Search results for: Improved Support Vector Machine
4058 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54314057 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques
Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel
Abstract:
Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.
Keywords: Cross-language analysis, machine learning, machine translation, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16674056 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining
Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar
Abstract:
The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.
Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33084055 Diagnosis of Induction Machine Faults by DWT
Authors: Hamidreza Akbari
Abstract:
In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.
Keywords: Induction machine, Fault, DWT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21314054 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load
Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul
Abstract:
While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.
Keywords: Aluminum foam, collapse mechanisms, light-weight structures, transport application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12164053 A New Pattern for Handwritten Persian/Arabic Digit Recognition
Authors: A. Harifi, A. Aghagolzadeh
Abstract:
The main problem for recognition of handwritten Persian digits using Neural Network is to extract an appropriate feature vector from image matrix. In this research an asymmetrical segmentation pattern is proposed to obtain the feature vector. This pattern can be adjusted as an optimum model thanks to its one degree of freedom as a control point. Since any chosen algorithm depends on digit identity, a Neural Network is used to prevail over this dependence. Inputs of this Network are the moment of inertia and the center of gravity which do not depend on digit identity. Recognizing the digit is carried out using another Neural Network. Simulation results indicate the high recognition rate of 97.6% for new introduced pattern in comparison to the previous models for recognition of digits.
Keywords: Pattern recognition, Persian digits, NeuralNetwork.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16774052 Design Consideration of a Plastic Shredder in Recycling Processes
Authors: Tolulope A. Olukunle
Abstract:
Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm.
Keywords: Design, machine, plastic waste, recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51984051 Design Approach for the Development of Format-Flexible Packaging Machines
Authors: G. Götz, P. Stich, J. Backhaus, G. Reinhart
Abstract:
The rising demand for format-flexible packaging machines is caused by current market changes. Increasing the formatflexibility is a new goal for the packaging machine manufacturers’ product development process. There are no methodical or designorientated tools for a comprehensive consideration of this target. This paper defines the term format-flexibility in the context of packaging machines and shows the state-of-the-art for improving the changeover of production machines. The requirements for a new approach and the concept itself will be introduced, and the method elements will be explained. Finally, the use of the concept and the result of the development of a format-flexible packaging machine will be shown.Keywords: Packaging machine, format-flexibility, changeover, design method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15504050 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: S. Chahba, R. Sehab, A. Akrad, C. Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.
Keywords: Electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit fault diagnosis, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4524049 Stability of Interconnected Systems under Structural Perturbation: Decomposition-Aggregation Approach
Authors: M. Kidouche, H. Habbi, M. Zelmat
Abstract:
In this paper, the decomposition-aggregation method is used to carry out connective stability criteria for general linear composite system via aggregation. The large scale system is decomposed into a number of subsystems. By associating directed graphs with dynamic systems in an essential way, we define the relation between system structure and stability in the sense of Lyapunov. The stability criteria is then associated with the stability and system matrices of subsystems as well as those interconnected terms among subsystems using the concepts of vector differential inequalities and vector Lyapunov functions. Then, we show that the stability of each subsystem and stability of the aggregate model imply connective stability of the overall system. An example is reported, showing the efficiency of the proposed technique.Keywords: Composite system, Connective stability, Lyapunovfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15054048 Application of the Improved QFD Method Case Study: Kitchen Utensils Rack Design
Authors: Dini Endah Setyo Rahaju, Dian Retno Sari Dewi
Abstract:
This paper presents an application of the improved QFD method for determining the specifications of kitchen utensils rack. By using the improved method, the subjective nature in original QFD was reduced; particularly in defining the relationship between customer requirement and engineering characteristics. The regression analysis that was used for obtaining the relationship functions between customer requirement and engineering characteristics also accommodated the inaccurateness of the competitive assessment results. The improved method which is represented in the form of a mathematical model had become a formal guidance to allocate the resource for improving the specifications of kitchen utensils rack. The specifications obtained had led to the achievement of the highest feasible customer satisfaction.
Keywords: Customer satisfaction, kitchen utensils rack design, QFD, specifications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16324047 Remote Operation of CNC Milling Through Virtual Simulation and Remote Desktop Interface
Authors: Afzeri, A.G.E Sujtipto, R. Muhida, M. Konneh, Darmawan
Abstract:
Increasing the demand for effectively use of the production facility requires the tools for sharing the manufacturing facility through remote operation of the machining process. This research introduces the methodology of machining technology for direct remote operation of networked milling machine. The integrated tools with virtual simulation, remote desktop protocol and Setup Free Attachment for remote operation of milling process are proposed. Accessing and monitoring of machining operation is performed by remote desktop interface and 3D virtual simulations. Capability of remote operation is supported by an auto setup attachment with a reconfigurable pin type setup free technology installed on the table of CNC milling machine to perform unattended machining process. The system is designed using a computer server and connected to a PC based controlled CNC machine for real time monitoring. A client will access the server through internet communication and virtually simulate the machine activity. The result has been presented that combination between real time virtual simulation and remote desktop tool is enabling to operate all machine tool functions and as well as workpiece setup..Keywords: Remote Desktop, PC Based CNC, Remote Machining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28784046 Perception of the Frequency and Importance of Peer Social Support by Students with Special Educational Needs in Inclusive Education
Authors: Lucia Hrebeňárová, Jarmila Žolnová, Veronika Palková
Abstract:
Inclusive education of students with special educational needs has been on the increase in the Slovak Republic, facing many challenges. Preparedness of teachers for inclusive education is one of the most frequent issues; teachers lack skills when it comes to the use of effective instruction depending on the individual needs of students, improvement of classroom management and social skills, and support of inclusion within the classroom. Social support is crucial for the school success of students within inclusive settings. The aim of the paper is to analyse perception of the frequency and importance of peer social support by students with special educational needs in inclusive education. The data collection tool used was the Child and Adolescent Social Support Scale (CASSS). The research sample consisted of 953 fourth grade students – 141 students with special educational needs educated in an inclusive setting and 812 students of the standard population. No significant differences were found between the students with special educational needs and the students without special educational needs in an inclusive setting when it comes to the perception of frequency and importance of social support of schoolmates and friends. However, the perception of frequency and importance of a friend’s social support was higher than the perception of frequency and importance of a classmate’s social support in both groups of students.Keywords: Inclusive education, peer social support, peer, student with special educational needs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13084045 Optimization for the Hydraulic Clamping System of an Internal Circulation Two-Platen Injection Molding Machine
Authors: Jian Wang, Lu Yang, Jiong Peng
Abstract:
Internal circulation two-platen clamping system for injection molding machine (IMM) has many potential advantages on energy-saving. In order to estimate its properties, experiments were carried out in this paper. Displacement and pressure of the components were measured. In comparison, the model of hydraulic clamping system was established by using AMESim. The related parameters as well as the energy consumption could be calculated. According to the analysis, the hydraulic system was optimized in order to reduce the energy consumption.
Keywords: AMESim, energy-saving, injection molding machine, internal circulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28414044 The Robust Clustering with Reduction Dimension
Authors: Dyah E. Herwindiati
Abstract:
A clustering is process to identify a homogeneous groups of object called as cluster. Clustering is one interesting topic on data mining. A group or class behaves similarly characteristics. This paper discusses a robust clustering process for data images with two reduction dimension approaches; i.e. the two dimensional principal component analysis (2DPCA) and principal component analysis (PCA). A standard approach to overcome this problem is dimension reduction, which transforms a high-dimensional data into a lower-dimensional space with limited loss of information. One of the most common forms of dimensionality reduction is the principal components analysis (PCA). The 2DPCA is often called a variant of principal component (PCA), the image matrices were directly treated as 2D matrices; they do not need to be transformed into a vector so that the covariance matrix of image can be constructed directly using the original image matrices. The decomposed classical covariance matrix is very sensitive to outlying observations. The objective of paper is to compare the performance of robust minimizing vector variance (MVV) in the two dimensional projection PCA (2DPCA) and the PCA for clustering on an arbitrary data image when outliers are hiden in the data set. The simulation aspects of robustness and the illustration of clustering images are discussed in the end of paperKeywords: Breakdown point, Consistency, 2DPCA, PCA, Outlier, Vector Variance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16984043 Extracting Multiword Expressions in Machine Translation from English to Urdu using Relational Data Approach
Authors: Kashif Bilal, Uzair Muhammad, Atif Khan, M. Nasir Khan
Abstract:
Machine Translation, (hereafter in this document referred to as the "MT") faces a lot of complex problems from its origination. Extracting multiword expressions is also one of the complex problems in MT. Finding multiword expressions during translating a sentence from English into Urdu, through existing solutions, takes a lot of time and occupies system resources. We have designed a simple relational data approach, in which we simply set a bit in dictionary (database) for multiword, to find and handle multiword expression. This approach handles multiword efficiently.Keywords: Machine Translation, Multiword Expressions, Urdulanguage processing, POS (stands for Parts of Speech) Tagging forUrdu, Expert Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23584042 Facilitating Familial Support of Saudi Arabians Living with HIV/AIDS
Authors: Noor Attar
Abstract:
This paper provides an overview of the current situation of HIV/AIDS patients in the Kingdom of Saudi Arabia (KSA) and a literature review of the concepts of stigma communication, communication of social support. These concepts provide the basis for the proposed methods, which will include conducting a textual analysis of materials that are currently distributed to family members of people living with HIV/AIDS (PLWHIV/A) in KSA and creating an educational brochure. The brochure will aim to help families of PLWHIV/A in KSA (1) understand how stigma shapes the experience of PLWHIV/A, (2) realize the role of positive communication as a helpful social support, and (3) develop the ability to provide positive social support for their loved ones.Keywords: HIV/AIDS, Saudi Arabia, social support, stigma communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13244041 Decision Support for Modularization: Engineering Construction Case Studies
Authors: R. Monib, C. I. Goodier, A. Gibb
Abstract:
This paper aims to investigate decision support strategies in the EC sector to determine the most appropriate degree of modularization. This is achieved through three oil and gas (O&G) and two power plant case studies via semi-structured interviews (n = 59 and n = 27, respectively), analysis of project documents, and case study-specific semi-structured validation interviews (n = 12 and n = 8). Terminology to distinguish degrees of modularization is proposed, along with a decision-making support checklist and a diagrammatic decision-making support figure. Results indicate that the EC sub-sectors were substantially more satisfied with the application of component, structural, or traditional modularization compared with system modularization for some types of modules. Key drivers for decisions on the degree of modularization vary across module types. This paper can help the EC sector determine the most suitable degree of modularization via a decision-making support strategy.
Keywords: Modularization, engineering construction, case study, decision support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024040 Highly Accurate Tennis Ball Throwing Machine with Intelligent Control
Authors: Ferenc Kovács, Gábor Hosszú
Abstract:
The paper presents an advanced control system for tennis ball throwing machines to improve their accuracy according to the ball impact points. A further advantage of the system is the much easier calibration process involving the intelligent solution of the automatic adjustment of the stroking parameters according to the ball elasticity, the self-calibration, the use of the safety margin at very flat strokes and the possibility to placing the machine to any position of the half court. The system applies mathematical methods to determine the exact ball trajectories and special approximating processes to access all points on the aimed half court.Keywords: Control system, robot programming, robot control, sports equipment, throwing machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41854039 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature
Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak
Abstract:
In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21494038 Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal
Authors: Israa Sh. Tawfic, Sema Koc Kayhan
Abstract:
Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.
Keywords: Compressed sensing, Lest Support Orthogonal Matching Pursuit, Partial Knowing Support, Restricted isometry property, signal reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22324037 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.
Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5694036 Comparative Study of Ad Hoc Routing Protocols in Vehicular Ad-Hoc Networks for Smart City
Authors: Khadija Raissi, Bechir Ben Gouissem
Abstract:
In this paper, we perform the investigation of some routing protocols in Vehicular Ad-Hoc Network (VANET) context. Indeed, we study the efficiency of protocols like Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vector Routing (AODV), Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing convention (OLSR) and Vehicular Multi-hop algorithm for Stable Clustering (VMASC) in terms of packet delivery ratio (PDR) and throughput. The performance evaluation and comparison between the studied protocols shows that the VMASC is the best protocols regarding fast data transmission and link stability in VANETs. The validation of all results is done by the NS3 simulator.
Keywords: VANET, smart city, AODV, OLSR, DSR, OLSR, VMASC, routing protocols, NS3.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10284035 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: Crime prediction, machine learning, public safety, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13264034 Top Management Support as an Enabling Factor for Academic Innovation through Knowledge Sharing
Authors: Sawsan J. Al-husseini, Talib A. Dosa
Abstract:
Educational institutions are today facing increasing pressures due to economic, political and social upheaval. This is only exacerbated by the nature of education as an intangible good which relies upon the intellectual assets of the organisation, its staff. Top management support has been acknowledged as having a positive general influence on knowledge management and creativity. However, there is a lack of models linking top management support, knowledge sharing, and innovation within higher education institutions, in general within developing countries, and particularly in Iraq. This research sought to investigate the impact of top management support on innovation through the mediating role of knowledge sharing in Iraqi private HEIs. A quantitative approach was taken and 262 valid responses were collected to test the causal relationships between top management support, knowledge sharing, and innovation. Employing structural equation modelling with AMOS v.25, the research demonstrated that knowledge sharing plays a pivotal role in the relationship between top management support and innovation. The research has produced some guidelines for researchers as well as leaders, and provided evidence to support the use of knowledge sharing to increase innovation within the higher education environment in developing countries, particularly Iraq.
Keywords: Top management support, knowledge sharing, innovation, structural equation modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12824033 Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features
Authors: Rehab F. Abdel-Kader, Rabab M. Ramadan, Rawya Y. Rizk
Abstract:
The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.Keywords: Discrete Cosine Transform, Face Recognition, Feature Extraction, Log Polar Transform, Particle SwarmOptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18734032 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.
Keywords: Classification, machine learning, time representation, stock prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11554031 Hand Written Digit Recognition by Multiple Classifier Fusion based on Decision Templates Approach
Authors: Reza Ebrahimpour, Samaneh Hamedi
Abstract:
Classifier fusion may generate more accurate classification than each of the basic classifiers. Fusion is often based on fixed combination rules like the product, average etc. This paper presents decision templates as classifier fusion method for the recognition of the handwritten English and Farsi numerals (1-9). The process involves extracting a feature vector on well-known image databases. The extracted feature vector is fed to multiple classifier fusion. A set of experiments were conducted to compare decision templates (DTs) with some combination rules. Results from decision templates conclude 97.99% and 97.28% for Farsi and English handwritten digits.Keywords: Decision templates, multi-layer perceptron, characteristics Loci, principle component analysis (PCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19564030 STATCOM based Damping Controller in Power Systems for Enhance the Power System Stability
Authors: Sangram Keshori Mohapatra, Sidhartha Panda, Prasant Kumar Satpathy
Abstract:
This paper describes the power-system stability improvement by a static synchronous compensator (STATCOM) based damping controller with Differential evolution (DE) algorithm is used to find out the optimal controller parameters. The present study considered both local and remote signals with associated time delays. The performances of the proposed controllers have been compared with different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. To show the effectiveness and robustness of the proposed controller the Simulation results are presented under different disturbances and loading conditions.
Keywords: Controller Design, Differential Evolution Algorithm Static Synchronous Compensator, Time Delay, Power System Stability, Single Machine Infinite-bus Power System, Multi-Machine Power System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27424029 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches
Authors: Shilpy Sharma
Abstract:
As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.Keywords: Search engines; machine learning, Informationretrieval, Active logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083