Search results for: Energy box
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2848

Search results for: Energy box

2338 Energy Efficiency Testing of Fluorescent and WOLED (White Organic LED)

Authors: Hari Maghfiroh, Harry Prabowo

Abstract:

WOLED is widely used as lighting for high efficacy and little power consumption. In this research, power factor testing between WOLED and fluorescent lamp to see which one is more efficient in consuming energy. Since both lamps use semiconductor components, so calculation of the power factor need to consider the effects of harmonics. Harmonic make bigger losses. The study is conducted by comparing the value of the power factor regardless of harmonics (DPF) and also by included the harmonics (TPF). The average value of DPF of fluorescent is 0.953 while WOLED is 0.972. The average value of TPF of fluorescent is 0.717 whereas WOLED is 0.933. So from the review of power factor WOLED is more energy efficient than fluorescent lamp.

Keywords: Fluorescent, harmonic, power factor, WOLED.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
2337 Synthesis of Magnesium Borates from the Slurries of Magnesium Wastes by Microwave Energy

Authors: N. Tugrul, F. T. Senberber, A. S. Kipcak E. Moroydor Derun, S. Piskin

Abstract:

In this research, it is aimed not only microwave synthesis of magnesium borates but also evaluation of magnesium wastes. Synthesis process can be described with the reaction of Mg wastes and boric acid using microwave energy. X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied to synthesized minerals. According to XRD results, magnesium borate hydrate mixtures were obtained as mcallisterite (pdf# = 01-070-1902, Mg2(B6O7(OH)6)2.9(H2O)) at higher crystallinity properties was achieved at the mole ratio raw material 1:1. Also, other kinds of magnesium borate hydrates were obtained at lower crystallinity such as admontite (pdf # = 01-076-0540, MgO(B2O3)3.7(H2O)), inderite (pdf # = 01-072-2308, 2MgO.3B2O3.15(H2O)) and magnesium borate hydrates (pdf # = 01-076-0539, MgO(B2O3)3.6(H2O)). FT-IR spectrums indicated that minor changes were seen at the band values of characteristic stretching in each experiment. At the end of experiments it is seen that using microwave energy may contribute positive effects to design of synthesis process such as reducing reaction time and products at higher crystallinity.

Keywords: Magnesium wastes, boric acid, magnesium borate, microwave energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
2336 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network

Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar

Abstract:

In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.

Keywords: Deterministic stable election protocol, energy model, fuzzy logic, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
2335 System Reliability by Prediction of Generator Output and Losses in a Competitive Energy Market

Authors: Perumal Nallagownden, Ravindra N. Mukerjee, Syafrudin Masri

Abstract:

In a competitive energy market, system reliability should be maintained at all times. Power system operation being of online in nature, the energy balance requirements must be satisfied to ensure reliable operation the system. To achieve this, information regarding the expected status of the system, the scheduled transactions and the relevant inputs necessary to make either a transaction contract or a transmission contract operational, have to be made available in real time. The real time procedure proposed, facilitates this. This paper proposes a quadratic curve learning procedure, which enables a generator-s contribution to the retailer demand, power loss of transaction in a line at the retail end and its associated losses for an oncoming operating scenario to be predicted. Matlab program was used to test in on a 24-bus IEE Reliability Test System, and the results are found to be acceptable.

Keywords: Deregulation, learning coefficients, reliability, prediction, competitive energy market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
2334 Providing Additional Advantages for STATCOM in Power Systems by Integration of Energy Storage Device

Authors: Reza Sedaghati

Abstract:

The use of Flexible AC Transmission System (FACTS) devices in a power system can potentially overcome limitations of the present mechanically controlled transmission system. Also, the advance of technology makes possible to include new energy storage devices in the electrical power system. The integration of Superconducting Magnetic Energy Storage (SMES) into Static Synchronous Compensator (STATCOM) can lead to increase their flexibility in improvement of power system dynamic behaviour by exchanging both active and reactive powers with power grids. This paper describes structure and behaviour of SMES, specifications and performance principles of the STATCOM/SMES compensator. Moreover, the benefits and effectiveness of integrated SMES with STATCOM in power systems is presented. Also, the performance of the STATCOM/SMES compensator is evaluated using an IEEE 3-bus system through the dynamic simulation by PSCAD/EMTDC software.

Keywords: STATCOM/SMES compensator, chopper, converter, energy storage system, power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3290
2333 Energy Consumption and Carbon Calculations of Microalgae Biodiesel

Authors: Tao Zhao, Zhao Liu, Changxin Zhao, Cui Mao

Abstract:

At present, the severe oil crisis and greenhouse effect are booming, which is a growing worry for China. Over a long period of study, choosing the development of biological diesel is a feasible way in the desertification region in China. With considering the adaptability of Micro-algae in desertification region and analyzing energy consumption and carbon calculations of Micro-algae biodiesel produced by JJ company , this paper, make the microalgae our optimal choice to develop biological diesel in china's desertification region.

Keywords: Biodiesel, Microalgae, Energy Consumption, CarbonCalculations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
2332 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
2331 Nonlinear Simulation of Harmonically Coupled Two-Beam Free-Electron Laser

Authors: M. Zahedian, B. Maraghechi, M. H. Rouhani

Abstract:

A nonlinear model of two-beam free-electron laser (FEL) in the absence of slippage is presented. The two beams are assumed to be cold with different energies and the fundamental resonance of the higher energy beam is at the third harmonic of lower energy beam. By using Maxwell-s equations and full Lorentz force equations of motion for the electron beams, coupled differential equations are derived and solved numerically by the fourth order Runge–Kutta method. In this method a considerable growth of third harmonic electromagnetic field in the XUV and X-ray regions is predicted.

Keywords: Free-electron laser, Higher energy beam, Lowerenergy beam, Two-beam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
2330 Nanocomputing Memory Devices Formed from Carbon Nanotubes and Metallofulleres

Authors: Richard K. F. Lee, James M. Hill

Abstract:

In this paper, we summarize recent work of the authors on nanocomputing memory devices. We investigate two memory devices, each comprising a charged metallofullerene and carbon nanotubes. The first device involves two open nanotubes of the same radius that are joined by a centrally located nanotube of a smaller radius. A metallofullerene is then enclosed inside the structure. The second device also involves a etallofullerene that is located inside a closed carbon nanotube. Assuming the Lennard-Jones interaction energy and the continuum approximation, for both devices, the metallofullerene has two symmetrically placed equal minimum energy positions. On one side the metallofullerene represents the zero information state and by applying an external electrical field, it can overcome the energy barrier, and pass from one end of the tube to the other, where the metallofullerene then represents the one information state.

Keywords: Carbon nanotube, continuous approach, energy barrier, Lennard-Jones potential, metallofullerene, nanomemory device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
2329 Passive Ventilation System Analysis using Solar Chimney in South of Algeria

Authors: B. Belfuguais, S. Larbi

Abstract:

The work presented in this study is related to an energy system analysis based on passive cooling system for dwellings. It consists to solar chimney energy performances determination versus geometrical and environmental considerations as the size and inlet width conditions of the chimney. Adrar site located in the southern region of Algeria is chosen for this study according to ambient temperature and solar irradiance technical data availability. Obtained results are related to the glazing temperature distributions, the chimney air flow and internal wall temperatures. The air room change per hour (ACH) parameter, the outlet air velocity and mass air flow rate are also determined. It is shown that the chimney width has a significant effect on energy performances compared to its entry size. A good agreement is observed between these results and those obtained by others from the literature.

Keywords: Solar chimney, Energy performances, Passive ventilation, Numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2890
2328 The Effects of Plantation Size and Internal Transport on Energy Efficiency of Biofuel Production

Authors: Olga Orynycz, Andrzej Wasiak

Abstract:

Mathematical model describing energetic efficiency (defined as a ratio of energy obtained in the form of biofuel to the sum of energy inputs necessary to facilitate production) of agricultural subsystem as a function of technological parameters was developed. Production technology is characterized by parameters of machinery, topological characteristics of the plantation as well as transportation routes inside and outside of plantation. The relationship between the energetic efficiency of agricultural and industrial subsystems is also derived. Due to the assumed large area of the individual field, the operations last for several days increasing inter-fields routes because of several returns. The total distance driven outside of the fields is, however, small as compared to the distance driven inside of the fields. This results in small energy consumption during inter-fields transport that, however, causes a substantial decrease of the energetic effectiveness of the whole system.

Keywords: Biofuel, energetic efficiency, EROEI, mathematical modelling, production system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
2327 Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

Authors: Lina Wu, Ye Li, Jia Liu

Abstract:

We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.

Keywords: Differential Forms, Hölder Inequality, Liouville-type problems, p-balanced growth, p-harmonic maps, q-energy growth, tests for series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
2326 Investigating the Effectiveness of Self-Shading Strategy on Overall Thermal Transfer Value and Window Size in High Rise Buildings

Authors: Mansour Nikpour, Mohd Zin kandar, Mohammad Ghomeshi, Nima Moeinzadeh, Mohsen Ghasemi

Abstract:

So much energy is used in high rise buildings to fulfill the basic needs of users such as lighting and thermal comfort. Malaysia has hot and humid climate, buildings especially high rise buildings receive unnecessary solar radiation that cause more solar heat gain. Energy use specially electricity consumption in high rise buildings has increased. There have been growing concerns about energy consumption and its effect on environment. Building, energy and the environment are important issues that the designers should consider to them. Self protected form is one of possible ways against the impact of solar radiation in high rise buildings. The Energy performance of building envelopes was investigated in term of the Overall Thermal Transfer Value (OTTV ).In this paper, the amount of OTTV reduction was calculated through OTTV Equations to clear the effectiveness of self shading strategy on minimizing energy consumption for cooling interior spaces in high rise buildings which has considerable envelope areas against solar radiation. Also increasing the optimum window area was investigated using self-shading strategy in designing high rise buildings. As result, the significant reduction in OTTV was shown based on WWR.In addition slight increase was demonstrated in WWR that can influence on visible comfort interior spaces.

Keywords: Self-shading strategy, high rise buildings, Overall thermal transfer value (OTTV ), Window to wall ratio (WWR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2787
2325 A Numerical Simulation of Solar Distillation for Installation in Chabahar-Iran

Authors: Masoud Afrand, Amin Behzadmehr, Arash Karimipour

Abstract:

The world demand for potable water is increasing every day with growing population. Desalination using solar energy is suitable for potable water production from brackish and seawater. In this paper, we present a theoretical study of solar distillation in a single basin under the open environmental conditions of Chabahar-Iran. The still has a base area of 2000mm×500mm with a glass cover inclined at 25° in order to obtain extra solar energy. We model the still and conduct its energy balance equations under minor assumptions. We computed the temperatures of glass cover, seawater interface, moist air and bottom using numerical method. The investigation addressed the following: The still productivity, distilled water salinity and still performance in terms of the still efficiency. Calculated still productivity in July was higher than December. So in this paper, we show that still productivity is directly functioning of solar radiation.

Keywords: Inclined Solar still, Solar energy, Solar desalination, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2846
2324 Implementation of Renewable Energy Technologies in Rural Africa

Authors: J. Levodo, A. Ford, I. Chaer

Abstract:

Africa enjoys some of the best solar radiation levels in the world averaging between 4-6 kWh/m2/day for most of the year and the global economic and political conditions that tend to make African countries more dependent on their own energy resources have caused growing interest in renewable energy based technologies. However to-date, implementation of modern Energy Technologies in Africa is still very low especially the use of solar conversion technologies. This paper presents literature review and analysis relating to the techno-economic feasibility of solar photovoltaic power generation in Africa. The literature is basically classified into the following four main categories. Techno-economic feasibility of solar photovoltaic power generation, design methods, performance evaluations of various systems and policy of potential future of technological development of photovoltaic (PV) in Africa by exploring the impact of alternative policy instruments and technology cost reductions on the financial viability of investing solar photovoltaic in Africa.

Keywords: Africa Solar Potential, Policy, Photovoltaic, Technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3148
2323 Enhancing Thermal Efficiency of Double Skin Façade Buildings in Semi-Arid Climate

Authors: Farid Vahedi

Abstract:

There is a great deal of interest in constructing Double Skin Facade (DSF) structures which are considered as modern movement in field of Energy Conservation, renewable energies, and Architecture design. This trend provides many conclusive alternatives which are frequently associated with sustainable building. In this paper a building with Double Skin Facade is considered in the semiarid climate of Tehran, Iran, in order to consider the DSF-s performance during hot seasons. Mathematical formulations calculate solar heat gain by the external skin. Moreover, Computational Fluid Dynamics (CFD) simulations were performed on the case study building to enhance effectiveness of the facade. The conclusion divulged difference of gained energy by the cavity and room with and without blind and louvers. Some solutions were introduced to surge the performance of natural ventilation by plunging the cooling loads in summer.

Keywords: Double Skin Façade Buildings, Energy Conservation, Renewable Energy, Natural Ventilation, Semi-arid Climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5383
2322 Environmental Performance of the United States Energy Sector: A DEA Model with Non-Discretionary Factors and Perfect Object

Authors: Alexander Y. Vaninsky

Abstract:

It is suggested to evaluate environmental performance of energy sector using Data Envelopment Analysis with nondiscretionary factors (DEA-ND) with relative indicators as inputs and outputs. The latter allows for comparison of the objects essentially different in size. Inclusion of non-discretionary factors serves separation of the indicators that are beyond the control of the objects. A virtual perfect object comprised of maximal outputs and minimal inputs was added to the group of actual ones. In this setting, explicit solution of the DEA-ND problem was obtained. Energy sector of the United States was analyzed using suggested approach for the period of 1980 – 2006 with expected values of economic indicators for 2030 used for forming the perfect object. It was obtained that environmental performance has been increasing steadily for the period from 7.7% through 50.0% but still remains well below the prospected level

Keywords: DEA with Non Discretionary Factors, Environmental Performance, Energy Sector, Explicit Solution, Perfect Object.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
2321 Complementary Energy Path Adiabatic Logic based Full Adder Circuit

Authors: Shipra Upadhyay , R. K. Nagaria, R. A. Mishra

Abstract:

In this paper, we present the design and experimental evaluation of complementary energy path adiabatic logic (CEPAL) based 1 bit full adder circuit. A simulative investigation on the proposed full adder has been done using VIRTUOSO SPECTRE simulator of cadence in 0.18μm UMC technology and its performance has been compared with the conventional CMOS full adder circuit. The CEPAL based full adder circuit exhibits the energy saving of 70% to the conventional CMOS full adder circuit, at 100 MHz frequency and 1.8V operating voltage.

Keywords: Adiabatic, CEPAL, full adder, power clock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
2320 Energy Systems and Crushing Behavior of Fiber Reinforced Composite Materials

Authors: Hakim S. Sultan Aljibori

Abstract:

Effect of geometry on crushing behavior, energy absorption and failure mode of woven roving jute fiber/epoxy laminated composite tubes were experimentally studied. Investigations were carried out on three different geometrical types of composite tubes (circular, square and radial corrugated) subjected to axial compressive loading. It was observed in axial crushing study that the load bearing capability is significantly influenced by corrugation geometry. The influence of geometries of specimens was supported by the plotted load – displacement curves of the tests.

Keywords: Crushing behavior, jute fiber, composite tubes andSpecific energy absorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
2319 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi

Abstract:

The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.

Keywords: Thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, embedded systems, energy harvesting, thermal harvesting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
2318 Small Wind Turbine Hybrid System for Remote Application: Egyptian Case Study

Authors: M. A. Badr, A. N. Mohib, M. M. Ibrahim

Abstract:

The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) system supplying a remote small gathering of six families using HOMER software package. The electrical energy is to cater for the basic needs for which the daily load pattern is estimated. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the  measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for two sites. Using HOMER software, the simulation results showed that W/D/B systems are economical for the assumed community sites as the price of generated electricity is about 0.308 $/kWh, without taking external benefits into considerations. W/D/B systems are more economical than W/B or diesel alone systems, as the COE is 0.86 $/kWh for W/B and 0.357 $/kWh for diesel alone.

Keywords: Optimum energy systems, Remote electrification, Renewable energy, Wind turbine systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
2317 DC-to-DC Converters for Low-Voltage High-Power Renewable Energy Systems

Authors: Abdar Ali, Rizwan Ullah, Zahid Ullah

Abstract:

This paper focuses on the study of DC-to-DC converters, which are suitable for low-voltage high-power applications. The output voltages generated by renewable energy sources such as photovoltaic arrays and fuel cell stacks are generally low and required to be increased to high voltage levels. Development of DC-to-DC converters, which provide high step-up voltage conversion ratios with high efficiencies and low voltage stresses, is one of the main issues in the development of renewable energy systems. A procedure for three converters−conventional DC-to-DC converter, interleaved boost converter, and isolated flyback based converter, is illustrated for a given set of specifications. The selection among the converters for the given application is based on the voltage conversion ratio, efficiency, and voltage stresses.

Keywords: Flyback converter, interleaved boost, photovoltaic array, fuel cell, switch stress, voltage conversion ratio, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
2316 Static Modeling of the Delamination of a Composite Material Laminate in Mode II

Authors: Y. Madani, H. Achache, B. Boutabout

Abstract:

The purpose of this paper is to analyze numerically by the three-dimensional finite element method, using ABAQUS calculation code, the mechanical behavior of a unidirectional and multidirectional delaminated stratified composite under mechanical loading in Mode II. This study consists of the determination of the energy release rate G in mode II as well as the distribution of equivalent von Mises stresses along the damaged zone by varying several parameters such as the applied load and the delamination length. It allowed us to deduce that the high energy release rate favors delamination at the free edges of a stratified plate subjected to bending.

Keywords: Delamination, energy release rate, finite element method, stratified composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
2315 Totally Integrated Smart Energy System through Data Acquisition via Remote Location

Authors: Muhammad Tahir Qadri, M. Irfan Anis, M. Nawaz Irshad Khan

Abstract:

This paper discusses the approach of real-time controlling of the energy management system using the data acquisition tool of LabVIEW. The main idea of this inspiration was to interface the Station (PC) with the system and publish the data on internet using LabVIEW. In this venture, controlling and switching of 3 phase AC loads are effectively and efficiently done. The phases are also sensed through devices. In case of any failure the attached generator starts functioning automatically. The computer sends command to the system and system respond to the request. The modern feature is to access and control the system world-wide using world wide web (internet). This controlling can be done at any time from anywhere to effectively use the energy especially in developing countries where energy management is a big problem. In this system totally integrated devices are used to operate via remote location.

Keywords: VI-server, Remote Access, Telemetry, Data Acquisition, web server.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
2314 PhilSHORE: Development of a WebGIS-Based Marine Spatial Planning Tool for Tidal Current Energy Resource Assessment and Site Suitability Analysis

Authors: Ma. Rosario Concepcion O. Ang, Luis Caezar Ian K. Panganiban, Charmyne B. Mamador, Oliver Dan G. De Luna, Michael D. Bausas, Joselito P. Cruz

Abstract:

PhilSHORE is a multi-site, multi-device and multicriteria decision support tool designed to support the development of tidal current energy in the Philippines. Its platform is based on Geographic Information Systems (GIS) which allows for the collection, storage, processing, analyses and display of geospatial data. Combining GIS tools with open source web development applications, PhilSHORE becomes a webGIS-based marine spatial planning tool. To date, PhilSHORE displays output maps and graphs of power and energy density, site suitability and site-device analysis. It enables stakeholders and the public easy access to the results of tidal current energy resource assessments and site suitability analyses. Results of the initial development show that PhilSHORE is a promising decision support tool for ORE project developments.

Keywords: GIS, Site Suitability Analysis, Tidal Current Energy Resource Assessment, WebGIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654
2313 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%-40% compared to a traditional RL model.

Keywords: Control system, hydroponics, machine learning, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93
2312 An Efficient Energy Adaptive Hybrid Error Correction Technique for Underwater Wireless Sensor Networks

Authors: Ammar Elyas babiker, M.Nordin B. Zakaria, Hassan Yosif, Samir B. Ibrahim

Abstract:

Variable channel conditions in underwater networks, and variable distances between sensors due to water current, leads to variable bit error rate (BER). This variability in BER has great effects on energy efficiency of error correction techniques used. In this paper an efficient energy adaptive hybrid error correction technique (AHECT) is proposed. AHECT adaptively changes error technique from pure retransmission (ARQ) in a low BER case to a hybrid technique with variable encoding rates (ARQ & FEC) in a high BER cases. An adaptation algorithm depends on a precalculated packet acceptance rate (PAR) look-up table, current BER, packet size and error correction technique used is proposed. Based on this adaptation algorithm a periodically 3-bit feedback is added to the acknowledgment packet to state which error correction technique is suitable for the current channel conditions and distance. Comparative studies were done between this technique and other techniques, and the results show that AHECT is more energy efficient and has high probability of success than all those techniques.

Keywords: Underwater communication, wireless sensornetworks, error correction technique, energy efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
2311 Effects of High-Protein, Low-Energy Diet on Body Composition in Overweight and Obese Adults: A Clinical Trial

Authors: Makan Cheraghpour, Seyed Ahmad Hosseini, Damoon Ashtary-Larky, Saeed Shirali, Matin Ghanavati, Meysam Alipour

Abstract:

Background: In addition to reducing body weight, the low-calorie diets can reduce the lean body mass. It is hypothesized that in addition to reducing the body weight, the low-calorie diets can maintain the lean body mass. So, the current study aimed at evaluating the effects of high-protein diet with calorie restriction on body composition in overweight and obese individuals. Methods: 36 obese and overweight subjects were divided randomly into two groups. The first group received a normal-protein, low-energy diet (RDA), and the second group received a high-protein, low-energy diet (2×RDA). The anthropometric indices including height, weight, body mass index, body fat mass, fat free mass, and body fat percentage were evaluated before and after the study. Results: A significant reduction was observed in anthropometric indices in both groups (high-protein, low-energy diets and normal-protein, low-energy diets). In addition, more reduction in fat free mass was observed in the normal-protein, low-energy diet group compared to the high -protein, low-energy diet group. In other the anthropometric indices, significant differences were not observed between the two groups. Conclusion: Independently of the type of diet, low-calorie diet can improve the anthropometric indices, but during a weight loss, high-protein diet can help the fat free mass to be maintained.

Keywords: Diet, high-protein, body mass index, body fat percentage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
2310 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy

Authors: Asma Perveen, M. P. Jahan

Abstract:

Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.

Keywords: Micro EDM, Ni alloy, discharge energy, micro-holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
2309 The Fiscal and Macroeconomic Impacts of Reforming Energy Subsidy Policy in Malaysia

Authors: Nora Yusma Bte Mohamed Yusoff, Hussain Ali Bekhet

Abstract:

The rationalization of a gradual subsidies reforms plan has been set out by the Malaysian government to achieve the high-income nation target. This paper attempts to analyze the impacts of energy subsidy reform policy on fiscal deficit and macroeconomics variables in Malaysia. The Computable General Equilibrium (CGE) Model is employed. Three simulations based on different groups of scenarios have been developed. Importantly, the overall results indicate that removal of fuel subsidy has significantly improved the real GDP and reduced the government fiscal deficit. On the other hand, the removal of the fuel subsidy has increased most of the local commodity prices, especially energy commodities. The findings of the study could provide some imperative inputs for policy makers, especially to identify the right policy mechanism. This is especially ensures the subsidy savings from subsidy removal could be transferred back into the domestic economy in the form of infrastructure development, compensation and increases in others sector output contributions towards a sustainable economic growth.

Keywords: CGE, deficit, energy, reform, subsidy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024