Search results for: mobility features
1335 Detecting and Tracking Vehicles in Airborne Videos
Authors: Hsu-Yung Cheng, Chih-Chang Yu
Abstract:
In this work, we present an automatic vehicle detection system for airborne videos using combined features. We propose a pixel-wise classification method for vehicle detection using Dynamic Bayesian Networks. In spite of performing pixel-wise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. The main novelty of the detection scheme is that the extracted combined features comprise not only pixel-level information but also region-level information. Afterwards, tracking is performed on the detected vehicles. Tracking is performed using efficient Kalman filter with dynamic particle sampling. Experiments were conducted on a wide variety of airborne videos. We do not assume prior information of camera heights, orientation, and target object sizes in the proposed framework. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging dataset.Keywords: Vehicle Detection, Airborne Video, Tracking, Dynamic Bayesian Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15871334 Feature Selection with Kohonen Self Organizing Classification Algorithm
Authors: Francesco Maiorana
Abstract:
In this paper a one-dimension Self Organizing Map algorithm (SOM) to perform feature selection is presented. The algorithm is based on a first classification of the input dataset on a similarity space. From this classification for each class a set of positive and negative features is computed. This set of features is selected as result of the procedure. The procedure is evaluated on an in-house dataset from a Knowledge Discovery from Text (KDT) application and on a set of publicly available datasets used in international feature selection competitions. These datasets come from KDT applications, drug discovery as well as other applications. The knowledge of the correct classification available for the training and validation datasets is used to optimize the parameters for positive and negative feature extractions. The process becomes feasible for large and sparse datasets, as the ones obtained in KDT applications, by using both compression techniques to store the similarity matrix and speed up techniques of the Kohonen algorithm that take advantage of the sparsity of the input matrix. These improvements make it feasible, by using the grid, the application of the methodology to massive datasets.Keywords: Clustering algorithm, Data mining, Feature selection, Grid, Kohonen Self Organizing Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30521333 Resistive RAM Based on Hfox and its Temperature Instability Study
Authors: Z. Fang, H.Y. Yu, W.J. Liu, N. Singh, G.Q. Lo
Abstract:
High performance Resistive Random Access Memory (RRAM) based on HfOx has been prepared and its temperature instability has been investigated in this work. With increasing temperature, it is found that: leakage current at high resistance state increases, which can be explained by the higher density of traps inside dielectrics (related to trap-assistant tunneling), leading to a smaller On/Off ratio; set and reset voltages decrease, which may be attributed to the higher oxygen ion mobility, in addition to the reduced potential barrier to create / recover oxygen ions (or oxygen vacancies); temperature impact on the RRAM retention degradation is more serious than electrical bias.Keywords: RRAM, resistive switching, temperature instability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24111332 Fractional-Order Modeling of GaN High Electron Mobility Transistors for Switching Applications
Authors: Anwar H. Jarndal, Ahmed S. Elwakil
Abstract:
In this paper, a fraction-order model for pad parasitic effect of GaN HEMT on Si substrate is developed and validated. Open de-embedding structure is used to characterize and de-embed substrate loading parasitic effects. Unbiased device measurements are implemented to extract parasitic inductances and resistances. The model shows very good simulation for S-parameter measurements under different bias conditions. It has been found that this approach can improve the simulation of intrinsic part of the transistor, which is very important for small- and large-signal modeling process.Keywords: Fractional-order modeling, GaN HEMT, Si-substrate, open de-embedding structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11121331 Structural Modelling of the LiCl Aqueous Solution: Using the Hybrid Reverse Monte Carlo (HRMC) Simulation
Authors: M. Habchi, S.M. Mesli, M. Kotbi
Abstract:
The Reverse Monte Carlo (RMC) simulation is applied in the study of an aqueous electrolyte LiCl6H2O. On the basis of the available experimental neutron scattering data, RMC computes pair radial distribution functions in order to explore the structural features of the system. The obtained results include some unrealistic features. To overcome this problem, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an energy constraint in addition to the commonly used constraints derived from experimental data. Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in pair partial distribution curves. This kind of study can be considered as a useful test for a defined interaction model for conventional simulation techniques.
Keywords: RMC simulation, HRMC simulation, energy constraint, screened potential, glassy state, liquid state, partial distribution function, pair partial distribution function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14671330 Automated Service Scene Detection for Badminton Game Analysis Using CHLAC and MRA
Authors: Fumito Yoshikawa, Takumi Kobayashi, Kenji Watanabe, Nobuyuki Otsu
Abstract:
Extracting in-play scenes in sport videos is essential for quantitative analysis and effective video browsing of the sport activities. Game analysis of badminton as of the other racket sports requires detecting the start and end of each rally period in an automated manner. This paper describes an automatic serve scene detection method employing cubic higher-order local auto-correlation (CHLAC) and multiple regression analysis (MRA). CHLAC can extract features of postures and motions of multiple persons without segmenting and tracking each person by virtue of shift-invariance and additivity, and necessitate no prior knowledge. Then, the specific scenes, such as serve, are detected by linear regression (MRA) from the CHLAC features. To demonstrate the effectiveness of our method, the experiment was conducted on video sequences of five badminton matches captured by a single ceiling camera. The averaged precision and recall rates for the serve scene detection were 95.1% and 96.3%, respectively.Keywords: Badminton, CHLAC, MRA, Video-based motiondetection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27141329 Job in Modern Arabic Poetry: A Semantic and Comparative Approach to Two Poems Referring to the Poet Al-Sayyab
Authors: Jeries Khoury
Abstract:
The use of legendary, folkloric and religious symbols is one of the most important phenomena in modern Arabic poetry. Interestingly enough, most of the modern Arabic poetry’s pioneers were so fascinated by the biblical symbols and they managed to use many modern techniques to make these symbols adequate for their personal life from one side and fit to their Islamic beliefs from the other. One of the most famous poets to do so was al-Sayya:b. The way he employed one of these symbols ‘job’, the new features he adds to this character and the link between this character and his personal life will be discussed in this study. Besides, the study will examine the influence of al-Sayya:b on another modern poet Saadi Yusuf, who, following al-Sayya:b, used the character of Job in a special way, by mixing its features with al-Sayya:b’s personal features and in this way creating a new mixed character. A semantic, cultural and comparative analysis of the poems written by al-Sayya:b himself and the other poets who evoked the mixed image of al-Sayya:b-Job, can reveal the changes Arab poets made to the original biblical figure of Job to bring it closer to Islamic culture. The paper will make an intensive use of intertextuality idioms in order to shed light on the network of relations between three kinds of texts (indeed three ‘palimpsests’: 1- biblical- the primary text; 2- poetic- al-Syya:b’s secondary version; 3- re-poetic- Sa’di Yusuf’s tertiary version). The bottom line in this paper is that that al-Sayya:b was directly influenced by the dramatic biblical story of Job more than the brief Quranic version of the story. In fact, the ‘new’ character of Job designed by al-Sayya:b himself differs from the original one in many aspects that we can safely say it is the Sayyabian-Job that cannot be found in the poems of any other poets, unless they are evoking the own tragedy of al-Sayya:b himself, like what Saadi Yusuf did.
Keywords: Arabic poetry, intertextuality, job, meter, modernism, symbolism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6551328 An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique
Authors: Aziah Khamis, H. Shareef
Abstract:
The purpose of planned islanding is to construct a power island during system disturbances which are commonly formed for maintenance purpose. However, in most of the cases island mode operation is not allowed. Therefore distributed generators (DGs) must sense the unplanned disconnection from the main grid. Passive technique is the most commonly used method for this purpose. However, it needs improvement in order to identify the islanding condition. In this paper an effective method for identification of islanding condition based on phase space and neural network techniques has been developed. The captured voltage waveforms at the coupling points of DGs are processed to extract the required features. For this purposed a method known as the phase space techniques is used. Based on extracted features, two neural network configuration namely radial basis function and probabilistic neural networks are trained to recognize the waveform class. According to the test result, the investigated technique can provide satisfactory identification of the islanding condition in the distribution system.Keywords: Classification, Islanding detection, Neural network, Phase space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21321327 Promoting Non-Formal Learning Mobility in the Field of Youth
Authors: Juha Kettunen
Abstract:
The purpose of this study is to develop a framework for the assessment of research and development projects. The assessment map is developed in this study based on the strategy map of the balanced scorecard approach. The assessment map is applied in a project that aims to reduce the inequality and risk of exclusion of young people from disadvantaged social groups. The assessment map denotes that not only funding but also necessary skills and qualifications should be carefully assessed in the implementation of the project plans so as to achieve the objectives of projects and the desired impact. The results of this study are useful for those who want to develop the implementation of the Erasmus+ Programme and the project teams of research and development projects.
Keywords: Non-formal learning, youth work, social inclusion, innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8271326 The Effect of Tmax in Energy Consumption in 0IEEE 802.16e with Traffic Load
Authors: Mohammadreza Sahebi, Arash Azizi Mazreah, Asadollah Shahbahrami, Bahram Bakhshi
Abstract:
Energy consumption is an important design issue for Mobile Subscriber Station (MSS) in the standard IEEE 802.16e. Because mobility of MSS implies that energy saving becomes an issue so that lifetime of MSS can be extended before re-charging. Also, the mechanism in efficiently managing the limited energy is becoming very significant since a MSS is generally energized by battery. For these, sleep mode operation is recently specified in the MAC (Medium Access Control) protocol. In order to reduce the energy consumption, we focus on the sleep-mode and wake-mode of the MAC layer, which are included in the IEEE 802.16 standards [1- 2].Keywords: IEEE 802.16e, Sleep-mode, Wake-mode, Downlink, Mobile Subscriber Station.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14811325 Microcontroller Based EOG Guided Wheelchair
Authors: Jobby K. Chacko, Deepu Oommen, Kevin K. Mathew, Noble Sunny, N. Babu
Abstract:
A new cost effective, eye controlled method was introduced to guide and control a wheel chair for disable people, based on Electrooculography (EOG). The guidance and control is effected by eye ball movements within the socket. The system consists of a standard electric wheelchair with an on-board microcontroller system attached. EOG is a new technology to sense the eye signals for eye movements and these signals are captured using electrodes, signal processed such as amplification, noise filtering, and then given to microcontroller which drives the motors attached with wheel chair for propulsion. This technique could be very useful in applications such as mobility for handicapped and paralyzed persons.
Keywords: Electrooculography, Microcontroller, Signal processing, Wheelchair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55991324 Smart Trust Management for Vehicular Networks
Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel
Abstract:
Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.
Keywords: Component, active vehicle, cooperation, petri nets, trust management, VANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11241323 Analysis of Genotype Size for an Evolvable Hardware System
Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert
Abstract:
The evolution of logic circuits, which falls under the heading of evolvable hardware, is carried out by evolutionary algorithms. These algorithms are able to automatically configure reconfigurable devices. One of main difficulties in developing evolvable hardware with the ability to design functional electrical circuits is to choose the most favourable EA features such as fitness function, chromosome representations, population size, genetic operators and individual selection. Until now several researchers from the evolvable hardware community have used and tuned these parameters and various rules on how to select the value of a particular parameter have been proposed. However, to date, no one has presented a study regarding the size of the chromosome representation (circuit layout) to be used as a platform for the evolution in order to increase the evolvability, reduce the number of generations and optimize the digital logic circuits through reducing the number of logic gates. In this paper this topic has been thoroughly investigated and the optimal parameters for these EA features have been proposed. The evolution of logic circuits has been carried out by an extrinsic evolvable hardware system which uses (1+λ) evolution strategy as the core of the evolution.
Keywords: Evolvable hardware, genotype size, computational intelligence, design of logic circuits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16611322 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.
Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7081321 On the Optimality Assessment of Nanoparticle Size Spectrometry and Its Association to the Entropy Concept
Authors: A. Shaygani, R. Saifi, M. S. Saidi, M. Sani
Abstract:
Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nanoparticles under the influence of electric field in Electrical Mobility Spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined fielddiffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multichannel EMS. The result, a cloud of particles with no uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using Computational Fluid Dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.Keywords: Aerosol Nano-Particle, CFD, Electrical Mobility Spectrometer, Von Neumann entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18591320 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11461319 Massive Lesions Classification using Features based on Morphological Lesion Differences
Authors: U. Bottigli, D.Cascio, F. Fauci, B. Golosio, R. Magro, G.L. Masala, P. Oliva, G. Raso, S.Stumbo
Abstract:
Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensitivity (percentage of pathological ROIs correctly classified) and specificity (percentage of non-pathological ROIs correctly classified) will be presented through the Receive Operating Characteristic curve (ROC). In particular the best performances are 88% ± 1 of area under ROC curve obtained with the Feed Forward Neural Network.Keywords: Neural Networks, K-Nearest Neighbours, SupportVector Machine, Computer Aided Diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13821318 Bed Site Selection by Wild Boar (Sus scrofa) in Baghshadi Protected Area, Yazd Province, Iran
Authors: S. Aghainajafizadeh, F. Heydari, H. Abbasian
Abstract:
Populations of wild boar present in semi-arid of central Iran. We studied features influencing bed site selection by this species in semi-arid central steppe of Iran. Habitat features of the detected bed site were compared with randomly selected by quantifying number of habitat variables in semi- arid area in Iran. The results revealed that the most important influencing factors in bed site selection were vegetation cover, number of Artemisia sieberi, percentage cover and height of Acer cinerascens, percentage cover and height of Amygdalus scoparia. This is the first ecological study of the wild boar in a protected area of the semi desert biome of Iran. Sustainability of wild boar populations in this area dependent to shrubs of Amygdalus scoparia and Acer cinerascens for thermal and camouflage cover.
Keywords: Wild boar, Bed site selection, Yazd, Iran
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13001317 Processing Web-Cam Images by a Neuro-Fuzzy Approach for Vehicular Traffic Monitoring
Authors: A. Faro, D. Giordano, C. Spampinato
Abstract:
Traffic management in an urban area is highly facilitated by the knowledge of the traffic conditions in every street or highway involved in the vehicular mobility system. Aim of the paper is to propose a neuro-fuzzy approach able to compute the main parameters of a traffic system, i.e., car density, velocity and flow, by using the images collected by the web-cams located at the crossroads of the traffic network. The performances of this approach encourage its application when the traffic system is far from the saturation. A fuzzy model is also outlined to evaluate when it is suitable to use more accurate, even if more time consuming, algorithms for measuring traffic conditions near to saturation.
Keywords: Neuro-fuzzy networks, computer vision, Fuzzy systems, intelligent transportation system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15921316 Investigating Mental Workload of VR Training versus Serious Game Training on Shoot Operation Training
Authors: Ta-Min Hung, Tien-Lung Sun
Abstract:
Thanks to VR technology advanced, there are many researches had used VR technology to develop a training system. Using VR characteristics can simulate many kinds of situations to reach our training-s goal. However, a good training system not only considers real simulation but also considers learner-s learning motivation. So, there are many researches started to conduct game-s features into VR training system. We typically called this is a serious game. It is using game-s features to engage learner-s learning motivation. However, VR or Serious game has another important advantage. That is simulating feature. Using this feature can create any kinds of pressured environments. Because in the real environment may happen any emergent situations. So, increasing the trainees- pressure is more important when they are training. Most pervious researches are investigated serious game-s applications and learning performance. Seldom researches investigated how to increase the learner-s mental workload when they are training. So, in our study, we will introduce a real case study and create two types training environments. Comparing the learner-s mental workload between VR training and serious game.Keywords: Intrinsic Motivation, Mental Workload, VR Training, Serious Game
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16541315 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.
Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29331314 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.
Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45241313 Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection
Authors: Hong Pan, Yaping Zhu, Liang Zheng Xia
Abstract:
We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.
Keywords: Adaboost, Face detection, Feature selection, PSO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21991312 Generalized Method for Estimating Best-Fit Vertical Alignments for Profile Data
Authors: Said M. Easa, Shinya Kikuchi
Abstract:
When the profile information of an existing road is missing or not up-to-date and the parameters of the vertical alignment are needed for engineering analysis, the engineer has to recreate the geometric design features of the road alignment using collected profile data. The profile data may be collected using traditional surveying methods, global positioning systems, or digital imagery. This paper develops a method that estimates the parameters of the geometric features that best characterize the existing vertical alignments in terms of tangents and the expressions of the curve, that may be symmetrical, asymmetrical, reverse, and complex vertical curves. The method is implemented using an Excel-based optimization method that minimizes the differences between the observed profile and the profiles estimated from the equations of the vertical curve. The method uses a 'wireframe' representation of the profile that makes the proposed method applicable to all types of vertical curves. A secondary contribution of this paper is to introduce the properties of the equal-arc asymmetrical curve that has been recently developed in the highway geometric design field.Keywords: Optimization, parameters, data, reverse, spreadsheet, vertical curves
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24481311 Assamese Numeral Speech Recognition using Multiple Features and Cooperative LVQ -Architectures
Authors: Manash Pratim Sarma, Kandarpa Kumar Sarma
Abstract:
A set of Artificial Neural Network (ANN) based methods for the design of an effective system of speech recognition of numerals of Assamese language captured under varied recording conditions and moods is presented here. The work is related to the formulation of several ANN models configured to use Linear Predictive Code (LPC), Principal Component Analysis (PCA) and other features to tackle mood and gender variations uttering numbers as part of an Automatic Speech Recognition (ASR) system in Assamese. The ANN models are designed using a combination of Self Organizing Map (SOM) and Multi Layer Perceptron (MLP) constituting a Learning Vector Quantization (LVQ) block trained in a cooperative environment to handle male and female speech samples of numerals of Assamese- a language spoken by a sizable population in the North-Eastern part of India. The work provides a comparative evaluation of several such combinations while subjected to handle speech samples with gender based differences captured by a microphone in four different conditions viz. noiseless, noise mixed, stressed and stress-free.Keywords: Assamese, Recognition, LPC, Spectral, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19911310 Attack Detection through Image Adaptive Self Embedding Watermarking
Authors: S. Shefali, S. M. Deshpande, S. G. Tamhankar
Abstract:
Now a days, a significant part of commercial and governmental organisations like museums, cultural organizations, libraries, commercial enterprises, etc. invest intensively in new technologies for image digitization, digital libraries, image archiving and retrieval. Hence image authorization, authentication and security has become prime need. In this paper, we present a semi-fragile watermarking scheme for color images. The method converts the host image into YIQ color space followed by application of orthogonal dual domains of DCT and DWT transforms. The DCT helps to separate relevant from irrelevant image content to generate silent image features. DWT has excellent spatial localisation to help aid in spatial tamper characterisation. Thus image adaptive watermark is generated based of image features which allows the sharp detection of microscopic changes to locate modifications in the image. Further, the scheme utilises the multipurpose watermark consisting of soft authenticator watermark and chrominance watermark. Which has been proved fragile to some predefined processing like intentinal fabrication of the image or forgery and robust to other incidental attacks caused in the communication channel.
Keywords: Cryptography, Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20421309 Morphing Human Faces: Automatic Control Points Selection and Color Transition
Authors: Stephen Karungaru, Minoru Fukumi, Norio Akamatsu
Abstract:
In this paper, we propose a morphing method by which face color images can be freely transformed. The main focus of this work is the transformation of one face image to another. This method is fully automatic in that it can morph two face images by automatically detecting all the control points necessary to perform the morph. A face detection neural network, edge detection and medium filters are employed to detect the face position and features. Five control points, for both the source and target images, are then extracted based on the facial features. Triangulation method is then used to match and warp the source image to the target image using the control points. Finally color interpolation is done using a color Gaussian model that calculates the color for each particular frame depending on the number of frames used. A real coded Genetic algorithm is used in both the image warping and color blending steps to assist in step size decisions and speed up the morphing. This method results in ''very smooth'' morphs and is fast to process.
Keywords: color transition, genetic algorithms morphing, warping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28231308 Web Pages Aesthetic Evaluation Using Low-Level Visual Features
Authors: Maryam Mirdehghani, S. Amirhassan Monadjemi
Abstract:
Web sites are rapidly becoming the preferred media choice for our daily works such as information search, company presentation, shopping, and so on. At the same time, we live in a period where visual appearances play an increasingly important role in our daily life. In spite of designers- effort to develop a web site which be both user-friendly and attractive, it would be difficult to ensure the outcome-s aesthetic quality, since the visual appearance is a matter of an individual self perception and opinion. In this study, it is attempted to develop an automatic system for web pages aesthetic evaluation which are the building blocks of web sites. Based on the image processing techniques and artificial neural networks, the proposed method would be able to categorize the input web page according to its visual appearance and aesthetic quality. The employed features are multiscale/multidirectional textural and perceptual color properties of the web pages, fed to perceptron ANN which has been trained as the evaluator. The method is tested using university web sites and the results suggested that it would perform well in the web page aesthetic evaluation tasks with around 90% correct categorization.Keywords: Web Page Design, Web Page Aesthetic, Color Spaces, Texture, Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16341307 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.
Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11191306 Dimension Reduction of Microarray Data Based on Local Principal Component
Authors: Ali Anaissi, Paul J. Kennedy, Madhu Goyal
Abstract:
Analysis and visualization of microarraydata is veryassistantfor biologists and clinicians in the field of diagnosis and treatment of patients. It allows Clinicians to better understand the structure of microarray and facilitates understanding gene expression in cells. However, microarray dataset is a complex data set and has thousands of features and a very small number of observations. This very high dimensional data set often contains some noise, non-useful information and a small number of relevant features for disease or genotype. This paper proposes a non-linear dimensionality reduction algorithm Local Principal Component (LPC) which aims to maps high dimensional data to a lower dimensional space. The reduced data represents the most important variables underlying the original data. Experimental results and comparisons are presented to show the quality of the proposed algorithm. Moreover, experiments also show how this algorithm reduces high dimensional data whilst preserving the neighbourhoods of the points in the low dimensional space as in the high dimensional space.
Keywords: Linear Dimension Reduction, Non-Linear Dimension Reduction, Principal Component Analysis, Biologists.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574