
 

  

Abstract—The paper presents an advanced control system for 

tennis ball throwing machines to improve their accuracy according to 

the ball impact points. A further advantage of the system is the much 

easier calibration process involving the intelligent solution of the 

automatic adjustment of the stroking parameters according to the ball 

elasticity, the self-calibration, the use of the safety margin at very flat 

strokes and the possibility to placing the machine to any position of 

the half court. The system applies mathematical methods to 

determine the exact ball trajectories and special approximating 

processes to access all points on the aimed half court. 

 

Keywords—Control system, robot programming, robot control, 

sports equipment, throwing machine. 

I. INTRODUCTION 

DVANCED tennis ball throwing machines have to 

accurately launch balls to all locations of the court with 

all stroke types, strengths and repetition rates in order to 

realize the game situations. All these should be carried out 

with high stroke accuracy to perfectly simulate a virtual 

professional partner for the player. The trajectory of the ball 

and so the accuracy is determined by the starting parameters 

of the launch (speed, vertical angle and ball spin), which can 

be provided either experimentally by videos tracking (as for 

table tennis [1], [2] or for volleyball [3]) or by its 

mathematically description. The paper deals with the second 

method. 

Supposing a machine type with rotating wheels for ball 

ejection, the dynamics of launching cannot described exactly 

due to the slip-and-stick nature of the ejection [4] containing a 

purely defined friction [5], [6] the whole process cannot be 

described exactly. The main influencing factors are the surface 

roughness of the wheel as well as the elasticity and the 

remaining nap of the ball [7], [8]. This way, despite the very 

accurate frequency control and the fine vertical adjustment of 

the positions [9], the caused spread of the impact points might 

be disturbing for a high level training. 

The aerodynamic behavior of tennis balls are wide ranging 

investigated [10]-[12] involving the factors that influence the 

describing Differential Equation System. However, difficulties 

arise with the mathematical solution of the trajectories when 

applying them individually for each stroke due to the time 
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required before each launch. 

The demand of high accuracy involves the problem of 

initial validation of the machine as well as the corrections of 

the strokes during the game. Taking into account the large 

number of targets the individual calculation of these is 

impossible. Some former machines evade this problem by 

limiting the number of the aimed points, dividing the half 

court into cells, where all points inside are substituted with the 

center. The stroke parameters of these centers, as the strength 

and the angles are then computed in advance and stored in a 

table [13], reducing thus the aiming to a data readout. 

Additional problems arise when placing the throwing machine 

into different positions of the court and also because of the 

spread of the ball elasticity. Therefore, a new development 

should realize (i) the individual in-situ measurement of the 

elasticity of each ball with the determination of their spread 

for correction of the parameters of each stroke, (ii) 

simplification of the initial validation of the machine as well 

as the on-the-game calibration process and, (iii) possibility to 

place the throwing machine on arbitrary positions. 

The paper presents an advanced control system which 

provides these improvements utilizing mathematical 

expressions for the trajectories and the measurement of the 

ball elasticity. 

II. METHOD 

A. Impact Points and Trajectories 

The main principle of the method is that each stroke should 

be controlled by its trajectory, namely for all stroke types and 

training levels and for all aimed points as well as for all 

positions of the throwing machine. 

The impact points are expressed in polar coordinates the 

origin of which is the actual position of the machine and the 

axis r (φ=0) is parallel with the longitudinal axis of the court. 

The distance of the impact points (sT) is then given by (1). 
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where xT, xM, yT and yM are the Cartesian coordinates of the 

impact point and the machine, respectively, and φ is the 

horizontal angle of the stroke. The distance sT of the 

designated impact point and the height of the ball over the net 

provide the actual trajectory described by the Differential 

Equation System (2). 
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where v is the speed vector of the ball with the components vx 

and vz , γ is the vertical angle of v, CD and CM are the constants 

of the Drag-force (which retards the motion) and the Magnus-

force (which causes a vertical deviation), vspin and ω are the 

circumferential and angle speed of the ball. Furthermore, α = 

ρπd
2
/8m is calculated from the air density (ρ), the mass (m) 

and the diameter (d) of the ball, g=9.81m/s
2 

is the gravitational 

acceleration and finally, ∆t is the time step. 

The trajectories are illustrated on Fig. 1 by a long topspin 

stroke and a no-spin one, both with the starting ball speed 

v0=20 m/s. The height of the throwing point is z0=0.37m. 

 

 

Fig. 1 Illustration of trajectories for two different stroke types 

B. Approximations of the Aiming 

The numerical solution of the Equation System (2) provides 

the time function of the speed vector v(t) of the ball from 

which the x(t) and z(t) coordinates are deduced. The inputs are 

the stroke parameters (v0 , γ0) for the impact point sT (z=0) and 

the height of the ball over the net h. However, this is a 

“reverse calculation” since v0 and γ0 are searched whereas the 

impact point and h are given. This can be achieved only by 

iteration needing a relatively long computational time thus not 

available for the in-situ application. 

 

 

Fig. 2 Starting speeds v0 and vertical angles γ0 for different target 

points along the central line 

 

A possible way to avoid this could be to prepare the s(v0, γ0) 

and h(v0, γ0) functions in advance in an explicit form e.g. 

polynomials. The derived v0(sT) and γ0(sT) approximating 

functions provide directly the demanded stroke parameters. 

Fig. 2 displays the two curves for baseline strokes, minimum 

ball heights and conventional machine position. However, for 

general case, due to the large number of variables, this is 

unsuitable. 

The case of high balls is obviously simpler because then the 

net has no role. Having the starting speed which determines 

the strength of the stroke, only the vertical angle γ0 should be 

calculated. Fig. 3 shows the γ0(sT, v0) relations for flat strokes 

along the central line. The results can also be applied for 

strokes at different orientations and at different machine 

positions by a simple shift and/or rotation to the demanded 

distance sT. 
 

 

Fig. 3 Vertical angles γ0 at given speeds v0 and the distance sT of 

target points 

 

The direct approximation method based on the diagrams 

seems to be appropriate to determine the stroke parameters. 

However, if the ball is not extremely high then it is necessary 

to check the height over the net, which means, that, generally, 

the method is not as simple as it seems to be. 

 

 

Fig. 4 Illustration of the safety margin applied sideway 

 

In the case of very flat strokes it is necessary to know 

exactly the spread of the balls in order to choose a reliable ball 

height over the net. Obviously the spread is smaller just above 

the net than at the baseline where its vertical size can be 

determined by guided Monte Carlo analysis using repeated 

solution of (2). The vertical size delivers a safety margin 

above which the strokes pass reliably (Fig. 4). This margin is 

the highest at the side of the court and the lowest at the middle 

due to the sagging of the net. 

C. Dividing the Half Court into Cells 

Applying the cell method, the only way to improve the 

aiming accuracy would be to increase the number of cells 

resulting in an even larger table for storing the cell data. 

Another drawback is that because of the large size of the table 

its correction will be even more difficult. 

A more appropriate solution to improve the accuracy is to 

introduce a local approximation inside the cell. Since the 

distances inside the cells are relatively small, therefore, using 

second order polynomial functions the approximation will be 

acceptable. 

Using this method one can exploit that all points inside the 
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cell, being at the same distance from the machine, belong to 

the same trajectory and so possess the same stroke parameters 

(neglecting the role of the net). The principle of the 

approximation is as follows. The designated target will be 

turned to that radial line which passes through the center and 

then its distance from the point sA will be utilized as shown on 

Fig. 5.  
 

 

Fig. 5 Illustration of a cell with its center and the displaced target 

point 

 

The stroke parameters v0 and γ0 are computed for the 

centers by (2) for all stroke types and levels and, in addition, 

for very flat strokes the height m is also calculated. 

Accordingly, the data of the centers to be stored consist of the 

v0 and γ0 values for each distance sT from the machine. 

However, it should be kept in mind that displacing the 

machine the allowed height of the ball above the net varies. 

The approximation applies a second order polynomial of the 

stroke parameters to calculate the coefficients. The first order 

coefficients are the partial derivatives of the function sT(v0, γ0) 

as a1sv = ∂s/∂v and a1sγ = ∂s/∂γ, which are the short term 

quotients of the radial distance and the two stroke parameters. 

Similarly, the data set contains the linear coefficient of the ball 

height function above the net h(v0, γ0) as a1hv = ∂h/∂v and a1hγ 

= ∂h/∂γ. For the second order approximation the coefficients 

a2sv , a2sγ , a2hv and a2hγ are calculated by (3): 
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where the parameters ds and dh are the obtained differences 

for the distance and the height, respectively, furthermore dv 

and dγ are the applied differences inside the cell for the 

starting speed and vertical angle, respectively, and as a 

difference for ds the distance of sA from the center may be 

applied. Using these coefficients the change of the stroke 

parameters due to the displacements of the impact point are 

expressed in (4): 
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where ∆h is measured over the crossing point depending on 

the distance from the sideline. 

Although in the second order Equation System (4) the 

displacements ∆s and ∆h are given and the differences of the 

stroke parameters are searched, however, there are fast 

algorithms to find them. The obtained differences ∆v and ∆γ 

yield the stroke parameters using the expressions vT = vC –∆v 

and γT = γC –∆γ where vC and γC are the parameters of the 

central point. 

D. Wheel Frequencies and the Elasticity Measurement 

The spread of the ball elasticity significantly influences the 

stroke accuracy but it can be improved by measuring each ball 

individually before the ejection. The measured elasticity 

contains other features as the ablation, the actual nap. 

However, these factors all influence the ejection and thus they 

can be involved for the adjustment of the starting speed. 

The technical solution of the elasticity measurement is 

illustrated in Fig. 6. The ball falls down from a ball container 

into the short pipeline, in which it is pushed forward by the 

next ball onto the rotating wheels. During the time the next 

ball is pushed forwards the former waits at the pressure sensor 

according to the programmed timing. 

 

 

Fig. 6 The ejection mechanism with the pressure measurement 

 

The sensor is placed at the end of the pipeline at the bottom 

of the pipe with a dummy sensor mounted above. The 

frequency of the rotating wheels will be adjusted at each ball 

depending on the measured elasticity. Because the ball is 

significantly compressed between the wheels so the stroke 

depends on the elasticity measured. This value will be 

transferred to the central unit in order to continuously 

calculate its actual mean and spread. 

The speed v0 should be converted to the frequencies of the 

wheels. Based on the measurements it was found that the 

required frequency of the wheels can be approximated by a 

second order polynomial of v0. At strokes without spin the 

frequencies of the upper (fu) and lower (fL) wheels are equal, 

while at spinning balls they significantly differ. The 

mathematical form of this relation is given in (5): 
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where fmax is the maximum achievable rotation speed limited 

by the driving motor, k1 and k2 are constants determined 

experimentally for flat (no-spin) strokes. The kt constant is 

used for topspin strokes for the lower wheel and kb for the 

upper one for backspins, both depending on the revolution of 

the spin. In order to achieve the largest revolution the faster 

wheel always rotates on the maximum frequency fmax. All 

calculated frequencies are multiplied with the elasticity factor 

kp provided individually by the measurement. Due to this each 
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ball being either a standard or a private one has its particular 

kp coefficient with its mean value and spread, which will be 

taken into account at the beginning of the game. 

E. Playing and Corrections 

The flow chart of the play with the interactive stroke 

corrections is shown in Fig. 7. Starting the game the player 

enters the main conditions such as the position of the machine, 

the ball set and the training level to be applied. It is followed 

by successive entering of the strokes with their type and the 

impact point. During this the control unit calculates for each 

stroke (i) the φ and sT polar coordinates of the target point 

from the xT, yT coordinates by searching their incorporating 

cell, (ii) the crossing point over the net, (iii) the displacement 

of the target point from the center, (iv) the v0 and γ0 values 

using (5) taking into account the ball height over the net and, 

(v) sends all these data to the machine, optionally completed 

with the individual waiting time of the stroke. 

The machine converts the transferred v0 values to the wheel 

frequencies fU and fL, according to (5). These frequencies will 

be adjusted utilizing the measured individual elasticity of the 

ball while it passes between the sensor and its dummy 

counterpart. The stroke is carried out after the vertical γ0 and 

lateral angles φ are adjusted. The measured values are sent to 

the central unit. 

The system installs some dedicated cells outside of the half 

court for the correction. If the player detects a faulty stroke 

then she/he touches the hit cell on the screen of the control 

unit. So the control unit can identify the fault and modifies 

either the speed v0 or the starting angle γ0 or both. 

Simultaneously the control unit builds up an error map the 

evaluation of which may initiate the correction of one part of 

the table or even the whole map by introducing modified k 

constants of (5). 

III. RESULTS 

The presented control system has been tested on an 

experimental machine based on a former mechanical 

construction. As control unit a tablet was used with the 

extended half court represented by its screen and a remote link 

by WIFI to the throwing machine. The half court has been 

divided to 96 square cells with 2x2m size from which two test 

cells are selected at the baseline and behind the net in the 

center and a third one at the meshing point of the left sideline 

at the T-line. The k-factors of the rotating wheels have been 

determined for all modes (training level, stroke type and 

machine position) using (5). (Normally only some of these 

will be used). Starting experimental shots to these test cells by 

the player and then touching the observed real impact point on 

the screen gives feedback for the computing system. Based on 

these the data of the centers will be corrected and then written 

into the control unit. Using these data a global table will be 

built up for the whole half court storing the parameters v0, γ0 

and φ as well as the approximation coefficients of (3) and (5) 

for each cells. The machine converts these data to the actual fu 

and fL wheel frequencies. 

 

Fig. 7 Flow chart of the play and the interactive stroke correction 

 

The individual elasticity measurements of the balls enable 

to calculate their up-to-date mean value. When this value 

significantly drifts away from the former one the control unit 

rewrites the whole table to improve the accuracy. 

The control system has been proven through many 

thousands of shots using quite different types of balls, too. 

Using five test shots everywhere on the court less than 65cm 

deviation of the impact points has been measured. All these 

justified the excellent stroke accuracy of the developed system 

and taking the average of the results for a longer time, it can 

be said to exceed even the launches of some professionals. 

IV. CONCLUSION 

The main points of the intelligence of the system are (i) 

introducing an interactive calibration procedure in which the 

player touches an impact point on the screen and due to this a 

possible failure is evaluated by the system and then it 

automatically corrects the stroke parameters even for all stored 

data of the whole aiming system, (ii) the machine is able to do 

continuous self-calibration on an interactive manner using 

feedback from the player, (iii) allowing the installation of the 

machine at any position of its half court, automatically 

adjusting the whole aiming system to this new arrangement, 

(iv) utilizing the spread of balls taking it into consideration 

when calculating the extremely flat professional strokes. 

However, allowing using hazardous flat strokes with 

extremely high strength for professionals, calculating the path 

of the ball with fault-rates acceptable by the player. 

Applying cameras the trajectory of the returns as well as the 

motion of the player can be observed and evaluated. All these 

systems inevitably require the use of an intelligent ball 

throwing machine like the presented one. 
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