Search results for: one time pad
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6540

Search results for: one time pad

1140 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network

Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin

Abstract:

In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network.

The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters.

Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output.

This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc.

From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.

Keywords: Project profitability, multi-objective optimization, genetic algorithm, Pareto set, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
1139 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
1138 Result of Fatty Acid Content in Meat of Selenge Breed Younger Cattle

Authors: Myagmarsuren Soronzonjav, N. Togtokhbayar, L. Davaahuu, B. Minjigdorj, Seong Gu Hwang

Abstract:

The number of natural or organic product consumers is increased in recent years and this healthy demand pushes to increase usage of healthy meat. At the same time, consumers pay more attention on the healthy fat, especially on unsaturated fatty acids. These long chain carbohydrates reduce heart diseases, improve memory and eye sight and activate the immune system. One of the important issues to be solved for our Mongolia’s food security is to provide healthy, fresh, widely available and cheap meat for the population. Thus, an importance of the Selenge breed meat production is increasing in order to supply the quality meat food security since the Selenge breed cattle are rapidly multiplied, beneficial in term of income, the same quality as Mongolian breed, and well digested for human body. We researched the lipid, unsaturated and saturated fatty acid contents of meat of Selenge breed younger cattle by their muscle types. Result of our research reveals that 11 saturated fatty acids are detected. For the content of palmitic acid among saturated fatty acids, 23.61% was in the sirloin meat, 24.01% was in the round and chuck meat, and 24.83% was in the short loin meat.

Keywords: Chromatogram, gas chromatography, organic resolving, saturated and unsaturated fatty acids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
1137 Creation of Greater Mekong Subregion Regional Competitiveness through Cluster Mapping

Authors: Danuvasin Charoen

Abstract:

This research investigates cluster development in the area called the Greater Mekong Subregion (GMS), which consists of Thailand, the People’s Republic of China (PRC), the Yunnan Province and Guangxi Zhuang Autonomous Region, Myanmar, the Lao People’s Democratic Republic (Lao PDR), Cambodia, and Vietnam. The study utilized Porter’s competitiveness theory and the cluster mapping approach to analyze the competitiveness of the region. The data collection consists of interviews, focus groups, and the analysis of secondary data. The findings identify some evidence of cluster development in the GMS; however, there is no clear indication of collaboration among the components in the clusters. GMS clusters tend to be stand-alone. The clusters in Vietnam, Lao PDR, Myanmar, and Cambodia tend to be labor intensive, whereas the clusters in Thailand and the PRC (Yunnan) have the potential to successfully develop into innovative clusters. The collaboration and integration among the clusters in the GMS area are promising, though it could take a long time. The most likely relationship between the GMS countries could be, for example, suppliers of the low-end, labor-intensive products will be located in the low income countries such as Myanmar, Lao PDR, and Cambodia, and these countries will be providing input materials for innovative clusters in the middle income countries such as Thailand and the PRC.

Keywords: Greater Mekong Subregion, competitiveness, cluster, development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
1136 Analysis on Iranian Wind Catcher and Its Effect on Natural Ventilation as a Solution towards Sustainable Architecture(Case Study: Yazd)

Authors: Mahnaz Mahmoudi Zarandi (Qazvin Islamic Azad University)

Abstract:

wind catchers have been served as a cooling system, used to provide acceptable ventilation by means of renewable energy of wind. In the present study, the city of Yazd in arid climate is selected as case study. From the architecture point of view, learning about wind catchers in this study is done by means of field surveys. Research method for selection of the case is based on random form, and analytical method. Wind catcher typology and knowledge of relationship governing the wind catcher's architecture were those measures that are taken for the first time. 53 wind catchers were analyzed. The typology of the wind-catchers is done by the physical analyzing, patterns and common concepts as incorporated in them. How the architecture of wind catcher can influence their operations by analyzing thermal behavior are the archetypes of selected wind catchers. Calculating fluids dynamics science, fluent software and numerical analysis are used in this study as the most accurate analytical approach. The results obtained from these analyses show the formal specifications of wind catchers with optimum operation in Yazd. The knowledge obtained from the optimum model could be used for design and construction of wind catchers with more improved operation

Keywords: Fluent Software, Iranian architecture, wind catcher

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4493
1135 Model of High-Speed Train Energy Consumption

Authors: Romain Bosquet, Pierre-Olivier Vandanjon, Alex Coiret, Tristan Lorino

Abstract:

In the hardening energy context, the transport sector which constitutes a large worldwide energy demand has to be improving for decrease energy demand and global warming impacts. In a controversial situation where subsists an increasing demand for long-distance and high-speed travels, high-speed trains offer many advantages, as consuming significantly less energy than road or air transports. At the project phase of new rail infrastructures, it is nowadays important to characterize accurately the energy that will be induced by its operation phase, in addition to other more classical criteria as construction costs and travel time. Current literature consumption models used to estimate railways operation phase are obsolete or not enough accurate for taking into account the newest train or railways technologies. In this paper, an updated model of consumption for high-speed is proposed, based on experimental data obtained from full-scale tests performed on a new high-speed line. The assessment of the model is achieved by identifying train parameters and measured power consumptions for more than one hundred train routes. Perspectives are then discussed to use this updated model for accurately assess the energy impact of future railway infrastructures.

Keywords: High-speed train, energy, model, track profile, infrastructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5209
1134 Measuring Relative Efficiency of Korean Construction Company using DEA/Window

Authors: Jung-Lo Park, Sung-Sik Kim, Sun-Young Choi, Ju-Hyung Kim, Jae-Jun Kim

Abstract:

Sub-prime mortgage crisis which began in the US is regarded as the most economic crisis since the Great Depression in the early 20th century. Especially, hidden problems on efficient operation of a business were disclosed at a time and many financial institutions went bankrupt and filed for court receivership. The collapses of physical market lead to bankruptcy of manufacturing and construction businesses. This study is to analyze dynamic efficiency of construction businesses during the five years at the turn of the global financial crisis. By discovering the trend and stability of efficiency of a construction business, this study-s objective is to improve management efficiency of a construction business in the ever-changing construction market. Variables were selected by analyzing corporate information on top 20 construction businesses in Korea and analyzed for static efficiency in 2008 and dynamic efficiency between 2006 and 2010. Unlike other studies, this study succeeded in deducing efficiency trend and stability of a construction business for five years by using the DEA/Window model. Using the analysis result, efficient and inefficient companies could be figured out. In addition, relative efficiency among DMU was measured by comparing the relationship between input and output variables of construction businesses. This study can be used as a literature to improve management efficiency for companies with low efficiency based on efficiency analysis of construction businesses.

Keywords: Construction Company, DEA, DEA/Window, Efficiency Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
1133 Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe

Authors: Tae Hyun Ahn, Gyo Woo Lee, Man Young Kim

Abstract:

Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required.

Keywords: Evaporation, Injection, Selective Catalytic Reduction (SCR), Thermolysis, UWS (Urea-Water-Solution).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2890
1132 Performance Analysis in 5th Generation Massive Multiple-Input-Multiple-Output Systems

Authors: Jihad S. Daba, Jean-Pierre Dubois, Georges El Soury

Abstract:

Fifth generation wireless networks guarantee significant capacity enhancement to suit more clients and services at higher information rates with better reliability while consuming less power. The deployment of massive multiple-input-multiple-output technology guarantees broadband wireless networks with the use of base station antenna arrays to serve a large number of users on the same frequency and time-slot channels. In this work, we evaluate the performance of massive multiple-input-multiple-output systems (MIMO) systems in 5th generation cellular networks in terms of capacity and bit error rate. Several cases were considered and analyzed to compare the performance of massive MIMO systems while varying the number of antennas at both transmitting and receiving ends. We found that, unlike classical MIMO systems, reducing the number of transmit antennas while increasing the number of antennas at the receiver end provides a better solution to performance enhancement. In addition, enhanced orthogonal frequency division multiplexing and beam division multiple access schemes further improve the performance of massive MIMO systems and make them more reliable.

Keywords: Beam division multiple access, D2D communication, enhanced OFDM, fifth generation broadband, massive MIMO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
1131 Partial Purification of Cytotoxic Peptides against Gastric Cancer Cells from Protein Hydrolysate of Euphorbia hirta Linn.

Authors: S. Yodyingyong, C. Chaichana, C. Nuchsuk, S. Roytrakul, N. P. T-Thienprasert, S. Ratanapo

Abstract:

Protein hydrolysates prepared from a number of medicinal plants are promising sources of various bioactive peptides. In this work, proteins from dried whole plant of Euphorbia hirta Linn. were extracted and digested with pepsin for 12h. The hydrolysates of lesser than 3 KDa were fractionated by a cut-off membrane. The peptide hydrolysate was then purified by an anion-exchange chromatography on DEAE-Sephacel™ column and reverse-phase chromatography on Sep-pak C18 column, respectively. The cytotoxic effect of each peptide fraction against a gastric carcinoma cell line (KATO-III, ATCC No. HTB103) was investigated using colorimetric MTT viability assay. A human liver cell line (Chang Liver, CLS No. 300139) was used as a control normal cell line. Two purified peptide peaks, peak l and peak ll at 100µg peptides mL-1 affected cell viability of the gastric cancer cell lines to 63.85±4.94 and 66.92±6.46%, respectively. Our result showed for the first time that the peptide fractions derived from protein hydrolysate of Euphorbia hirta Linn. have anti-gastric cancer activity, which offers a potential novel and natural anti-gastric cancer remedy.

Keywords: Cytotoxic, peptides, Euphorbia hirta Linn., gastric carcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
1130 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL, electrokinetic, electroosmotic, microfluidics, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208
1129 Automatic Generation Control of Multi-Area Electric Energy Systems Using Modified GA

Authors: Gayadhar Panda, Sidhartha Panda, C. Ardil

Abstract:

A modified Genetic Algorithm (GA) based optimal selection of parameters for Automatic Generation Control (AGC) of multi-area electric energy systems is proposed in this paper. Simulations on multi-area reheat thermal system with and without consideration of nonlinearity like governor dead band followed by 1% step load perturbation is performed to exemplify the optimum parameter search. In this proposed method, a modified Genetic Algorithm is proposed where one point crossover with modification is employed. Positional dependency in respect of crossing site helps to maintain diversity of search point as well as exploitation of already known optimum value. This makes a trade-off between exploration and exploitation of search space to find global optimum in less number of generations. The proposed GA along with decomposition technique as developed has been used to obtain the optimum megawatt frequency control of multi-area electric energy systems. Time-domain simulations are conducted with trapezoidal integration along with decomposition technique. The superiority of the proposed method over existing one is verified from simulations and comparisons.

Keywords: Automatic Generation Control (AGC), Reheat, Proportional Integral (PI) controller, Dead Band, Genetic Algorithm(GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
1128 ECG-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
1127 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives

Authors: Andreas Theissler, Ian Dear

Abstract:

In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.

Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
1126 The Development of Smart School Condition Assessment Based on Condition Survey Protocol (CSP) 1 Matrix: A Literature Review

Authors: N. Hamzah, M. Mahli, A. I. Che-Ani, M. M Tahir, N. A. G. Abdullah, N. M Tawil

Abstract:

Building inspection is one of the key components of building maintenance. The primary purpose of performing a building inspection is to evaluate the building-s condition. Without inspection, it is difficult to determine a built asset-s current condition, so failure to inspect can contribute to the asset-s future failure. Traditionally, a longhand survey description has been widely used for property condition reports. Surveys that employ ratings instead of descriptions are gaining wide acceptance in the industry because they cater to the need for numerical analysis output. These kinds of surveys are also in keeping with the new RICS HomeBuyer Report 2009. In this paper, we propose a new assessment method, derived from the current rating systems, for assessing the specifically smart school building-s condition and rating the seriousness of each defect identified. These two assessment criteria are then multiplied to find the building-s score, which we called the Condition Survey Protocol (CSP) 1 Matrix. Instead of a longhand description of a building-s defects, this matrix requires concise explanations about the defects identified, thus saving on-site time during a smart school building inspection. The full score is used to give the building an overall rating: Good, Fair or Dilapidated.

Keywords: Assessment matrix, building condition survey, rating system, smart school and survey protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457
1125 Biodiesel Production from Broiler Chicken Waste

Authors: John Abraham, Ramesh Saravana Kumar, Francis Xavier, Deepak Mathew

Abstract:

Broiler slaughter waste has become a major source of pollution throughout the world. Utilization of broiler slaughter waste by dry rendering process produced Rendered Chicken Oil (RCO), a cheap raw material for biodiesel production and Carcass Meal a feed ingredient for pets and fishes. Conversion of RCO into biodiesel may open new vistas for generating wealth from waste besides controlling the major havoc of environmental pollution. A two-step process to convert RCO to good quality Biodiesel was invented. Acid catalysed esterification of FFA followed by base catalysed transesterification of triglycerides was carried out after meticulously standardizing the methanol molar ratio, catalyst concentration, reaction temperature, and reaction time to obtain the maximum biodiesel yield of 97.62% and lowest glycerol yield of 6.96%. RCO biodiesel blend was tested in a CRDI diesel engine. The results revealed that the blending of commercial diesel with 20% RCO biodiesel (B20) lead to less engine wear, a quieter engine and better fuel economy. The better lubricating qualities of RCO B20 prevented over heating of engine, which prolongs the engine life. RCO B20 can reduce the import of crude oil and substantially reduce the engine emissions as proved by significantly lower smoke levels, thus mitigating climatic changes.

Keywords: Biodiesel, Broiler Waste, Engine Testing, Rendered Chicken Oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5507
1124 Nuclear Power Generation and CO2 Abatement Scenarios in Taiwan

Authors: Chang-Bin Huang, Fu-Kuang Ko

Abstract:

Taiwan was the first country in Asia to announce “Nuclear-Free Homeland" in 2002. In 2008, the new government released the Sustainable Energy Policy Guidelines to lower the nationwide CO2 emissions some time between 2016 and 2020 back to the level of year 2008, further abatement of CO2 emissions is planed in year 2025 when CO2 emissions will decrease to the level of year 2000. Besides, under consideration of the issues of energy, environment and economics (3E), the new government declared that the nuclear power is a carbon-less energy option. This study analyses the effects of nuclear power generation for CO2 abatement scenarios in Taiwan. The MARKAL-MACRO energy model was adopted to evaluate economic impacts and energy deployment due to life extension of existing nuclear power plants and build new nuclear power units in CO2 abatement scenarios. The results show that CO2 abatement effort is expensive. On the other hand, nuclear power is a cost-effective choice. The GDP loss rate in the case of building new nuclear power plants is around two thirds of the Nuclear-Free Homeland case. Nuclear power generation has the capacity to provide large-scale CO2 free electricity. Therefore, the results show that nuclear power is not only an option for Taiwan, but also a requisite for Taiwan-s CO2 reduction strategy.

Keywords: Energy model, CO2 abatement, nuclear power, economic impacts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
1123 Context Aware Anomaly Behavior Analysis for Smart Home Systems

Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu

Abstract:

The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.

Keywords: Internet of Things, network security, context awareness, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
1122 Effects of Increased Green Surface on a Densely Built Urban Fabric: The Case of Budapest

Authors: Viktória Sugár, Orsolya Frick, Gabriella Horváth, A. Bendegúz Vöröss, Péter Leczovics, Géza Baráth

Abstract:

Urban greenery has multiple positive effects both on the city and its residents. Apart from the visual advantages, it changes the micro-climate by cooling and shading, also increasing vapor and oxygen, reducing dust and carbon-dioxide content at the same time. The above are all critical factors of livability of an urban fabric. Unfortunately, in a dense, historical district there are restricted possibilities to build green surfaces. The present study collects and systemizes the applicable green solutions in the case of a historical downtown district of Budapest. The study contains a GIS-based measurement of the eligible surfaces for greenery, and also calculates the potential of oxygen production, carbon-dioxide reduction and cooling effect of an increased green surface.  It can be concluded that increasing the green surface has measurable effects on a densely built urban fabric, including air quality, micro-climate and other environmental factors.

Keywords: Urban greenery, green roof, green wall, green surface potential, sustainable city, oxygen production, carbon-dioxide reduction, geographical information system, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926
1121 Comparison among Various Question Generations for Decision Tree Based State Tying in Persian Language

Authors: Nasibeh Nasiri, Dawood Talebi Khanmiri

Abstract:

Performance of any continuous speech recognition system is highly dependent on performance of the acoustic models. Generally, development of the robust spoken language technology relies on the availability of large amounts of data. Common way to cope with little data for training each state of Markov models is treebased state tying. This tying method applies contextual questions to tie states. Manual procedure for question generation suffers from human errors and is time consuming. Various automatically generated questions are used to construct decision tree. There are three approaches to generate questions to construct HMMs based on decision tree. One approach is based on misrecognized phonemes, another approach basically uses feature table and the other is based on state distributions corresponding to context-independent subword units. In this paper, all these methods of automatic question generation are applied to the decision tree on FARSDAT corpus in Persian language and their results are compared with those of manually generated questions. The results show that automatically generated questions yield much better results and can replace manually generated questions in Persian language.

Keywords: Decision Tree, Markov Models, Speech Recognition, State Tying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
1120 Use of Caffeine and Human Pharmaceutical Compounds to Identify Sewage Contamination

Authors: Jingming Wu, Junqi Yue, Ruikang Hu, Zhaoguang Yang, Lifeng Zhang

Abstract:

Fecal coliform bacteria are widely used as indicators of sewage contamination in surface water. However, there are some disadvantages in these microbial techniques including time consuming (18-48h) and inability in discriminating between human and animal fecal material sources. Therefore, it is necessary to seek a more specific indicator of human sanitary waste. In this study, the feasibility was investigated to apply caffeine and human pharmaceutical compounds to identify the human-source contamination. The correlation between caffeine and fecal coliform was also explored. Surface water samples were collected from upstream, middle-stream and downstream points respectively, along Rochor Canal, as well as 8 locations of Marina Bay. Results indicate that caffeine is a suitable chemical tracer in Singapore because of its easy detection (in the range of 0.30-2.0 ng/mL), compared with other chemicals monitored. Relative low concentrations of human pharmaceutical compounds (< 0.07 ng/mL) in Rochor Canal and Marina Bay water samples make them hard to be detected and difficult to be chemical tracer. However, their existence can help to validate sewage contamination. In addition, it was discovered the high correlation exists between caffeine concentration and fecal coliform density in the Rochor Canal water samples, demonstrating that caffeine is highly related to the human-source contamination.

Keywords: Caffeine, Human Pharmaceutical Compounds, Chemical Tracer, Sewage Contamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
1119 Bit Model Based Key Management Scheme for Secure Group Communication

Authors: R. Varalakshmi

Abstract:

For the last decade, researchers have started to focus their interest on Multicast Group Key Management Framework. The central research challenge is secure and efficient group key distribution. The present paper is based on the Bit model based Secure Multicast Group key distribution scheme using the most popular absolute encoder output type code named Gray Code. The focus is of two folds. The first fold deals with the reduction of computation complexity which is achieved in our scheme by performing fewer multiplication operations during the key updating process. To optimize the number of multiplication operations, an O(1) time algorithm to multiply two N-bit binary numbers which could be used in an N x N bit-model of reconfigurable mesh is used in this proposed work. The second fold aims at reducing the amount of information stored in the Group Center and group members while performing the update operation in the key content. Comparative analysis to illustrate the performance of various key distribution schemes is shown in this paper and it has been observed that this proposed algorithm reduces the computation and storage complexity significantly. Our proposed algorithm is suitable for high performance computing environment.

Keywords: Multicast Group key distribution, Bit model, Integer Multiplications, reconfigurable mesh, optimal algorithm, Gray Code, Computation Complexity, Storage Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
1118 Educational Experiences in Engineering in the COVID-19 Era and Their Comparative Analysis: Spain, March-June 2020

Authors: Borja Bordel, Ramón Alcarria, Marina Pérez

Abstract:

In March 2020, in Spain, a sanitary and unexpected crisis caused by COVID-19 was declared. All of a sudden, all degrees, classes and evaluation tests and projects had to be transformed into online activities. However, the chaotic situation generated by a complex operation like that, executed without any well-established procedure, led to very different experiences and, finally, results. In this paper, we are describing three experiences in two different Universities in Madrid. On the one hand, the Technical University of Madrid, a public university with little experience in online education was considered. On the other hand, Alfonso X el Sabio University, a private university with more than five years of experience in online teaching was involved. All analyzed subjects were related to computer engineering. Professors and students answered a survey and personal interviews were also carried out. Besides, the professors’ workload and the students’ academic results were also compared. From the comparative analysis of all these experiences, we are extracting the most successful strategies, methodologies, and activities. The recommendations in this paper will be useful for courses during the next months when the sanitary situation is still affecting an educational organization. While, at the same time, they will be considered as input for the upcoming digitalization process of higher education.

Keywords: educational experience, online education, higher education digitalization, COVID, Spain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 458
1117 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
1116 Performance of Heat Pump Dryer for Kaffir Lime Leaves and Quality of Dried Products under Different Temperatures and Media

Authors: N. Poomsa-ad, K. Deejing, L. Wiset

Abstract:

This research is to study the performance of heat pump dryer for drying of kaffir lime leaves under different media and to compare the color values and essential oil content of final products after drying. In the experiments, kaffir lime leaves were dried in the closed-loop system at drying temperatures of 40, 50 and 60 oC. The drying media used in this study were hot air, CO2 and N2 gases. The velocity of drying media in the drying chamber was 0.4 m/s with bypass ratio of 30%. The initial moisture content of kaffir lime leaves was approximately 180-190 % d.b. It was dried until down to a final moisture content of 10% d.b. From the experiments, the results showed that drying rate, the coefficient of performance (COP) and specific energy consumption (SEC) depended on drying temperature. While drying media did not affect on drying rate. The time for kaffir lime leaves drying at 40, 50 and 60 oC was 10, 5 and 3 hours, respectively. The performance of the heat pump system decreased with drying temperature in the range of 2.20-3.51. In the aspect of final product color, the greenness and overall color had a great change under drying temperature at 60 oC rather than drying at 40 and 50 oC. When compared among drying media, the greenness and overall color of product dried with hot air at 60 oC had a great change rather than dried with CO2 and N2.

Keywords: airless drying, drying rate, essential oil content

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
1115 Cleaning Performance of High-Frequency, High-Intensity 360 kHz Frequency Operating in Thickness Mode Transducers

Authors: R. Vetrimurugan, Terry Lim, M. J. Goodson, R. Nagarajan

Abstract:

This study investigates the cleaning performance of high intensity 360 kHz frequency on removal of nano-dimensional and sub-micron particles from various surfaces, uniformity of the cleaning tank and run to run variation of cleaning process. The uniformity of the cleaning tank was measured by two different methods i.e. 1. ppbTM meter and 2. Liquid Particle Counting (LPC) technique. The result indicates that the energy was distributed more uniformly throughout the entire cleaning vessel even at the corners and edges of the tank when megasonic sweeping technology is applied. The result also shows that rinsing the parts with 360 kHz frequency at final rinse gives lower particle counts, hence higher cleaning efficiency as compared to other frequencies. When megasonic sweeping technology is applied each piezoelectric transducers will operate at their optimum resonant frequency and generates stronger acoustic cavitational force and higher acoustic streaming velocity. These combined forces are helping to enhance the particle removal and at the same time improve the overall cleaning performance. The multiple extractions study was also carried out for various frequencies to measure the cleaning potential and asymptote value.

Keywords: Power distribution, megasonic sweeping, thickness mode transducers, cavitation intensity, particle removal, laser particle counting, nano, submicron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
1114 Intelligent Temperature Controller for Water-Bath System

Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar

Abstract:

Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.

To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.

It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.

Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5548
1113 Performance Evaluation of A Stratified Chilled- Water Thermal Storage System

Authors: M. A. Karim

Abstract:

In countries with hot climates, air-conditioning forms a large proportion of annual peak electrical demand, requiring expansion of power plants to meet the peak demand, which goes unused most of the time. Use of well-designed cool storage can offset the peak demand to a large extent. In this study, an air conditioning system with naturally stratified storage tank was designed, constructed and tested. A new type of diffuser was designed and used in this study. Factors that influence the performance of chilled water storage tanks were investigated. The results indicated that stratified storage tank consistently stratified well without any physical barrier. Investigation also showed that storage efficiency decreased with increasing flow rate due to increased mixing of warm and chilled water. Diffuser design and layout primarily affected the mixing near the inlet diffuser and the extent of this mixing had primary influence on the shape of the thermocline. The heat conduction through tank walls and through the thermocline caused widening of mixed volume. Thermal efficiency of stratified storage tanks was as high as 90 percent, which indicates that stratified tanks can effectively be used as a load management technique.

Keywords: Cool Thermal Storage, Diffuser, Natural Stratification, Efficiency Improvement, Load management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3620
1112 Multicasting Characteristics of All-Optical Triode Based On Negative Feedback Semiconductor Optical Amplifiers

Authors: S. Aisyah Azizan, M. Syafiq Azmi, Yuki Harada, Yoshinobu Maeda, Takaomi Matsutani

Abstract:

We introduced an all-optical multicasting characteristics with wavelength conversion based on a novel all-optical triode using negative feedback semiconductor optical amplifier. This study was demonstrated with a transfer speed of 10 Gb/s to a non-return zero 231-1 pseudorandom bit sequence system. This multi-wavelength converter device can simultaneously provide three channels of output signal with the support of non-inverted and inverted conversion. We studied that an all-optical multicasting and wavelength conversion accomplishing cross gain modulation is effective in a semiconductor optical amplifier which is effective to provide an inverted conversion thus negative feedback. The relationship of received power of back to back signal and output signals with wavelength 1535 nm, 1540 nm, 1545 nm, 1550 nm, and 1555 nm with bit error rate was investigated. It was reported that the output signal wavelengths were successfully converted and modulated with a power penalty of less than 8.7 dB, which the highest is 8.6 dB while the lowest is 4.4 dB. It was proved that all-optical multicasting and wavelength conversion using an optical triode with a negative feedback by three channels at the same time at a speed of 10 Gb/s is a promising device for the new wavelength conversion technology.

Keywords: Cross gain modulation, multicasting, negative feedback optical amplifier, semiconductor optical amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
1111 Well-Being Inequality Using Superimposing Satisfaction Waves: Heisenberg Uncertainty in Behavioural Economics and Econometrics

Authors: Okay Gunes

Abstract:

In this article, a new method is proposed for the measuring of well-being inequality through a model composed of superimposing satisfaction waves. The displacement of households’ satisfactory state (i.e. satisfaction) is defined in a satisfaction string. The duration of the satisfactory state for a given period is measured in order to determine the relationship between utility and total satisfactory time, itself dependent on the density and tension of each satisfaction string. Thus, individual cardinal total satisfaction values are computed by way of a one-dimensional form for scalar sinusoidal (harmonic) moving wave function, using satisfaction waves with varying amplitudes and frequencies which allow us to measure wellbeing inequality. One advantage to using satisfaction waves is the ability to show that individual utility and consumption amounts would probably not commute; hence, it is impossible to measure or to know simultaneously the values of these observables from the dataset. Thus, we crystallize the problem by using a Heisenberg-type uncertainty resolution for self-adjoint economic operators. We propose to eliminate any estimation bias by correlating the standard deviations of selected economic operators; this is achieved by replacing the aforementioned observed uncertainties with households’ perceived uncertainties (i.e. corrected standard deviations) obtained through the logarithmic psychophysical law proposed by Weber and Fechner.

Keywords: Heisenberg Uncertainty Principle, superimposing satisfaction waves, Weber–Fechner law, well-being inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055