Search results for: mathematical models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3296

Search results for: mathematical models

2816 Task Modeling for User Interface Design: A Layered Approach

Authors: Costin Pribeanu

Abstract:

The model-based approach to user interface design relies on developing separate models that are capturing various aspects about users, tasks, application domain, presentation and dialog representations. This paper presents a task modeling approach for user interface design and aims at exploring the mappings between task, domain and presentation models. The basic idea of our approach is to identify typical configurations in task and domain models and to investigate how they relate each other. A special emphasis is put on application-specific functions and mappings between domain objects and operational task structures. In this respect, we will distinguish between three layers in the task decomposition: a functional layer, a planning layer, and an operational layer.

Keywords: task modeling, user interface design, unit tasks, basic tasks, operational task model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
2815 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius

Authors: M. A. S. Fahim, J. Sužiedelytė Visockienė

Abstract:

With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realization often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.

Keywords: Air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119
2814 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices

Authors: M. O. Oke, T. S. Workneh

Abstract:

Drying behavior of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80°C) and ten sweet potato varieties sliced to 5mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27 - 6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.

Keywords: Sweet Potato Slice, Drying Models, Moisture Ratio, Moisture Diffusivity, Activation Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3004
2813 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: Metaphor detection, deep learning, representation learning, embeddings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554
2812 Electromagnetic Field Modeling in Human Tissue

Authors: Iliana Marinova, Valentin Mateev

Abstract:

For investigations of electromagnetic field distributions in biological structures by Finite Element Method (FEM), a method for automatic 3D model building of human anatomical objects is developed. Models are made by meshed structures and specific electromagnetic material properties for each tissue type. Mesh is built according to specific FEM criteria for achieving good solution accuracy. Several FEM models of anatomical objects are built. Formulation using magnetic vector potential and scalar electric potential (A-V, A) is used for modeling of electromagnetic fields in human tissue objects. The developed models are suitable for investigations of electromagnetic field distributions in human tissues exposed in external fields during magnetic stimulation, defibrillation, impedance tomography etc.

Keywords: electromagnetic field, finite element method, humantissue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5295
2811 Generalized Morphological 3D Shape Decomposition Grayscale Interframe Interpolation Method

Authors: Dragos Nicolae VIZIREANU

Abstract:

One of the main image representations in Mathematical Morphology is the 3D Shape Decomposition Representation, useful for Image Compression and Representation,and Pattern Recognition. The 3D Morphological Shape Decomposition representation can be generalized a number of times,to extend the scope of its algebraic characteristics as much as possible. With these generalizations, the Morphological Shape Decomposition 's role to serve as an efficient image decomposition tool is extended to grayscale images.This work follows the above line, and further develops it. Anew evolutionary branch is added to the 3D Morphological Shape Decomposition's development, by the introduction of a 3D Multi Structuring Element Morphological Shape Decomposition, which permits 3D Morphological Shape Decomposition of 3D binary images (grayscale images) into "multiparameter" families of elements. At the beginning, 3D Morphological Shape Decomposition representations are based only on "1 parameter" families of elements for image decomposition.This paper addresses the gray scale inter frame interpolation by means of mathematical morphology. The new interframe interpolation method is based on generalized morphological 3D Shape Decomposition. This article will present the theoretical background of the morphological interframe interpolation, deduce the new representation and show some application examples.Computer simulations could illustrate results.

Keywords: 3D shape decomposition representation, mathematical morphology, gray scale interframe interpolation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
2810 Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps

Authors: Engin Yesil, Leon Urbas

Abstract:

Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.

Keywords: Big Bang-Big Crunch optimization, Dynamic Systems, Fuzzy Cognitive Maps, Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
2809 New Technologies for Modeling of Gas Turbine Cooled Blades

Authors: A. Pashayev, D. Askerov, R.Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and cvazistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine 1st stage nozzle blade

Keywords: multiconnected systems, method of the boundary integrated equations, splines, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
2808 Numerical Modeling of Gas Turbine Engines

Authors: A. Pashayev, D. Askerov, C. Ardil, R. Sadiqov

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasi-stationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Multiconnected systems, method of the boundary integrated equations, splines, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
2807 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Moses Noel Dogonyaro

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.

Keywords: Data Analytics, Security, Privacy, Bootstrapping, and Fully Homomorphic Encryption Scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3458
2806 Design of Thermal Control Subsystem for TUSAT Telecommunication Satellite

Authors: N. Sozbir, M. Bulut, M.F.Oktem, A.Kahriman, A. Chaix

Abstract:

TUSAT is a prospective Turkish Communication Satellite designed for providing mainly data communication and broadcasting services through Ku-Band and C-Band channels. Thermal control is a vital issue in satellite design process. Therefore, all satellite subsystems and equipments should be maintained in the desired temperature range from launch to end of maneuvering life. The main function of the thermal control is to keep the equipments and the satellite structures in a given temperature range for various phases and operating modes of spacecraft during its lifetime. This paper describes the thermal control design which uses passive and active thermal control concepts. The active thermal control is based on heaters regulated by software via thermistors. Alternatively passive thermal control composes of heat pipes, multilayer insulation (MLI) blankets, radiators, paints and surface finishes maintaining temperature level of the overall carrier components within an acceptable value. Thermal control design is supported by thermal analysis using thermal mathematical models (TMM).

Keywords: Spacecraft thermal control, design of thermal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3701
2805 Design Methodology through Risk Assessment of Massive Water Retaining Structures

Authors: A. Rouili

Abstract:

In the present paper the results of a numerical study are presented, numerical models were developed to simulate the behaviour of vertical massive dikes. The proposed models were developed according to the geometry, boundary conditions, loading conditions and initial conditions of a physical model taken as reference. The results obtained were compared to the experimental data. As far as the overall behaviour, the displacements and the failure mechanisms of the dikes is concerned, the numerical results were in good agreement with the experimental results, which clearly indicates a good quality of numerical modelling. The validated numerical models were used in a parametric study were the displacements and failure mechanisms were fully investigated. Out of the results obtained, some conclusions and recommendations related to the design of massive dikes are proposed.

Keywords: Water conservation, dikes, risk assessment and numerical modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
2804 Mathematical Modeling of the Working Principle of Gravity Gradient Instrument

Authors: Danni Cong, Meiping Wu, Hua Mu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokun Cai, Hao Qin

Abstract:

Gravity field is of great significance in geoscience, national economy and national security, and gravitational gradient measurement has been extensively studied due to its higher accuracy than gravity measurement. Gravity gradient sensor, being one of core devices of the gravity gradient instrument, plays a key role in measuring accuracy. Therefore, this paper starts from analyzing the working principle of the gravity gradient sensor by Newton’s law, and then considers the relative motion between inertial and non-inertial systems to build a relatively adequate mathematical model, laying a foundation for the measurement error calibration, measurement accuracy improvement.

Keywords: Gravity gradient, accelerometer, gravity gradient sensor, single-axis rotation modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
2803 Measurement of CES Production Functions Considering Energy as an Input

Authors: Donglan Zha, Jiansong Si

Abstract:

Because of its flexibility, CES attracts much interest in economic growth and programming models, and the macroeconomics or micro-macro models. This paper focuses on the development, estimating methods of CES production function considering energy as an input. We leave for future research work of relaxing the assumption of constant returns to scale, the introduction of potential input factors, and the generalization method of the optimal nested form of multi-factor production functions.

Keywords: Bias of technical change, CES production function, elasticity of substitution, energy input.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
2802 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons

Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda

Abstract:

This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.

Keywords: Adsorption, mathematical modeling, nanocarbons, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
2801 Phosphine Mortality Estimation for Simulation of Controlling Pest of Stored Grain: Lesser Grain Borer (Rhyzopertha dominica)

Authors: Mingren Shi, Michael Renton

Abstract:

There is a world-wide need for the development of sustainable management strategies to control pest infestation and the development of phosphine (PH3) resistance in lesser grain borer (Rhyzopertha dominica). Computer simulation models can provide a relatively fast, safe and inexpensive way to weigh the merits of various management options. However, the usefulness of simulation models relies on the accurate estimation of important model parameters, such as mortality. Concentration and time of exposure are both important in determining mortality in response to a toxic agent. Recent research indicated the existence of two resistance phenotypes in R. dominica in Australia, weak and strong, and revealed that the presence of resistance alleles at two loci confers strong resistance, thus motivating the construction of a two-locus model of resistance. Experimental data sets on purified pest strains, each corresponding to a single genotype of our two-locus model, were also available. Hence it became possible to explicitly include mortalities of the different genotypes in the model. In this paper we described how we used two generalized linear models (GLM), probit and logistic models, to fit the available experimental data sets. We used a direct algebraic approach generalized inverse matrix technique, rather than the traditional maximum likelihood estimation, to estimate the model parameters. The results show that both probit and logistic models fit the data sets well but the former is much better in terms of small least squares (numerical) errors. Meanwhile, the generalized inverse matrix technique achieved similar accuracy results to those from the maximum likelihood estimation, but is less time consuming and computationally demanding.

Keywords: mortality estimation, probit models, logistic model, generalized inverse matrix approach, pest control simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
2800 A Quantitative Analysis of GSM Air Interface Based on Radiating Columns and Prediction Model

Authors: K. M. Doraiswamy, Lakshminarayana Merugu, B. C. Jinaga

Abstract:

This paper explains the cause of nonlinearity in floor attenuation hither to left unexplained. The performance degradation occurring in air interface for GSM signals is quantitatively analysed using the concept of Radiating Columns of buildings. The signal levels were measured using Wireless Network Optimising Drive Test Tool (E6474A of Agilent Technologies). The measurements were taken in reflected signal environment under usual fading conditions on actual GSM signals radiated from base stations. A mathematical model is derived from the measurements to predict the GSM signal levels in different floors. It was applied on three buildings and found that the predicted signal levels deviated from the measured levels with in +/- 2 dB for all floors. It is more accurate than the prediction models based on Floor Attenuation Factor. It can be used for planning proper indoor coverage in multi storey buildings.

Keywords: GSM air interface, nonlinear attenuation, multistory building, radiating columns, ground conduction and floor attenuation factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
2799 Metabolic Analysis of Fibroblast Conditioned Media and Comparison with Theoretical Modeling

Authors: Priyanka Gupta, Paul Verma, Kerry Hourigan, Jayesh Bellare, Sameer Jadhav

Abstract:

Understanding the consumption and production of various metabolites of fibroblast conditioned media is needed for its proper and optimized use in expansion of pluripotent stem cells. For this purpose, we have used the HPLC method to analyse the consumption of glucose and the production of lactate over time by mouse embryonic fibroblasts. The experimental data have also been compared with mathematical model fits. 0.025 moles of lactate was produced after 72 hrs while the glucose concentration decreased from 0.017 moles to 0.011 moles. The mathematical model was able to predict the trends of glucose consumption and lactate production.

Keywords: Conditioned media, HPLC, metabolite analysis, mouse embryonic fibroblast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
2798 A Novel GNSS Integrity Augmentation System for Civil and Military Aircraft

Authors: Roberto Sabatini, Terry Moore, Chris Hill

Abstract:

This paper presents a novel Global Navigation Satellite System (GNSS) Avionics Based Integrity Augmentation (ABIA) system architecture suitable for civil and military air platforms, including Unmanned Aircraft Systems (UAS). Taking the move from previous research on high-accuracy Differential GNSS (DGNSS) systems design, integration and experimental flight test activities conducted at the Italian Air Force Flight Test Centre (CSV-RSV), our research focused on the development of a novel approach to the problem of GNSS ABIA for mission- and safety-critical air vehicle applications and for multi-sensor avionics architectures based on GNSS. Detailed mathematical models were developed to describe the main causes of GNSS signal outages and degradation in flight, namely: antenna obscuration, multipath, fading due to adverse geometry and Doppler shift. Adopting these models in association with suitable integrity thresholds and guidance algorithms, the ABIA system is able to generate integrity cautions (predictive flags) and warnings (reactive flags), as well as providing steering information to the pilot and electronic commands to the aircraft/UAS flight control systems. These features allow real-time avoidance of safety-critical flight conditions and fast recovery of the required navigation performance in case of GNSS data losses. In other words, this novel ABIA system addresses all three cornerstones of GNSS integrity augmentation in mission- and safety-critical applications: prediction (caution flags), reaction (warning flags) and correction (alternate flight path computation).

Keywords: Global Navigation Satellite Systems (GNSS), Integrity Augmentation, Unmanned Aircraft Systems, Aircraft Based Augmentation, Avionics Based Integrity Augmentation, Safety-Critical Applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3244
2797 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.

Keywords: Integral differential equations, L-stable methods, pricing European options, Jump–diffusion model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
2796 Generation of 3D Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones

Authors: Julio Manuel de Luis Ruiz, Javier Sedano Cibrián, Rubén Pérez Álvarez, Raúl Pereda García, Felipe Piña García

Abstract:

Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimize the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain). To this end, a flight with this type of sensors has been planned, developed and analyzed. It has been applied to the archaeological site of Juliobriga (Cantabria, Spain). A strong dependence of the thermal sensor on the GSD, and the capability of this technique to interpret underground materials. This research allows to state that the thermal nature of the site does not provide main information about the site itself, but with combination with other types of information, such as the DEM, the typology of materials, etc., can produce very positive results with respect to the exploration and knowledge of the site. 

Keywords: process optimization, RGB models, thermal models, UAV, workflow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
2795 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: Undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
2794 Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by numerical examples of the model dynamics. This system of equations describes normal activity of the thyroid and also a couple of types of malfunctions (e.g. hyperthyroidism).

Keywords: Mathematical modeling, ordinary differential equations, endocrine system, stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
2793 Cloud Computing Support for Diagnosing Researches

Authors: A. Amirov, O. Gerget, V. Kochegurov

Abstract:

One of the main biomedical problem lies in detecting dependencies in semi structured data. Solution includes biomedical portal and algorithms (integral rating health criteria, multidimensional data visualization methods). Biomedical portal allows to process diagnostic and research data in parallel mode using Microsoft System Center 2012, Windows HPC Server cloud technologies. Service does not allow user to see internal calculations instead it provides practical interface. When data is sent for processing user may track status of task and will achieve results as soon as computation is completed. Service includes own algorithms and allows diagnosing and predicating medical cases. Approved methods are based on complex system entropy methods, algorithms for determining the energy patterns of development and trajectory models of biological systems and logical–probabilistic approach with the blurring of images.

Keywords: Biomedical portal, cloud computing, diagnostic and prognostic research, mathematical data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
2792 Determining of Stage-Discharge Relationship for Meandering Compound Channels Using M5 Decision Tree Model

Authors: Mehdi Kheradmand, Mehdi Azhdary Moghaddam, Abdolreza Zahiri, Khalil Ghorbani

Abstract:

In modeling phenomena, the presence of local conditions may cause the use of a general relation not to produce good results and thus fail to demonstrate local changes. If possible, identifying homogenous limits and providing simple linear relations for each of these limits will increase the accuracy of models. Accordingly, the models are divided into simpler and smaller problems to solve complicated problems, and the obtained answers will be combined. This simple idea can be applied to decision tree models. For this aim, the input data values are divided into several sub-intervals or sub-regions, and an appropriate model is extracted for an appropriate model or equation. This research proposes the M5 decision tree method as a solution to accurately compute the flow discharge in meandering compound channels.

Keywords: Stage-discharge relationship, decision tree, M5 decision tree model, meandering compound channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246
2791 Modeling of PZ in Haunch Connections Systems

Authors: Peyman Shadman Heidari, Roohollah Ahmady Jazany, Mahmood Reza Mehran, Pouya Shadman Heidari, Mohammad khorasani

Abstract:

Modeling of Panel Zone (PZ) seismic behavior, because of its role in overall ductility and lateral stiffness of steel moment frames, has been considered a challenge for years. There are some studies regarding the effects of different doubler plates thicknesses and geometric properties of PZ on its seismic behavior. However, there is not much investigation on the effects of number of provided continuity plates in case of presence of one triangular haunch, two triangular haunches and rectangular haunch (T shape haunches) for exterior columns. In this research first detailed finite element models of 12tested connection of SAC joint venture were created and analyzed then obtained cyclic behavior backbone curves of these models besides other FE models for similar tests were used for neural network training. Then seismic behavior of these data is categorized according to continuity plate-s arrangements and differences in type of haunches. PZ with one-sided haunches have little plastic rotation. As the number of continuity plates increases due to presence of two triangular haunches (four continuity plate), there will be no plastic rotation, in other words PZ behaves in its elastic range. In the case of rectangular haunch, PZ show more plastic rotation in comparison with one-sided triangular haunch and especially double-sided triangular haunches. Moreover, the models that will be presented in case of triangular one-sided and double- sided haunches and rectangular haunches as a result of this study seem to have a proper estimation of PZ seismic behavior.

Keywords: Continuity plate, FE models, Neural network, Panel zone, Plastic rotation, Rectangular haunch, Seismic behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
2790 Combining Similarity and Dissimilarity Measurements for the Development of QSAR Models Applied to the Prediction of Antiobesity Activity of Drugs

Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto

Abstract:

In this paper we study different similarity based approaches for the development of QSAR model devoted to the prediction of activity of antiobesity drugs. Classical similarity approaches are compared regarding to dissimilarity models based on the consideration of the calculation of Euclidean distances between the nonisomorphic fragments extracted in the matching process. Combining the classical similarity and dissimilarity approaches into a new similarity measure, the Approximate Similarity was also studied, and better results were obtained. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting of inhibitory activity of drugs. Acceptable results were obtained for the models presented here.

Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drugs activity prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
2789 A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis

Authors: Mandana Kariminejad, Ali Ghaffari

Abstract:

Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.

Keywords: Tumor, immunotherapy, fuzzy controller, Genetic algorithm, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
2788 Computational Networks for Knowledge Representation

Authors: Nhon Van Do

Abstract:

In the artificial intelligence field, knowledge representation and reasoning are important areas for intelligent systems, especially knowledge base systems and expert systems. Knowledge representation Methods has an important role in designing the systems. There have been many models for knowledge such as semantic networks, conceptual graphs, and neural networks. These models are useful tools to design intelligent systems. However, they are not suitable to represent knowledge in the domains of reality applications. In this paper, new models for knowledge representation called computational networks will be presented. They have been used in designing some knowledge base systems in education for solving problems such as the system that supports studying knowledge and solving analytic geometry problems, the program for studying and solving problems in Plane Geometry, the program for solving problems about alternating current in physics.

Keywords: Artificial intelligence, artificial intelligence and education, knowledge engineering, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
2787 Vaccinated Susceptible Infected and Recovered (VSIR) Mathematical Model to Study the Effect of Bacillus Calmette-Guerin (BCG) Vaccine and the Disease Stability Analysis

Authors: Muhammad Shahid, Nasir-uddin Khan, Mushtaq Hussain, Muhammad Liaquat Ali, Asif Mansoor

Abstract:

Tuberculosis (TB) remains a leading cause of infectious mortality. It is primarily transmitted by the respiratory route, individuals with active disease may infect others through airborne particles which releases when they cough, talk, or sing and subsequently inhale by others. In order to study the effect of the Bacilli Calmette-Guerin (BCG) vaccine after vaccination of TB patient, a Vaccinated Susceptible Infected and Recovered (VSIR) mathematical model is being developed to achieve the desired objectives. The mathematical model, so developed, shall be used to quantify the effect of BCG Vaccine to protect the immigrant young adult person. Moreover, equations are to be established for the disease endemic and free equilibrium states and subsequently utilized in disease stability analysis. The stability analysis will give a complete picture of disease annihilation from the total population if the total removal rate from the infectious group should be greater than total number of dormant infections produced throughout infectious period.

Keywords: Bacillus Calmette-Guerin vaccine, disease-free equilibrium state, VSIR Quantification, disease stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677