Search results for: π/4 DQPSK signal
664 Direct Sequence Spread Spectrum Technique with Residue Number System
Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany
Abstract:
In this paper, a residue number arithmetic is used in direct sequence spread spectrum system, this system is evaluated and the bit error probability of this system is compared to that of non residue number system. The effect of channel bandwidth, PN sequences, multipath effect and modulation scheme are studied. A Matlab program is developed to measure the signal-to-noise ratio (SNR), and the bit error probability for the various schemes.Keywords: Spread Spectrum, Direct sequence, Bit errorprobability and Residue number system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3649663 0.13-μm CMOS Vector Modulator for Wireless Backhaul System
Authors: J. S. Kim, N. P. Hong
Abstract:
In this paper, a CMOS vector modulator designed for wireless backhaul system based on 802.11ac is presented. A poly phase filter and sign select switches yield two orthogonal signal paths. Two variable gain amplifiers with strongly reduced phase shift of only ±5 ° are used to weight these paths. It has a phase control range of 360 ° and a gain range of -10 dB to 10 dB. The current drawn from a 1.2 V supply amounts 20.4 mA. Using a 0.13 mm technology, the chip die area amounts 1.47x0.75 mm².
Keywords: CMOS, vector modulator, backhaul, 802.11ac.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258662 Cost-Optimized SSB Transmitter with High Frequency Stability and Selectivity
Authors: J. P. Dubois
Abstract:
Single side band modulation is a widespread technique in communication with significant impact on communication technologies such as DSL modems and ATSC TV. Its widespread utilization is due to its bandwidth and power saving characteristics. In this paper, we present a new scheme for SSB signal generation which is cost efficient and enjoys superior characteristics in terms of frequency stability, selectivity, and robustness to noise. In the process, we develop novel Hilbert transform properties.
Keywords: Crystal filter, frequency drift, frequency mixing, Hilbert transform, phasing, selectivity, single side band AM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412661 Distance Estimation for Radar Systems Using DS-UWB Signals
Authors: Youngpo Lee, Seokho Yoon
Abstract:
In this paper, we propose a distance estimation scheme for radar systems using direct sequence ultra wideband (DS-UWB) signals. The proposed distance estimation scheme averages out the noise by accumulating the correlator outputs of the radar, and thus, helps the radar to employ a short-length DS-UWB signal reducing the correlation processing time. Numerical results confirm that the proposed distance estimation scheme provides a better estimation performance and a reduced correlation processing time compared with those of the conventional DS-UWB radars.
Keywords: Radar, DS-UWB, distance estimation, correlation accumulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021660 Direct Method for Converting FIR Filter with Low Nonzero Tap into IIR Filter
Authors: Jeong Hye Moon, Byung Hoon Kang, PooGyeon Park
Abstract:
In this paper, we proposed the direct method for converting Finite-Impulse Response (FIR) filter with low nonzero tap into Infinite-Impulse Response (IIR) filter using the pre-determined table. The prony method is used by ghost cancellator which is IIR approximation to FIR filter which is better performance than IIR and have much larger calculation difference. The direct method for many ghost combination with low nonzero tap of NTSC(National Television System Committee) TV signal in Korea is described. The proposed method is illustrated with an example.Keywords: NTSC, Ghost cancellation, FIR, IIR, Prony method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3147659 Neuro-Fuzzy System for Equalization Channel Distortion
Authors: Rahib H. Abiyev
Abstract:
In this paper the application of neuro-fuzzy system for equalization of channel distortion is considered. The structure and operation algorithm of neuro-fuzzy equalizer are described. The use of neuro-fuzzy equalizer in digital signal transmission allows to decrease training time of parameters and decrease the complexity of the network. The simulation of neuro-fuzzy equalizer is performed. The obtained result satisfies the efficiency of application of neurofuzzy technology in channel equalization.
Keywords: Neuro-fuzzy system, noise equalization, neuro-fuzzy equalizer, neural system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632658 Signal Reconstruction Using Cepstrum of Higher Order Statistics
Authors: Adnan Al-Smadi, Mahmoud Smadi
Abstract:
This paper presents an algorithm for reconstructing phase and magnitude responses of the impulse response when only the output data are available. The system is driven by a zero-mean independent identically distributed (i.i.d) non-Gaussian sequence that is not observed. The additive noise is assumed to be Gaussian. This is an important and essential problem in many practical applications of various science and engineering areas such as biomedical, seismic, and speech processing signals. The method is based on evaluating the bicepstrum of the third-order statistics of the observed output data. Simulations results are presented that demonstrate the performance of this method.
Keywords: Cepstrum, bicepstrum, third order statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037657 Discrete Wavelet Transform Decomposition Level Determination Exploiting Sparseness Measurement
Authors: Lei Lei, Chao Wang, Xin Liu
Abstract:
Discrete wavelet transform (DWT) has been widely adopted in biomedical signal processing for denoising, compression and so on. Choosing a suitable decomposition level (DL) in DWT is of paramount importance to its performance. In this paper, we propose to exploit sparseness of the transformed signals to determine the appropriate DL. Simulation results have shown that the sparseness of transformed signals after DWT increases with the increasing DLs. Additional Monte-Carlo simulation results have verified the effectiveness of sparseness measure in determining the DL.
Keywords: Sparseness, DWT, decomposition level, ECG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5872656 Receive and Transmit Array Antenna Spacingand Their Effect on the Performance of SIMO and MIMO Systems by using an RCS Channel Model
Authors: N. Ebrahimi-Tofighi, M. ArdebiliPour, M. Shahabadi
Abstract:
In this paper, the effect of receive and/or transmit antenna spacing on the performance (BER vs. SNR) of multipleantenna systems is determined by using an RCS (Radar Cross Section) channel model. In this physical model, the scatterers existing in the propagation environment are modeled by their RCS so that the correlation of the receive signal complex amplitudes, i.e., both magnitude and phase, can be estimated. The proposed RCS channel model is then compared with classical models.Keywords: MIMO system, Performance of system, Signalcorrelation, SIMO system, Wireless channel model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931655 Hardware Centric Machine Vision for High Precision Center of Gravity Calculation
Authors: Xin Cheng, Benny Thörnberg, Abdul Waheed Malik, Najeem Lawal
Abstract:
We present a hardware oriented method for real-time measurements of object-s position in video. The targeted application area is light spots used as references for robotic navigation. Different algorithms for dynamic thresholding are explored in combination with component labeling and Center Of Gravity (COG) for highest possible precision versus Signal-to-Noise Ratio (SNR). This method was developed with a low hardware cost in focus having only one convolution operation required for preprocessing of data.Keywords: Dynamic thresholding, segmentation, position measurement, sub-pixel precision, center of gravity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353654 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.
Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570653 Pattern Recognition of Biological Signals
Authors: Paulo S. Caparelli, Eduardo Costa, Alexsandro S. Soares, Hipolito Barbosa
Abstract:
This paper presents an evolutionary method for designing electronic circuits and numerical methods associated with monitoring systems. The instruments described here have been used in studies of weather and climate changes due to global warming, and also in medical patient supervision. Genetic Programming systems have been used both for designing circuits and sensors, and also for determining sensor parameters. The authors advance the thesis that the software side of such a system should be written in computer languages with a strong mathematical and logic background in order to prevent software obsolescence, and achieve program correctness.Keywords: Pattern recognition, evolutionary computation, biological signal, functional programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743652 Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel
Authors: Said Elkassimi, Said Safi, B. Manaut
Abstract:
This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm.
Keywords: Adaptive filtering second equalizer, LMS, RLS Bran A, Proakis (B) MMSE, ZF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124651 Performance Evaluation of Music and Minimum Norm Eigenvector Algorithms in Resolving Noisy Multiexponential Signals
Authors: Abdussamad U. Jibia, Momoh-Jimoh E. Salami
Abstract:
Eigenvector methods are gaining increasing acceptance in the area of spectrum estimation. This paper presents a successful attempt at testing and evaluating the performance of two of the most popular types of subspace techniques in determining the parameters of multiexponential signals with real decay constants buried in noise. In particular, MUSIC (Multiple Signal Classification) and minimum-norm techniques are examined. It is shown that these methods perform almost equally well on multiexponential signals with MUSIC displaying better defined peaks.
Keywords: Eigenvector, minimum norm, multiexponential, subspace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738650 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller
Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian
Abstract:
The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.
Keywords: Air flow, biomass combustion, feedback control system, fuel feeding, ladder logic, programmable logic controller, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585649 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/ deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.Keywords: Epilepsy, Seizure, Phase Correlation, Fluctuation, Deviation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467648 A Virtual Simulation Environment for a Design and Verification of a GPGPU
Authors: Kwang Y. Lee, Tae R. Park, Jae C. Kwak, Yong S. Koo
Abstract:
When a small H/W IP is designed, we can develop an appropriate verification environment by observing the simulated signal waves, or using the serial test vectors for the fixed output. In the case of design and verification of a massive parallel processor with multiple IPs, it-s difficult to make a verification system with existing common verification environment, and to verify each partial IP. A TestDrive verification environment can build easy and reliable verification system that can produce highly intuitive results by applying Modelsim and SystemVerilog-s DPI. It shows many advantages, for example a high-level design of a GPGPU processor design can be migrate to FPGA board immediately.Keywords: Virtual Simulation, Verification, IP Design, GPGPU
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661647 The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation
Authors: Radouane Iqdour, Abdelouhab Zeroual
Abstract:
The Multi-Layered Perceptron (MLP) Neural networks have been very successful in a number of signal processing applications. In this work we have studied the possibilities and the met difficulties in the application of the MLP neural networks for the prediction of daily solar radiation data. We have used the Polack-Ribière algorithm for training the neural networks. A comparison, in term of the statistical indicators, with a linear model most used in literature, is also performed, and the obtained results show that the neural networks are more efficient and gave the best results.Keywords: Daily solar radiation, Prediction, MLP neural networks, linear model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328646 Applications of Stable Distributions in Time Series Analysis, Computer Sciences and Financial Markets
Authors: Mohammad Ali Baradaran Ghahfarokhi, Parvin Baradaran Ghahfarokhi
Abstract:
In this paper, first we introduce the stable distribution, stable process and theirs characteristics. The a -stable distribution family has received great interest in the last decade due to its success in modeling data, which are too impulsive to be accommodated by the Gaussian distribution. In the second part, we propose major applications of alpha stable distribution in telecommunication, computer science such as network delays and signal processing and financial markets. At the end, we focus on using stable distribution to estimate measure of risk in stock markets and show simulated data with statistical softwares.
Keywords: stable distribution, SaS, infinite variance, heavy tail networks, VaR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061645 Optimum Cascaded Design for Speech Enhancement Using Kalman Filter
Authors: T. Kishore Kumar
Abstract:
Speech enhancement is the process of eliminating noise and increasing the quality of a speech signal, which is contaminated with other kinds of distortions. This paper is on developing an optimum cascaded system for speech enhancement. This aim is attained without diminishing any relevant speech information and without much computational and time complexity. LMS algorithm, Spectral Subtraction and Kalman filter have been deployed as the main de-noising algorithms in this work. Since these algorithms suffer from respective shortcomings, this work has been undertaken to design cascaded systems in different combinations and the evaluation of such cascades by qualitative (listening) and quantitative (SNR) tests.Keywords: LMS, Kalman filter, Speech Enhancement and Spectral Subtraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732644 Comparison of Frequency Estimation Methods for Reflected Signals in Mobile Platforms
Authors: Kathrin Reinhold
Abstract:
Precise frequency estimation methods for pulseshaped echoes are a prerequisite to determine the relative velocity between sensor and reflector. Signal frequencies are analysed using three different methods: Fourier Transform, Chirp ZTransform and the MUSIC algorithm. Simulations of echoes are performed varying both the noise level and the number of reflecting points. The superposition of echoes with a random initial phase is found to influence the precision of frequency estimation severely for FFT and MUSIC. The standard deviation of the frequency using FFT is larger than for MUSIC. However, MUSIC is more noise-sensitive. The distorting effect of superpositions is less pronounced in experimental data.
Keywords: Frequency estimation, pulse-echo-method, superposition, echoes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168643 The Effect of Chemical Treatment on TL Glow Curves of CdS/ZnS Thin Films Deposited by Vacuum Deposition Method
Authors: N. Dahbi, D-E. Arafah
Abstract:
The effect of chemical treatment in CdCl2 and thermal annealing in 400°C, on the defect structures of potentially useful ZnS\CdS solar cell thin films deposited onto quartz substrate and prepared by vacuum deposition method was studied using the Thermoluminesence (TL) techniques. A series of electron and hole traps are found in the various deposited samples studied. After annealing, however, it was observed that the intensity and activation energy of TL signal increases with loss of the low temperature electron traps.Keywords: CdS, chemical treatment, heat treatment, Thermoluminescence, trapping parameters, thin film, vacuumdeposition, ZnS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523642 ICAM-2, A Protein of Antitumor Immune Response in Mekong Giant Catfish (Pangasianodon gigas)
Authors: Jiraporn Rojtinnakorn
Abstract:
ICAM-2 (intercellular adhesion molecule 2) or CD102 (Cluster of Differentiation 102) is type I transmembrane glycoproteins, composing 2-9 immunoglobulin-like C2-type domains. ICAM-2 plays the particular role in immune response and cell surveillance. It is concerned in innate and specific immunity, cell survival signal, apoptosis, and anticancer. EST clone of ICAM-2, from P. gigas blood cell EST libraries, showed high identity to human ICAM-2 (92%) with conserve region of ICAM N-terminal domain and part of Ig superfamily. Gene and protein of ICAM-2 has been founded in mammals. This is the first report of ICAM-2 in fish
Keywords: ICAM-2, CD102, Pangasianodon gigas, antitumor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870641 MRI Reconstruction Using Discrete Fourier Transform: A tutorial
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
The use of Inverse Discrete Fourier Transform (IDFT) implemented in the form of Inverse Fourier Transform (IFFT) is one of the standard method of reconstructing Magnetic Resonance Imaging (MRI) from uniformly sampled K-space data. In this tutorial, three of the major problems associated with the use of IFFT in MRI reconstruction are highlighted. The tutorial also gives brief introduction to MRI physics; MRI system from instrumentation point of view; K-space signal and the process of IDFT and IFFT for One and two dimensional (1D and 2D) data.
Keywords: Discrete Fourier Transform (DFT), K-space Data, Magnetic Resonance (MR), Spin, Windows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5111640 Trispectral Analysis of Voiced Sounds Defective Audition and Tracheotomisian Cases
Abstract:
This paper presents the cepstral and trispectral analysis of a speech signal produced by normal men, men with defective audition (deaf, deep deaf) and others affected by tracheotomy, the trispectral analysis based on parametric methods (Autoregressive AR) using the fourth order cumulant. These analyses are used to detect and compare the pitches and the formants of corresponding voiced sounds (vowel \a\, \i\ and \u\). The first results appear promising, since- it seems after several experimentsthere is no deformation of the spectrum as one could have supposed it at the beginning, however these pathologies influenced the two characteristics: The defective audition influences to the formants contrary to the tracheotomy, which influences the fundamental frequency (pitch).Keywords: Cepstrum, cumulant, defective audition, tracheotomisy, trispectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407639 Spectral Analysis of Speech: A New Technique
Authors: Neeta Awasthy, J.P.Saini, D.S.Chauhan
Abstract:
ICA which is generally used for blind source separation problem has been tested for feature extraction in Speech recognition system to replace the phoneme based approach of MFCC. Applying the Cepstral coefficients generated to ICA as preprocessing has developed a new signal processing approach. This gives much better results against MFCC and ICA separately, both for word and speaker recognition. The mixing matrix A is different before and after MFCC as expected. As Mel is a nonlinear scale. However, cepstrals generated from Linear Predictive Coefficient being independent prove to be the right candidate for ICA. Matlab is the tool used for all comparisons. The database used is samples of ISOLET.Keywords: Cepstral Coefficient, Distance measures, Independent Component Analysis, Linear Predictive Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957638 Perturbation Based Modelling of Differential Amplifier Circuit
Authors: Rahul Bansal, Sudipta Majumdar
Abstract:
This paper presents the closed form nonlinear expressions of bipolar junction transistor (BJT) differential amplifier (DA) using perturbation method. Circuit equations have been derived using Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL). The perturbation method has been applied to state variables for obtaining the linear and nonlinear terms. The implementation of the proposed method is simple. The closed form nonlinear expressions provide better insights of physical systems. The derived equations can be used for signal processing applications.Keywords: Differential amplifier, perturbation method, Taylor series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017637 Broadcasting Stabilization for Dynamical Multi-Agent Systems
Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
This paper deals with a stabilization problem for multi-agent systems, when all agents in a multi-agent system receive the same broadcasting control signal and the controller can measure not each agent output but the sum of all agent outputs. It is analytically shown that when the sum of all agent outputs is bounded with a certain broadcasting controller for a given reference, each agent output is separately bounded: stabilization of the sum of agent outputs always results in the stability of every agent output. A numerical example is presented to illustrate our theoretic findings in this paper.
Keywords: Broadcasting Control, Multi-agent System, Transfer Function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840636 Nonlinear Acoustic Echo Cancellation Using Volterra Filtering with a Variable Step-Size GS-PAP Algorithm
Authors: J. B. Seo, K. J. Kim, S. W. Nam
Abstract:
In this paper, a nonlinear acoustic echo cancellation (AEC) system is proposed, whereby 3rd order Volterra filtering is utilized along with a variable step-size Gauss-Seidel pseudo affine projection (VSSGS-PAP) algorithm. In particular, the proposed nonlinear AEC system is developed by considering a double-talk situation with near-end signal variation. Simulation results demonstrate that the proposed approach yields better nonlinear AEC performance than conventional approaches.Keywords: Acoustic echo cancellation (AEC), Volterra filtering, variable step-size, GS-PAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814635 Cluster-Based Multi-Path Routing Algorithm in Wireless Sensor Networks
Authors: Si-Gwan Kim
Abstract:
Small-size and low-power sensors with sensing, signal processing and wireless communication capabilities is suitable for the wireless sensor networks. Due to the limited resources and battery constraints, complex routing algorithms used for the ad-hoc networks cannot be employed in sensor networks. In this paper, we propose node-disjoint multi-path hexagon-based routing algorithms in wireless sensor networks. We suggest the details of the algorithm and compare it with other works. Simulation results show that the proposed scheme achieves better performance in terms of efficiency and message delivery ratio.Keywords: Clustering, multi-path, routing protocol, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470