Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29994
Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi


The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.

Keywords: Thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, embedded systems, energy harvesting, thermal harvesting.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF


[1] Ahiska, R., Mamur, H., A test system and supervisory control and data acquisition application with programmable logic controller for thermoelectric generators, in Int. Conf. Renewable Energy (IREC), pp. 15 - 22, doi:10.1016/j.enconman.2012.05.010, 2012.
[2] Amatya, R., Ram, R. J., Solar Thermoelectric Generator for Micropower Applications, in J. of Electronic Materials, vol. 39, no. 9, pp. 1735 - 1740, doi:10.1007/s11664-010-1190-8, ISSN 1543-186X, 2010.
[3] Brown, S. R., Kauzlarich, S. M., Gascoin, F. et al., Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation, in Chem. Mater., vol. 18, no. 7, pp. 1873 - 1877, doi:10.1021/cm060261t, 2006.
[4] Camargo, J. R., Costa de Oliveira, M. C., Principles of Direct Thermoelectric Conversion, Heat Analysis and Thermodynamic Effects, InTech, ISBN 978-953-307-585-3, doi:10.5772/20619, 2011.
[5] Cao, Z., Koukharenko, E., Tudor, M. J. et al., Screen printed flexible Bi2Te3-Sb2Te3 based thermoelectric generator, in J. Phys.: Conf. Ser., vol. 476, doi:10.1088/1742-6596/476/1/012031, 2013.
[6] Carmo, J. P., Antunes, J., Silva, M. F. et al., Characterization of thermoelectric generators by measuring the load-dependence behavior, in Measurement, vol. 44, no. 10, pp. 2194 - 2199, doi:10.1016/j.measurement.2011.07.015, 2011.
[7] Chen, J., Yan, Z., Wu, L., The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator, in J. Appl. Phys., vol. 79, no. 11, pp. 8823 - 8828, doi:10.1063/1.362507, 1996.
[8] Dughaish, Z. H., Lead telluride as a thermoelectric material for thermoelectric power generation, in Physica B: Condensed Matter, vol. 322, no. 1-2, pp. 205 - 223, doi:10.1016/S0921-4526(02)01187-0, 2002.
[9] Dziurdzia, P., Modeling and Simulation of Thermoelectric Energy Harvesting Processes, Sustainable Energy Harvesting Technologies - Past, Present and Future, InTech, ISBN 978-953-307-438-2, doi:10.5772/28530, 2011.
[10] Eakburanawat, J., Boonyaroonate, I., Development of a thermoelectric battery-charger with microcontroller-based maximum power point tracking technique, in Applied Energy, vol. 83, no. 7, pp. 687 - 704, doi:10.1016/j.apenergy.2005.06.004, 2006.
[11] Everredtronics Ltd., Thermoelectric Module: TEC2-19006 Specifications, datasheet, Rev. 1.01, online:, 2015.
[12] Faraji, A. Y., Akbarzadeh, A., Design of a Compct, Protable Test System for Thermoelectric Power Generator Modules, in J. Electronic Materials, vol. 42, no. 7, pp. 1535 - 1541, ISSN 0361-5235, doi:10.1007/s11664-012-2314-0, 2013.
[13] Funahashi, R., Shikano, M., Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit, in Appl. Phys. Lett., vol. 81, pp. 1459 - 1461, doi:10.1063/1.1502190, 2002.
[14] Freunek, M., M¨uller, M., Ungan, T. et al., New Physical Model for Thermoelectric Generators, in J. of Electronic Materials, vol. 38, no. 7, pp. 1214 - 1220, doi:10.1007/s11664-009-0665-y, 2009.
[15] Ghamaty, S., Bass, J. C., Elsner, N. B., Quantum well thermoelectric devices and applications, in 22 Int. Conf. ICT Thermoelectrics, pp. 563 - 566, ISBN 0-7803-8301-X, doi:10.1109/ICT.2003.1287575, 2003.
[16] Goldsmid, H. J., Bismuth Telluride and its Alloys as Materials for Thermoelectric Generation, in Materials, vol. 7, no. 4, pp. 2577- 2592, doi:10.3390/ma7042577, 2014.
[17] Granger, P., Parvulescu, V. I., Kaliaguine, S. et al., Perovskites and Related Mixed Oxides: Concepts and Applications, John Wiley & Sons, ISBN 978-3-527-33763-7, 2016.
[18] Hebei I.T. Co., Ltd., TEC1-12706 Thermoelectric Cooler, datasheet, Rev. 2.03, online:, 2012.
[19] Heremans, J. P., Jovovic, V., Toberer, E. S. et al., Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, vol. 321, no. 5888, pp. 554 - 557, 10.1126/science.1159725, 2008.
[20] Hu, L.-P., Zhu, T.-J., Wang, Y.-G. et al., Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction, in NPGA Asia Materials, vol. 6, no. 2, e88, doi:10.1038/am.2013.86, 2014.
[21] Hsu, K. F., Loo, S., Guo, F. et al., Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit, Science, vol. 303, no. 5659, pp. 818 - 821, doi:10.1126/science.1092963, 2004.
[22] Huang, M.-J., Yen, R.-H., Wang, A.-B., The influence of the Thomson effect on the performance of a thermoelectric cooler, in Int. J. of Heat and Mass Transfer, vol. 48, no. 2, pp. 413 - 418, doi:10.1016/j.ijheatmasstransfer.2004.05.040, 2005.
[23] Kim, S., Cho, S., Kim, N. et al., A maximum power point tracking circuit of thermoelectric generators without digital controllers, in IEICE Electronics Express, vol. 7, no. 10, pp. 1539 - 1545, doi:10.1587/elex.7.1539, 2010.
[24] Kristiansen, N. R., Nielsen, H. K., Potential for Usage of Thermoelectric Generators on Ships, in J. Electronic Materials, vol. 39, no. 9, pp. 1746 - 1749, ISSN 0361-5235, doi:10.1007/s11664-010-1189-1, 2010.
[25] Laird, I., Lovatt, H., Savvides, N. et al., Comparative study of maximum power point tracking algorithms for thermoelectric generators, in Power Engineering Conf. (AUPEC ’08), pp. 1 - 6, ISBN 978-0-7334-2715-2, 2008.
[26] Manikandan, S., Kaushik, S. C., Thermodynamic studies and maximum power point tracking in thermoelectric generator-thermoelectric cooler combined system, in Cryogenics, vol. 67, pp. 52 - 62, doi:10.1016/j.cryogenics.2015.01.008, 2015.
[27] Massaguer, E., Massaguer, A., Montoro, J. et al., Modeling analysis of longitudinal thermoelectric energy harvester in low temperature waste heat recovery applications, in Applied Energy, vol. 140, pp. 184 - 195, doi:10.1016/j.apenergy.2014.12.005, 2015.
[28] Melcor Corporation, CP2-127-06 Thermoelectric Cooler, datasheet, Rev. 1.01, online: 46559.pdf, 2013.
[29] Montecucco, A., Buckle, J., Siviter, J. et al., A New Test Rig for Accurate Nonparametric Measurement and Characterziation of Thermoelectric Generators, in J. Electronic Materials, vol. 42, no. 7, pp. 1966 - 1973, ISSN 0361-5235, doi:10.1007/s11664-013-2484-4, 2013.
[30] Montecucco, A., Knox, A. R., Maximum Power Point Tracking Converter Based on the Open-Circuit Voltage Method for Thermoelectric Generators, in IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 828 - 839, ISSN 0885-8993, doi:10.1109/TPEL.2014.2313294, 2014.
[31] Muller, E., Bruch, J. U., Schilz, J., TE generator test facility for low resistance single elements, in Proc. 17 Int. Conf. Thermoelectrics (ICT 98), pp. 441 - 444, ISBN 0-7803-4907-5, doi:10.1109/ICT.1998.740413, 1998.
[32] Niu, X., Yu, J., Wang, S., Experimental study on low-temperature waste heat thermoelectric generator, in J. Power Sources, vol. 188, no. 2, pp. 621 - 626, doi:10.1016/j.jpowsour.2008.12.067, 2009.
[33] Pean, R., Doluweera, G., Platonova, I., Solid state lighting for the developing world: the only solution, in Proc. SPIE 5941, 5 Int. Conf. Solid State Lighting, doi:10.1117/12.639718, 2005.
[34] Reddy, B. R., Body Heat Powered Flashlight Using LTC3108, in Int. J. of Engineering Research and Applications, vol. 4, no. 8, pp. 94 - 97, ISSN 2248-9622, 2014.
[35] Rossi, M., Rizzon, L., Fait, M., Applications in Electronics Pervading Industry, Environment and Society: Self-powered Active Cooling System for High Performance Processors, Springer International Publishing, vol. 351, pp. 25 - 33, ISBN 978-3-319-20226-6, doi:10.1007/978-3-319-20227-3 4, 2015.
[36] Salerno, D., Ultralow voltage energy harvester uses thermoelectric generator for battery-free wireless sensors, in J. Analog Innovation, vol. 20, no. 3, 2010.
[37] Shi, Y., Zhu, Z., Deng, Y. et al., A real-sized three-dimensional numerical model of thermoelectric generators at a given thermal input and matched load resistance, in Energy Conversion and Management, vol. 101, pp. 713 - 720, doi:10.1016/j.enconman.2015.06.020, 2015.
[38] Snyder, G. J., Ursell, T. S., Thermoelectric Efficiency and Compatibility, in Phys. Rev. Lett., vol. 91, no. 14, doi:10.1103/PhysRevLett.91.148301, 2003.
[39] Strasser, M., Aigner, R., Franosch, M. et al., Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining, in Sensors and Actuators A: Physical, vol. 97 - 98, pp. 535 - 542, doi:10.1016/S0924-4247(01)00815-9, 2002.
[40] Tan, J., Kalantar-zadeh, K., Wlodarski, W. et al., Thermoelectric properties of bismuth telluride thin films deposited by radio frequency magnetron sputtering, in Proc. SPIE 5836, Smart Sensors, Actuators, and MEMS II, 711, doi:10.1117/12.609819, 2005.
[41] Tritt, T. M., Subramanian, M. A., Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View, in MRS Bulletin, vol. 31, no. 3, pp. 188 - 198, doi:10.1557/mrs2006.44, 2006.
[42] Van Belle, D., Ontwikkeling vna een modulair testopstelling voor onderzoek van laag vermogen indoor fotovolta¨ısche cellen, Master thesis, unpublished, Vrije Universiteit Brussel, Belgium, 2014.
[43] Van Belle, E., Integrated low-cost sensorless BLDC motor controller using the BEMF on an FPGA, Master thesis, unpublished, Vrije Universiteit Brussel, Belgium, 2015.
[44] Verbelen, Y., Braeken, A., Touhafi, A., Parametrization of Ambient Energy Harvesters for Complementary Balanced Electronic Applications, in Proc. SPIE 8763, Smart Sensors, Actuators, and MEMS VI, 87631U, doi:10.1117/12.2018490, 2013.
[45] Verbelen, Y., Braeken, A., Touhafi, A., Towards a complementary balanced energy harvesting solution for low power embedded systems, in Microsystem Technologies, vol. 20, no. 4, pp 1007-1021, doi:10.1007/s00542-014-2103-1, 2014.
[46] Verbelen, Y., Touhafi, A., Resource Considerations for Durable Large Scale Renewable Energy Harvesting Applications, in Proc. Int. Conf. Renewable Energy Research and Applications (ICRERA), pp. 401 - 406, doi:10.1109/ICRERA.2013.6749788, 2013.
[47] Ware, R. M., McNeill, D. J., Iron disilicide as a thermoelectric generator material, in Proc. IEEE, vol. 111, no. 1, pp. 178 - 182, doi:10.1049/piee.1964.0029, 1964.
[48] White, M. A., Colenbrander, K., Ronald, O. et al., Generators that won’t wear out, in Mech. Eng., vol. 118, no. 2, pp. 92 - 96, 1996.
[49] Zaitsev, V. K., Fedorov, M. I., Gurieva, E. A. et al. Highly effective Mg2Si1−xSnx thermoelectrics, in Phys. Rev. B., vol. 74, no. 4, doi:10.1103/PhysRevB.74.045207, 2005.
[50] Zou, H., Rowe, D. M., Min, G., Growth of p- and n-type bismuth telluride thin films by co-evaporation, in J. Crystal Growth, vol. 222, no. 1 - 2, pp. 82 - 87, doi:10.1016/S0022-0248(00)00922-2, 2001