Search results for: Interval features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1813

Search results for: Interval features

1303 Morphing Human Faces: Automatic Control Points Selection and Color Transition

Authors: Stephen Karungaru, Minoru Fukumi, Norio Akamatsu

Abstract:

In this paper, we propose a morphing method by which face color images can be freely transformed. The main focus of this work is the transformation of one face image to another. This method is fully automatic in that it can morph two face images by automatically detecting all the control points necessary to perform the morph. A face detection neural network, edge detection and medium filters are employed to detect the face position and features. Five control points, for both the source and target images, are then extracted based on the facial features. Triangulation method is then used to match and warp the source image to the target image using the control points. Finally color interpolation is done using a color Gaussian model that calculates the color for each particular frame depending on the number of frames used. A real coded Genetic algorithm is used in both the image warping and color blending steps to assist in step size decisions and speed up the morphing. This method results in ''very smooth'' morphs and is fast to process.

Keywords: color transition, genetic algorithms morphing, warping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823
1302 Web Pages Aesthetic Evaluation Using Low-Level Visual Features

Authors: Maryam Mirdehghani, S. Amirhassan Monadjemi

Abstract:

Web sites are rapidly becoming the preferred media choice for our daily works such as information search, company presentation, shopping, and so on. At the same time, we live in a period where visual appearances play an increasingly important role in our daily life. In spite of designers- effort to develop a web site which be both user-friendly and attractive, it would be difficult to ensure the outcome-s aesthetic quality, since the visual appearance is a matter of an individual self perception and opinion. In this study, it is attempted to develop an automatic system for web pages aesthetic evaluation which are the building blocks of web sites. Based on the image processing techniques and artificial neural networks, the proposed method would be able to categorize the input web page according to its visual appearance and aesthetic quality. The employed features are multiscale/multidirectional textural and perceptual color properties of the web pages, fed to perceptron ANN which has been trained as the evaluator. The method is tested using university web sites and the results suggested that it would perform well in the web page aesthetic evaluation tasks with around 90% correct categorization.

Keywords: Web Page Design, Web Page Aesthetic, Color Spaces, Texture, Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1301 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
1300 Application of MADM in Identifying the Transmission Rate of Dengue fever: A Case Study of Shah Alam, Malaysia

Authors: Nuraini Yusoff, Harun Budin, Salemah Ismail

Abstract:

Identifying parameters in an epidemic model is one of the important aspect of modeling. In this paper, we suggest a method to identify the transmission rate by using the multistage Adomian decomposition method. As a case study, we use the data of the reported dengue fever cases in the city of Shah Alam, Malaysia. The result obtained fairly represents the actual situation. However, in the SIR model, this method serves as an alternative in parameter identification and enables us to make necessary analysis for a smaller interval.

Keywords: dengue fever, multistage Adomian decomposition method, Shah Alam, SIR model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
1299 Dimension Reduction of Microarray Data Based on Local Principal Component

Authors: Ali Anaissi, Paul J. Kennedy, Madhu Goyal

Abstract:

Analysis and visualization of microarraydata is veryassistantfor biologists and clinicians in the field of diagnosis and treatment of patients. It allows Clinicians to better understand the structure of microarray and facilitates understanding gene expression in cells. However, microarray dataset is a complex data set and has thousands of features and a very small number of observations. This very high dimensional data set often contains some noise, non-useful information and a small number of relevant features for disease or genotype. This paper proposes a non-linear dimensionality reduction algorithm Local Principal Component (LPC) which aims to maps high dimensional data to a lower dimensional space. The reduced data represents the most important variables underlying the original data. Experimental results and comparisons are presented to show the quality of the proposed algorithm. Moreover, experiments also show how this algorithm reduces high dimensional data whilst preserving the neighbourhoods of the points in the low dimensional space as in the high dimensional space.

Keywords: Linear Dimension Reduction, Non-Linear Dimension Reduction, Principal Component Analysis, Biologists.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1298 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing

Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall

Abstract:

Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.

Keywords: Ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
1297 Fusion Classifier for Open-Set Face Recognition with Pose Variations

Authors: Gee-Sern Jison Hsu

Abstract:

A fusion classifier composed of two modules, one made by a hidden Markov model (HMM) and the other by a support vector machine (SVM), is proposed to recognize faces with pose variations in open-set recognition settings. The HMM module captures the evolution of facial features across a subject-s face using the subject-s facial images only, without referencing to the faces of others. Because of the captured evolutionary process of facial features, the HMM module retains certain robustness against pose variations, yielding low false rejection rates (FRR) for recognizing faces across poses. This is, however, on the price of poor false acceptance rates (FAR) when recognizing other faces because it is built upon withinclass samples only. The SVM module in the proposed model is developed following a special design able to substantially diminish the FAR and further lower down the FRR. The proposed fusion classifier has been evaluated in performance using the CMU PIE database, and proven effective for open-set face recognition with pose variations. Experiments have also shown that it outperforms the face classifier made by HMM or SVM alone.

Keywords: Face recognition, open-set identification, hidden Markov model, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
1296 An Efficient Algorithm for Motion Detection Based Facial Expression Recognition using Optical Flow

Authors: Ahmad R. Naghsh-Nilchi, Mohammad Roshanzamir

Abstract:

One of the popular methods for recognition of facial expressions such as happiness, sadness and surprise is based on deformation of facial features. Motion vectors which show these deformations can be specified by the optical flow. In this method, for detecting emotions, the resulted set of motion vectors are compared with standard deformation template that caused by facial expressions. In this paper, a new method is introduced to compute the quantity of likeness in order to make decision based on the importance of obtained vectors from an optical flow approach. For finding the vectors, one of the efficient optical flow method developed by Gautama and VanHulle[17] is used. The suggested method has been examined over Cohn-Kanade AU-Coded Facial Expression Database, one of the most comprehensive collections of test images available. The experimental results show that our method could correctly recognize the facial expressions in 94% of case studies. The results also show that only a few number of image frames (three frames) are sufficient to detect facial expressions with rate of success of about 83.3%. This is a significant improvement over the available methods.

Keywords: Facial expression, Facial features, Optical flow, Motion vectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
1295 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires

Authors: Musaab Salman Sultan

Abstract:

The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.

Keywords: MOKE magnetometry, MR measurements, OOMMF package, micro-magnetic simulations, ferromagnetic nanowires, surface magnetic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
1294 Vision Based Hand Gesture Recognition Using Generative and Discriminative Stochastic Models

Authors: Mahmoud Elmezain, Samar El-shinawy

Abstract:

Many approaches to pattern recognition are founded on probability theory, and can be broadly characterized as either generative or discriminative according to whether or not the distribution of the image features. Generative and discriminative models have very different characteristics, as well as complementary strengths and weaknesses. In this paper, we study these models to recognize the patterns of alphabet characters (A-Z) and numbers (0-9). To handle isolated pattern, generative model as Hidden Markov Model (HMM) and discriminative models like Conditional Random Field (CRF), Hidden Conditional Random Field (HCRF) and Latent-Dynamic Conditional Random Field (LDCRF) with different number of window size are applied on extracted pattern features. The gesture recognition rate is improved initially as the window size increase, but degrades as window size increase further. Experimental results show that the LDCRF is the best in terms of results than CRF, HCRF and HMM at window size equal 4. Additionally, our results show that; an overall recognition rates are 91.52%, 95.28%, 96.94% and 98.05% for CRF, HCRF, HMM and LDCRF respectively.

Keywords: Statistical Pattern Recognition, Generative Model, Discriminative Model, Human Computer Interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
1293 Time Synchronization between the eNBs in E-UTRAN under the Asymmetric IP Network

Authors: M. Kollar, A. Zieba

Abstract:

In this paper, we present a method for a time synchronization between the two eNodeBs (eNBs) in E-UTRAN (Evolved Universal Terrestrial Radio Access) network. The two eNBs are cooperating in so-called inter eNB CA (Carrier Aggregation) case and connected via asymmetrical IP network. We solve the problem by using broadcasting signals generated in E-UTRAN as synchronization signals. The results show that the time synchronization with the proposed method is possible with the error significantly less than 1 ms which is sufficient considering the time transmission interval is 1 ms in E-UTRAN. This makes this method (with low complexity) more suitable than Network Time Protocol (NTP) in the mobile applications with generated broadcasting signals where time synchronization in asymmetrical network is required.

Keywords: E-UTRAN, IP scheduled throughput, initial burst delay, synchronization, NTP, delay, asymmetric network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
1292 Strategy for Optimal Configuration Design of Existing Structures by Topology and Shape Optimization Tools

Authors: Waqas Saleem, Fan Yuqing

Abstract:

A strategy is implemented to find the improved configuration design of an existing aircraft structure by executing topology and shape optimizations. Structural analysis of the Initial Design Space is performed in ANSYS under the loads pertinent to operating and ground conditions. By using the FEA results and data, an initial optimized layout configuration is attained by exploiting nonparametric topology optimization in TOSCA software. Topological optimized surfaces are then smoothened and imported in ANSYS to develop the geometrical features. Nodes at the critical locations of resulting voids are selected for sketching rough profiles. Rough profiles are further refined and CAD feasible geometric features are generated. The modified model is then analyzed under the same loadings and constraints as defined for topology optimization. Shape at the peak stress concentration areas are further optimized by exploiting the shape optimization in TOSCA.shape module. The harmonized stressed model with the modified surfaces is then imported in CATIA to develop the final design.

Keywords: Structural optimization, Topology optimization, Shape optimization, Tail fin

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2810
1291 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: Data fusion, Dempster-Shafer theory, data mining, event detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
1290 Dimensionality Reduction of PSSM Matrix and its Influence on Secondary Structure and Relative Solvent Accessibility Predictions

Authors: Rafał Adamczak

Abstract:

State-of-the-art methods for secondary structure (Porter, Psi-PRED, SAM-T99sec, Sable) and solvent accessibility (Sable, ACCpro) predictions use evolutionary profiles represented by the position specific scoring matrix (PSSM). It has been demonstrated that evolutionary profiles are the most important features in the feature space for these predictions. Unfortunately applying PSSM matrix leads to high dimensional feature spaces that may create problems with parameter optimization and generalization. Several recently published suggested that applying feature extraction for the PSSM matrix may result in improvements in secondary structure predictions. However, none of the top performing methods considered here utilizes dimensionality reduction to improve generalization. In the present study, we used simple and fast methods for features selection (t-statistics, information gain) that allow us to decrease the dimensionality of PSSM matrix by 75% and improve generalization in the case of secondary structure prediction compared to the Sable server.

Keywords: Secondary structure prediction, feature selection, position specific scoring matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
1289 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
1288 Effective Digital Music Retrieval System through Content-based Features

Authors: Bokyung Sung, Kwanghyo Koo, Jungsoo Kim, Myung-Bum Jung, Jinman Kwon, Ilju Ko

Abstract:

In this paper, we propose effective system for digital music retrieval. We divided proposed system into Client and Server. Client part consists of pre-processing and Content-based feature extraction stages. In pre-processing stage, we minimized Time code Gap that is occurred among same music contents. As content-based feature, first-order differentiated MFCC were used. These presented approximately envelop of music feature sequences. Server part included Music Server and Music Matching stage. Extracted features from 1,000 digital music files were stored in Music Server. In Music Matching stage, we found retrieval result through similarity measure by DTW. In experiment, we used 450 queries. These were made by mixing different compression standards and sound qualities from 50 digital music files. Retrieval accurate indicated 97% and retrieval time was average 15ms in every single query. Out experiment proved that proposed system is effective in retrieve digital music and robust at various user environments of web.

Keywords: Music Retrieval, Content-based, Music Feature and Digital Music.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
1287 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: Color moments, visual thing recognition system, SIFT, color SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
1286 Control Chart Pattern Recognition Using Wavelet Based Neural Networks

Authors: Jun Seok Kim, Cheong-Sool Park, Jun-Geol Baek, Sung-Shick Kim

Abstract:

Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characteristics. The procedure of proposed control chart pattern recognizer comprises three stages. First, multi-resolution wavelet analysis is used to generate time-shape and time-frequency coefficients that have detail information about the patterns. Second, distance based features are extracted by a bi-directional Kohonen network to make reduced and robust information. Third, a back-propagation network classifier is trained by these features. The accuracy of the proposed method is shown by the performance evaluation with numerical results.

Keywords: Control chart pattern recognition, Multi-resolution wavelet analysis, Bi-directional Kohonen network, Back-propagation network, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
1285 Intelligent Speaker Verification based Biometric System for Electronic Commerce Applications

Authors: Anastasis Kounoudes, Stephanos Mavromoustakos

Abstract:

Electronic commerce is growing rapidly with on-line sales already heading for hundreds of billion dollars per year. Due to the huge amount of money transferred everyday, an increased security level is required. In this work we present the architecture of an intelligent speaker verification system, which is able to accurately verify the registered users of an e-commerce service using only their voices as an input. According to the proposed architecture, a transaction-based e-commerce application should be complemented by a biometric server where customer-s unique set of speech models (voiceprint) is stored. The verification procedure requests from the user to pronounce a personalized sequence of digits and after capturing speech and extracting voice features at the client side are sent back to the biometric server. The biometric server uses pattern recognition to decide whether the received features match the stored voiceprint of the customer who claims to be, and accordingly grants verification. The proposed architecture can provide e-commerce applications with a higher degree of certainty regarding the identity of a customer, and prevent impostors to execute fraudulent transactions.

Keywords: Speaker Recognition, Biometrics, E-commercesecurity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
1284 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd Zaizu Ilyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two techniques, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapped on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non- Gaussian in the feature space and by using combination of several Gaussian functions that has different statistical properties, the best feature representation can be modelled using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculated GMM components. The method is tested using FERET datasets and is able to achieved 92% recognition rates.

Keywords: Local features modelling, face recognition system, Gaussian mixture models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
1283 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram

Authors: S. Shanthi, V. Muralibhaskaran

Abstract:

Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.

Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2944
1282 Establishing a New Simple Formula for Buckling Length Factor (K) of Rigid Frames Columns

Authors: Ehab Hasan Ahmed Hasan Ali

Abstract:

The calculation of buckling length factor (K) for steel frames columns is a major and governing processes to determine the dimensions steel frame columns cross sections during design. The buckling length of steel frames columns has a direct effect on the cost (weight) of using cross section. A new formula is required to determine buckling length factor (K) by simplified way. In this research a new formula for buckling length factor (K) was established to determine by accurate method for a limited interval of columns ends rigidity (GA, GB). The new formula can be used ease to evaluate the buckling length factor without needing to complicated equations or difficult charts.

Keywords: Buckling length, New formula, Curve fitting, Simplification, Steel column design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
1281 New Approaches on Exponential Stability Analysis for Neural Networks with Time-Varying Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper, utilizing the Lyapunov functional method and combining linear matrix inequality (LMI) techniques and integral inequality approach (IIA) to study the exponential stability problem for neural networks with discrete and distributed time-varying delays.By constructing new Lyapunov-Krasovskii functional and dividing the discrete delay interval into multiple segments,some new delay-dependent exponential stability criteria are established in terms of LMIs and can be easily checked.In order to show the stability condition in this paper gives much less conservative results than those in the literature,numerical examples are considered.

Keywords: Neural networks, Exponential stability, LMI approach, Time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
1280 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
1279 Ruin Probability for a Markovian Risk Model with Two-type Claims

Authors: Dongdong Zhang, Deran Zhang

Abstract:

In this paper, a Markovian risk model with two-type claims is considered. In such a risk model, the occurrences of the two type claims are described by two point processes {Ni(t), t ¸ 0}, i = 1, 2, where {Ni(t), t ¸ 0} is the number of jumps during the interval (0, t] for the Markov jump process {Xi(t), t ¸ 0} . The ruin probability ª(u) of a company facing such a risk model is mainly discussed. An integral equation satisfied by the ruin probability ª(u) is obtained and the bounds for the convergence rate of the ruin probability ª(u) are given by using key-renewal theorem.

Keywords: Risk model, ruin probability, Markov jump process, integral equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
1278 Efficient DTW-Based Speech Recognition System for Isolated Words of Arabic Language

Authors: Khalid A. Darabkh, Ala F. Khalifeh, Baraa A. Bathech, Saed W. Sabah

Abstract:

Despite the fact that Arabic language is currently one of the most common languages worldwide, there has been only a little research on Arabic speech recognition relative to other languages such as English and Japanese. Generally, digital speech processing and voice recognition algorithms are of special importance for designing efficient, accurate, as well as fast automatic speech recognition systems. However, the speech recognition process carried out in this paper is divided into three stages as follows: firstly, the signal is preprocessed to reduce noise effects. After that, the signal is digitized and hearingized. Consequently, the voice activity regions are segmented using voice activity detection (VAD) algorithm. Secondly, features are extracted from the speech signal using Mel-frequency cepstral coefficients (MFCC) algorithm. Moreover, delta and acceleration (delta-delta) coefficients have been added for the reason of improving the recognition accuracy. Finally, each test word-s features are compared to the training database using dynamic time warping (DTW) algorithm. Utilizing the best set up made for all affected parameters to the aforementioned techniques, the proposed system achieved a recognition rate of about 98.5% which outperformed other HMM and ANN-based approaches available in the literature.

Keywords: Arabic speech recognition, MFCC, DTW, VAD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4075
1277 Using Teager Energy Cepstrum and HMM distancesin Automatic Speech Recognition and Analysis of Unvoiced Speech

Authors: Panikos Heracleous

Abstract:

In this study, the use of silicon NAM (Non-Audible Murmur) microphone in automatic speech recognition is presented. NAM microphones are special acoustic sensors, which are attached behind the talker-s ear and can capture not only normal (audible) speech, but also very quietly uttered speech (non-audible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech conversion etc.) for sound-impaired people. Using a small amount of training data and adaptation approaches, 93.9% word accuracy was achieved for a 20k Japanese vocabulary dictation task. Non-audible murmur recognition in noisy environments is also investigated. In this study, further analysis of the NAM speech has been made using distance measures between hidden Markov model (HMM) pairs. It has been shown the reduced spectral space of NAM speech using a metric distance, however the location of the different phonemes of NAM are similar to the location of the phonemes of normal speech, and the NAM sounds are well discriminated. Promising results in using nonlinear features are also introduced, especially under noisy conditions.

Keywords: Speech recognition, unvoiced speech, nonlinear features, HMM distance measures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
1276 Study of Unsteady Swirling Flow in a Hydrodynamic Vortex Chamber

Authors: Sergey I. Shtork, Aleksey P. Vinokurov, Sergey V. Alekseenko

Abstract:

The paper reports on the results of experimental and numerical study of nonstationary swirling flow in an isothermal model of vortex burner. It has been identified that main source of the instability is related to a precessing vortex core (PVC) phenomenon. The PVC induced flow pulsation characteristics such as precession frequency and its variation as a function of flowrate and swirl number have been explored making use of acoustic probes. Additionally pressure transducers were used to measure the pressure drops on the working chamber and across the vortex flow. The experiments have been included also the mean velocity measurements making use of a laser-Doppler anemometry. The features of instantaneous flowfield generated by the PVC were analyzed employing a commercial CFD code (Star-CCM+) based on Detached Eddy Simulation (DES) approach. Validity of the numerical code has been checked by comparison calculated flowfield data with the obtained experimental results. It has been confirmed particularly that the CFD code applied correctly reproduces the flow features.

Keywords: Acoustic probes, detached eddy simulation (DES), laser-Doppler anemometry (LDA), precessing vortex core (PVC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
1275 Dynamics in Tangible Chemical Reactions

Authors: Patrick Maier, Marcus Tönnis, Gudrun Klinker

Abstract:

Spatial understanding and the understanding of dynamic change in the spatial structure of molecules during a reaction is essential for designing new molecules. Knowing the physical processes in the reactions helps to speed up the designing process. To support the designer with the correct representation of the designed molecule as well as showing the dynamic behavior of the whole reacting system is the goal of our application. Our system shows the spatial deformation of the molecules at every time interval by minimizing the energy level of the molecules. The position and orientation of the molecules can be intuitively controlled by manipulating objects of the real world using Augmented Reality techniques. Our approach has the potential to speed up the design of new molecules and help students to understand the chemical processes better.

Keywords: Augmented Augmented Chemical Reactions, Augmented Reality, chemistry, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
1274 A Comprehensive Review on Different Mixed Data Clustering Ensemble Methods

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila

Abstract:

An extensive amount of work has been done in data clustering research under the unsupervised learning technique in Data Mining during the past two decades. Moreover, several approaches and methods have been emerged focusing on clustering diverse data types, features of cluster models and similarity rates of clusters. However, none of the single clustering algorithm exemplifies its best nature in extracting efficient clusters. Consequently, in order to rectify this issue, a new challenging technique called Cluster Ensemble method was bloomed. This new approach tends to be the alternative method for the cluster analysis problem. The main objective of the Cluster Ensemble is to aggregate the diverse clustering solutions in such a way to attain accuracy and also to improve the eminence the individual clustering algorithms. Due to the massive and rapid development of new methods in the globe of data mining, it is highly mandatory to scrutinize a vital analysis of existing techniques and the future novelty. This paper shows the comparative analysis of different cluster ensemble methods along with their methodologies and salient features. Henceforth this unambiguous analysis will be very useful for the society of clustering experts and also helps in deciding the most appropriate one to resolve the problem in hand.

Keywords: Clustering, Cluster Ensemble Methods, Coassociation matrix, Consensus Function, Median Partition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104