion can be easily implemented in block floating point (BFP) arithmetic, treating the implementational issues much efficiently. In particular, the core challenges of a BFP realization to such adaptive filters are mainly considered in this regard. A global upper bound on the step size control parameter of the new algorithm due to BFP implementation is also proposed to prevent overflow in filtering as well as weight updating operations jointly.
Keywords: Adaptive algorithm, Block floating point arithmetic, Implementation issues, Normalized least mean square methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23642023 Takagi-Sugeno Fuzzy Control of Induction Motor
Authors: Allouche Moez, Souissi Mansour, Chaabane Mohamed, Mehdi Driss
Abstract:
This paper deals with the synthesis of fuzzy state feedback controller of induction motor with optimal performance. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate a non linear system in the synchronous d-q frame rotating with electromagnetic field-oriented. Next, a fuzzy controller is designed to stabilise the induction motor and guaranteed a minimum disturbance attenuation level for the closed-loop system. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMI). Finally, simulation results are given to demonstrate the controller-s effectiveness.
Keywords: Rejection disturbance, fuzzy modelling, open-loop control, Fuzzy feedback controller, fuzzy observer, Linear Matrix Inequality (LMI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907