Search results for: information technologies supporting learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6406

Search results for: information technologies supporting learning

5926 The Cooperative Learning Management in the Course of Principles of Mathematics for Graduate Level

Authors: Komon Paisal

Abstract:

The aim of this research was to create collaborative learning activities in the course of Principles of Mathematics for graduate level by investigating the students’ ability in proving the mathematics principles as well as their attitudes towards the activities. The samples composed of 2 main group; lecturers and students. The lecturers consisted of 3 teachers who taught the course of Principles of Mathematics at Rajabhat Suan Sunandha Unicersity in the academic year 2012. The students consisted of 32 students joining the cooperative learning activities in the subject of Principles of Mathematics in the academic year 2012. The research tools included activity plan for cooperative learning, testing on mathematics with the reliability of 0.8067 and the attitude questionnaires reported by the students. The results showed that: 1) the efficiency of the developed cooperative learning activities was 69.76/ 68.57 which was lower than the set criteria at 70/70. 2) The students joining the cooperative learning activities were able to prove the principles of mathematics at the average of 70%. 3) The students joining the cooperative learning activities reported moderate attitude towards the activities.

Keywords: Instructional Design, Pedagogical, Teaching/ Learning Strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
5925 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies

Authors: Kanika Sood, Sijie Shang

Abstract:

A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.

Keywords: Bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, Natural Language Processing, online learning, sentiment analysis, teaching pedagogy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80
5924 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper presents a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network-based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation on an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: Attention Multiple Instance Learning, Multiple Instance Learning, transfer learning, histopathological slides, cancer tissue classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221
5923 Integrating Computer Games with Mathematics Instruction in Elementary School- An Analysis of Motivation, Achievement, and Pupil-Teacher Interactions

Authors: Kuo Hung Huang, Chong-Ji Ke

Abstract:

The purpose of this study is to explore the impacts of computer games on the mathematics instruction. First, the research designed and implemented the web-based games according to the content of existing textbook. And the researcher collected and analyzed the information related to the mathematics instruction integrating the computer games. In this study, the researcher focused on the learning motivation of mathematics, mathematics achievement, and pupil-teacher interactions in classroom. The results showed that students under instruction integrating computer games significantly improved in motivation and achievement. The teacher tended to use less direct teaching and provide more time for student-s active learning.

Keywords: computer games, mathematics instruction, pupil-teacher interaction, technology-enhanced learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
5922 Human Capital and Capability Approach in European Lifelong Learning Development: A Case Study of Macedonia in the Balkan

Authors: E. Heikkilä

Abstract:

The paper discusses European Lifelong Learning policy in the European enlargement to the Balkan. The European Lifelong Learning policy with Human Capital approach is researched in the country case of Macedonia. The paper argues that Human Capital approach focusing on instrumental and economic importance of learning for employability and economic growth needs to be complemented with Capability Approach for intrinsic and noneconomic needs of learning among the ethnic minorities. The paper identifies two dimensions of importance – minority languages and civic education – that the Capability Approach may develop to guarantee equal opportunities to all to benefit from European educational and lifelong learning development and to build an inclusive and socially just democracy in Macedonia.

Keywords: Capability approach, European lifelong learning, human capital theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
5921 A Study of the Views of Information Technologies Teachers Regarding In-Service Training

Authors: Halit Arslan, Ismail Sahin, Ahmet Oguz Akturk, Ismail Celik

Abstract:

Today, the means of following the developments in the area of science and technology is to keep up with the pace of the advancements in this area. As is in every profession, apart from their personal efforts, the training of teachers in the period after they start their careers is only possible through in-service training. The aim of the present study is to determine the views of Information Technologies (IT) teachers regarding the in-service training courses organized by the Ministry of National Education. In this study, in which quantitative research methods and techniques were employed, the views of 196 IT teachers were collected by using the “Views on In-service Training” questionnaire developed by the authors of the paper. Independent groups t-test was used to determine whether the views of IT teachers regarding in-service training differed depending on gender, age and professional seniority. One-way analysis of variance (ANOVA) was used to investigate whether the views of IT teachers regarding in-service training differed depending on the number of in-service training courses they joined and the type of inservice training course they wanted to take. According to the findings obtained in the study, the views of IT teachers on in-service training did not show a significant difference depending on gender and age, whereas those views differed depending on professional seniority, the number of in-service training courses they joined and the type of inservice training course they wanted to take.

Keywords: In-service training, IT teachers, professional development, personal development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
5920 Goal Based Episodic Processing in Implicit Learning

Authors: Peter A. Bibby

Abstract:

Research has suggested that implicit learning tasks may rely on episodic processing to generate above chance performance on the standard classification tasks. The current research examines the invariant features task (McGeorge and Burton, 1990) and argues that such episodic processing is indeed important. The results of the experiment suggest that both rejection and similarity strategies are used by participants in this task to simultaneously reject unfamiliar items and to accept (falsely) familiar items. Primarily these decisions are based on the presence of low or high frequency goal based features of the stimuli presented in the incidental learning phase. It is proposed that a goal based analysis of the incidental learning task provides a simple step in understanding which features of the episodic processing are most important for explaining the match between incidental, implicit learning and test performance.

Keywords: Episodic processing, incidental learning, implicitlearning, invariant learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
5919 Partnering with Stakeholders to Secure Digitization of Water

Authors: Sindhu Govardhan, Kenneth G. Crowther

Abstract:

Modernisation of the water sector is leading to increased connectivity and integration of emerging technologies with traditional ones, leading to new security risks. The convergence of Information Technology (IT) with Operation Technology (OT) results in solutions that are spread across larger geographic areas, increasingly consist of interconnected Industrial Internet of Things (IIOT) devices and software, rely on the integration of legacy with modern technologies, use of complex supply chain components leading to complex architectures and communication paths. The result is that multiple parties collectively own and operate these emergent technologies, threat actors find new paths to exploit, and traditional cybersecurity controls are inadequate. Our approach is to explicitly identify and draw data flows that cross trust boundaries between owners and operators of various aspects of these emerging and interconnected technologies. On these data flows, we layer potential attack vectors to create a frame of reference for evaluating possible risks against connected technologies. Finally, we identify where existing controls, mitigations, and other remediations exist across industry partners (e.g., suppliers, product vendors, integrators, water utilities, and regulators). From these, we are able to understand potential gaps in security, the roles in the supply chain that are most likely to effectively remediate those security gaps, and test cases to evaluate and strengthen security across these partners. This informs a “shared responsibility” solution that recognises that security is multi-layered and requires collaboration to be successful. This shared responsibility security framework improves visibility, understanding, and control across the entire supply chain, and particularly for those water utilities that are accountable for safe and continuous operations.

Keywords: Cyber security, shared responsibility, IIOT, threat modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168
5918 Electronic Government around the World: Key Information and Communication Technology Indicators

Authors: Isaac Kofi Mensah

Abstract:

Governments around the world are adopting Information and Communication Technologies (ICTs) because of the important opportunities it provides through E-government (EG) to modernize government public administration processes and delivery of quality and efficient public services. Almost every country in the world is adopting ICT in its public sector administration (EG) to modernize and change the traditional process of government, increase citizen engagement and participation in governance, as well as the provision of timely information to citizens. This paper, therefore, seeks to present the adoption, development and implementation of EG in regions globally, as well as the ICT indicators around the world, which are making EG initiatives successful. Europe leads the world in its EG adoption and development index, followed by the Americas, Asia, Oceania and Africa. There is a gradual growth in ICT indicators in terms of the increase in Internet access and usage, increase in broadband penetration, an increase of individuals using the Internet at home and a decline in fixed telephone use, while the mobile cellular phone has been on the increase year-on-year. Though the lack of ICT infrastructure is a major challenge to EG adoption and implementation around the world, in Africa it is very pervasive, hampering the expansion of Internet access and provision of broadband, and hence is a barrier to the successful adoption, development, and implementation of EG initiatives in countries on the continent. But with the general improvement and increase in ICT indicators around the world, it provides countries in Europe, Americas, Asia, Arab States, Oceania and Africa with the huge opportunity to enhance public service delivery through the adoption of EG. Countries within these regions cannot fail their citizens who desire to enjoy an enhanced and efficient public service delivery from government and its many state institutions.

Keywords: E-government development index, e-government, indicators, information and communication technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
5917 RDFGraph: New Data Modeling Tool for Semantic Web

Authors: Daniel Siahaan, Aditya Prapanca

Abstract:

The emerging Semantic Web has been attracted many researchers and developers. New applications have been developed on top of Semantic Web and many supporting tools introduced to improve its software development process. Metadata modeling is one of development process where supporting tools exists. The existing tools are lack of readability and easiness for a domain knowledge expert to graphically models a problem in semantic model. In this paper, a metadata modeling tool called RDFGraph is proposed. This tool is meant to solve those problems. RDFGraph is also designed to work with modern database management systems that support RDF and to improve the performance of the query execution process. The testing result shows that the rules used in RDFGraph follows the W3C standard and the graphical model produced in this tool is properly translated and correct.

Keywords: CASE tool, data modeling, semantic web

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
5916 Designing a Framework for Network Security Protection

Authors: Eric P. Jiang

Abstract:

As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.

Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
5915 Modeling “Web of Trust“ with Web 2.0

Authors: Omer Mahmood, Selvakennedy Selvadurai

Abstract:

“Web of Trust" is one of the recognized goals for Web 2.0. It aims to make it possible for the people to take responsibility for what they publish on the web, including organizations, businesses and individual users. These objectives, among others, drive most of the technologies and protocols recently standardized by the governing bodies. One of the great advantages of Web infrastructure is decentralization of publication. The primary motivation behind Web 2.0 is to assist the people to add contents for Collective Intelligence (CI) while providing mechanisms to link content with people for evaluations and accountability of information. Such structure of contents will interconnect users and contents so that users can use contents to find participants and vice versa. This paper proposes conceptual information storage and linking model, based on decentralized information structure, that links contents and people together. The model uses FOAF, Atom, RDF and RDFS and can be used as a blueprint to develop Web 2.0 applications for any e-domain. However, primary target for this paper is online trust evaluation domain. The proposed model targets to assist the individuals to establish “Web of Trust" in online trust domain.

Keywords: Web of Trust, Semantic Web, Electronic SocialNetworks, Information Management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
5914 Reasoning With Non-Binary Logics

Authors: Sylvia Encheva

Abstract:

Students in high education are presented with new terms and concepts in nearly every lecture they attend. Many of them prefer Web-based self-tests for evaluation of their concepts understanding since they can use those tests independently of tutors- working hours and thus avoid the necessity of being in a particular place at a particular time. There is a large number of multiple-choice tests in almost every subject designed to contribute to higher level learning or discover misconceptions. Every single test provides immediate feedback to a student about the outcome of that test. In some cases a supporting system displays an overall score in case a test is taken several times by a student. What we still find missing is how to secure delivering of personalized feedback to a user while taking into consideration the user-s progress. The present work is motivated to throw some light on that question.

Keywords: Clustering, rough sets, many valued logic, predictions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
5913 Active Learning Strategies and Academic Achievement among Some Psychology Undergraduates in Barbados

Authors: Grace Adebisi Fayombo

Abstract:

This study investigated the relationships between the active learning strategies (discussion, video clips, game show, role– play, five minute paper, clarification pauses, and small group) and academic achievement among a sample of 158 undergraduate psychology students in The University of the West Indies (UWI), Barbados. Results revealed statistically significant positive correlations between active learning strategies and students’ academic achievement; so also the active learning strategies contributed 22% (Rsq=0.222) to the variance being accounted for in academic achievement and this was found to be statistically significant (F(7,150) = 6.12, p < .05). Additionally, group work emerged as the best active learning strategy and had the highest correlation with the students’ academic achievement. These results were discussed in the light of the importance of the active learning strategies promoting academic achievement among the university students.

Keywords: Academic achievement, active learning strategies, psychology, undergraduates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3777
5912 Digital Paradoxes in Learning Theories

Authors: Marcello Bettoni

Abstract:

As a learning theory tries to borrow from science a framework to found its method, it shows paradoxes and paralysing contraddictions. This results, on one hand, from adopting a learning/teaching model as it were a mere “transfer of data" (mechanical learning approach), and on the other hand from borrowing the complexity theory (an indeterministic and non-linear model), that risks to vanish every educational effort. This work is aimed at describing existing criticism, unveiling the antinomic nature of such paradoxes, focussing on a view where neither the mechanical learning perspective nor the chaotic and nonlinear model can threaten and jeopardize the educational work. Author intends to go back over the steps that led to these paradoxes and to unveil their antinomic nature. Actually this could serve the purpose to explain some current misunderstandings about the real usefulness of Ict within the youth-s learning process and growth.

Keywords: Antinomy, complexity, Leibniz, paradox

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
5911 A Functional Interpretation of Quantum Theory

Authors: Hans H. Diel

Abstract:

In this paper a functional interpretation of quantum theory (QT) with emphasis on quantum field theory (QFT) is proposed. Besides the usual statements on relations between a functions initial state and final state, a functional interpretation also contains a description of the dynamic evolution of the function. That is, it describes how things function. The proposed functional interpretation of QT/QFT has been developed in the context of the author-s work towards a computer model of QT with the goal of supporting the largest possible scope of QT concepts. In the course of this work, the author encountered a number of problems inherent in the translation of quantum physics into a computer program. He came to the conclusion that the goal of supporting the major QT concepts can only be satisfied, if the present model of QT is supplemented by a "functional interpretation" of QT/QFT. The paper describes a proposal for that

Keywords: Computability, Foundation of Quantum Mechanics, Measurement Problem, Models of Physics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
5910 Virtual Learning Environments in Spanish Traditional Universities

Authors: Leire Urcola, Amaia Altuzarra

Abstract:

This communication is intended to provide some issues for thought on the importance of implementation of Blended Learning in traditional universities, particularly in the Spanish university system. In this respect, we believe that virtual environments are likely to meet some of the needs raised by the Bologna agreement, trying to maintain the quality of teaching and at the same time taking advantage of the functionalities that virtual learning platforms offer. We are aware that an approach of learning from an open and constructivist nature in universities is a complex process that faces significant technological, administrative and human barriers. Therefore, in order to put plans in our universities, it is necessary to analyze the state of the art of some indicators relating to the use of ICT, with special attention to virtual teaching and learning, so that we can identify the main obstacles and design adaptive strategies for their full integration in the education system. Finally, we present major initiatives launched in the European and state framework for the effective implementation of new virtual environments in the area of higher education.

Keywords: Blended learning, e-Learning, ICT, Virtual LearningEnvironments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
5909 Organisational Learning as Perceived and Expected by Management and Non Management Staff

Authors: Narat Susilaworn, Nuttawuth Muenjohn

Abstract:

The study applied a combination of organisational learning models (Senge, 1994: Pedler, Burgoyne and Boydell, 1991) and later adopted fifteen organisational learning principles with one of the biggest energy providers in South East Asia. The purposes of the current study were to: a) investigate the company-s practices on fifteen organisational learning principles; b) explore the perceptions and expectations of its employees in relations to the principles; and c) compare the perceptions and expectations between management and non-management staff toward the fifteen factors. One hundred and ten employees responded on a designed questionnaire and the results indicated that the company was practicing activities that associated with organisational learning principles. Also, according to the T-test results, significant differences between management and non-management respondents were found. Research implications are also provided.

Keywords: Organisational learning, employee perception, organisational performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
5908 The Effect of Cooperation Teaching Method on Learning of Students in Primary Schools

Authors: Fereshteh Afkari, Davood Bagheri

Abstract:

The effect of teaching method on learning assistance Dunn Review .The study, to compare the effects of collaboration on teaching mathematics learning courses, including writing, science, experimental girl students by other methods of teaching basic first paid and the amount of learning students methods have been trained to cooperate with other students with other traditional methods have been trained to compare. The survey on 100 students in Tehran that using random sampling ¬ cluster of girl students between the first primary selections was performed. Considering the topic of semi-experimental research methods used to practice the necessary information by questionnaire, examination questions by the researcher, in collaboration with teachers and view authority in this field and related courses that teach these must have been collected. Research samples to test and control groups were divided. Experimental group and control group collaboration using traditional methods of mathematics courses, including writing and experimental sciences were trained. Research results using statistical methods T is obtained in two independent groups show that, through training assistance will lead to positive results and student learning in comparison with traditional methods, will increase also led to collaboration methods increase skills to solve math lesson practice, better understanding and increased skill level of students in practical lessons such as science and has been writing.

Keywords: method of teaching, learning, collaboration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
5907 Designing a Patient Monitoring System Using Cloud and Semantic Web Technologies

Authors: Chryssa Thermolia, Ekaterini S. Bei, Stelios Sotiriadis, Kostas Stravoskoufos, Euripides G.M. Petrakis

Abstract:

Moving into a new era of healthcare, new tools and devices are developed to extend and improve health services, such as remote patient monitoring and risk prevention. In this concept, Internet of Things (IoT) and Cloud Computing present great advantages by providing remote and efficient services, as well as cooperation between patients, clinicians, researchers and other health professionals. This paper focuses on patients suffering from bipolar disorder, a brain disorder that belongs to a group of conditions called affective disorders, which is characterized by great mood swings. We exploit the advantages of Semantic Web and Cloud Technologies to develop a patient monitoring system to support clinicians. Based on intelligently filtering of evidence-knowledge and individual-specific information we aim to provide treatment notifications and recommended function tests at appropriate times or concluding into alerts for serious mood changes and patient’s nonresponse to treatment. We propose an architecture as the back-end part of a cloud platform for IoT, intertwining intelligence devices with patients’ daily routine and clinicians’ support.

Keywords: Bipolar disorder, intelligent systems patient monitoring, semantic web technologies, IoT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441
5906 Podcasting as an Instructional Method: Case Study of a School Psychology Class

Authors: Jeff A. Tysinger, Dawn P. Tysinger

Abstract:

There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.

Keywords: Motivation, online learning, pedagogy, podcast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764
5905 Devising and Assessing the Efficacy of Mobile-Assisted Instructional Modes in Mobile Learning

Authors: Majlinda Fetaji, Alajdin Abazi, Zamir Dika, Bekim Fetaji

Abstract:

The assessment of the efficacy of devised Mobile- Assisted Instructional Modes in Mobile Learning was the focus of this research. The study adopted pre-test, post-test, control group quasi-experimental design. Research instruments were developed, validated and used for collecting data. Findings revealed that the students exposed to Mobile Task Based Learning Mode (MTBLM) in using Mobile-Assisted Instruction (MAI) performed significantly better. The implication of these findings is that, the Audio tutorial and Practice Mode (ATPM) (Stimulus instruments) of MAI had been found better over the other modes used in the study.

Keywords: Mobile-Assisted instructions, Mobile learning, learning instructions, task based learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
5904 Analysis of Relation between Unlabeled and Labeled Data to Self-Taught Learning Performance

Authors: Ekachai Phaisangittisagul, Rapeepol Chongprachawat

Abstract:

Obtaining labeled data in supervised learning is often difficult and expensive, and thus the trained learning algorithm tends to be overfitting due to small number of training data. As a result, some researchers have focused on using unlabeled data which may not necessary to follow the same generative distribution as the labeled data to construct a high-level feature for improving performance on supervised learning tasks. In this paper, we investigate the impact of the relationship between unlabeled and labeled data for classification performance. Specifically, we will apply difference unlabeled data which have different degrees of relation to the labeled data for handwritten digit classification task based on MNIST dataset. Our experimental results show that the higher the degree of relation between unlabeled and labeled data, the better the classification performance. Although the unlabeled data that is completely from different generative distribution to the labeled data provides the lowest classification performance, we still achieve high classification performance. This leads to expanding the applicability of the supervised learning algorithms using unsupervised learning.

Keywords: Autoencoder, high-level feature, MNIST dataset, selftaught learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
5903 Validation of Contemporary Physical Activity Tracking Technologies through Exercise in a Controlled Environment

Authors: Reem I. Altamimi, Geoff D. Skinner

Abstract:

Extended periods engaged in sedentary behavior increases the risk of becoming overweight and/or obese which is linked to other health problems. Adding technology to the term ‘active living’ permits its inclusion in promoting and facilitating habitual physical activity. Technology can either act as a barrier to, or facilitate this lifestyle, depending on the chosen technology. Physical Activity Monitoring Technologies (PAMTs) are a popular example of such technologies. Different contemporary PAMTs have been evaluated based on customer reviews; however, there is a lack of published experimental research into the efficacy of PAMTs. This research aims to investigate the reliability of four PAMTs: two wristbands (Fitbit Flex and Jawbone UP), a waist-clip (Fitbit One), and a mobile application (iPhone Health Application) for recording a specific distance walked on a treadmill (1.5km) at constant speed. Physical activity tracking technologies are varied in their recordings, even while performing the same activity. This research demonstrates that Jawbone UP band recorded the most accurate distance compared to Fitbit One, Fitbit Flex, and iPhone Health Application.

Keywords: Fitbit, Jawbone UP, mobile tracking applications, physical activity tracking technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
5902 A Cognitive Robot Collaborative Reinforcement Learning Algorithm

Authors: Amit Gil, Helman Stern, Yael Edan

Abstract:

A cognitive collaborative reinforcement learning algorithm (CCRL) that incorporates an advisor into the learning process is developed to improve supervised learning. An autonomous learner is enabled with a self awareness cognitive skill to decide when to solicit instructions from the advisor. The learner can also assess the value of advice, and accept or reject it. The method is evaluated for robotic motion planning using simulation. Tests are conducted for advisors with skill levels from expert to novice. The CCRL algorithm and a combined method integrating its logic with Clouse-s Introspection Approach, outperformed a base-line fully autonomous learner, and demonstrated robust performance when dealing with various advisor skill levels, learning to accept advice received from an expert, while rejecting that of less skilled collaborators. Although the CCRL algorithm is based on RL, it fits other machine learning methods, since advisor-s actions are only added to the outer layer.

Keywords: Robot learning, human-robot collaboration, motion planning, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
5901 Online Think–Pair–Share in a Third-Age ICT Course

Authors: Daniele Traversaro

Abstract:

Problem: Senior citizens have been facing a challenging reality as a result of strict public health measures designed to protect people from the COVID-19 outbreak. These include the risk of social isolation due to the inability of the elderly to integrate with technology. Never before have Information and Communication Technology (ICT) skills become essential for their everyday life. Although third-age ICT education and lifelong learning are widely supported by universities and governments, there is a lack of literature on which teaching strategy/methodology to adopt in an entirely online ICT course aimed at third-age learners. This contribution aims to present an application of the Think-Pair-Share (TPS) learning method in an ICT third-age virtual classroom with an intergenerational approach to conducting online group labs and review activities. Research Question: Is collaborative learning suitable and effective, in terms of student engagement and learning outcomes, in an online ICT course for the elderly? Methods: In the TPS strategy a problem is posed by the teacher, students have time to think about it individually, and then they work in pairs (or small groups) to solve the problem and share their ideas with the entire class. We performed four experiments in the ICT course of the University of the Third Age of Genova (University of Genova, Italy) on the Microsoft Teams platform. The study cohort consisted of 26 students over the age of 45. Data were collected through online questionnaires. Two have been proposed, one at the end of the first activity and another at the end of the course. They consisted of five and three close-ended questions, respectively. The answers were on a Likert scale (from 1 to 4) except two questions (which asked the number of correct answers given individually and in groups) and the field for free comments/suggestions. Results: Groups achieve better results than individual students (with scores greater than one order of magnitude) and most students found TPS helpful to work in groups and interact with their peers. Insights: From these early results, it appears that TPS is suitable for an online third-age ICT classroom and useful for promoting discussion and active learning. Despite this, our work has several limitations. First of all, the results highlight the need for more data to be able to perform a statistical analysis in order to determine the effectiveness of this methodology in terms of student engagement and learning outcomes as future direction.

Keywords: Collaborative learning, information technology education, lifelong learning, older adult education, think-pair-share.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 635
5900 Demographic Factors Influencing Employees’ Salary Expectations and Labor Turnover

Authors: M. Osipova

Abstract:

Thanks to informational technologies development every sphere of economics is becoming more and more datacentralized as people are generating huge datasets containing information on any aspect of their life. Applying research of such data to human resources management allows getting scarce statistics on labor market state including salary expectations and potential employees’ typical career behavior, and this information can become a reliable basis for management decisions. The following article presents results of career behavior research based on freely accessible resume data. Information used for study is much wider than one usually uses in human resources surveys. That is why there is enough data for statistically significant results even for subgroups analysis.

Keywords: Human resources management, labor market, salary expectations, statistics, turnover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
5899 Learning Classifier Systems Approach for Automated Discovery of Censored Production Rules

Authors: Suraiya Jabin, Kamal K. Bharadwaj

Abstract:

In the recent past Learning Classifier Systems have been successfully used for data mining. Learning Classifier System (LCS) is basically a machine learning technique which combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. All LCSs models more or less, comprise four main components; a finite population of condition–action rules, called classifiers; the performance component, which governs the interaction with the environment; the credit assignment component, which distributes the reward received from the environment to the classifiers accountable for the rewards obtained; the discovery component, which is responsible for discovering better rules and improving existing ones through a genetic algorithm. The concatenate of the production rules in the LCS form the genotype, and therefore the GA should operate on a population of classifier systems. This approach is known as the 'Pittsburgh' Classifier Systems. Other LCS that perform their GA at the rule level within a population are known as 'Mitchigan' Classifier Systems. The most predominant representation of the discovered knowledge is the standard production rules (PRs) in the form of IF P THEN D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski and Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: IF P THEN D UNLESS C, where Censor C is an exception to the rule. Such rules are employed in situations, in which conditional statement IF P THEN D holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the IF P THEN D part of CPR expresses important information, while the UNLESS C part acts only as a switch and changes the polarity of D to ~D. In this paper Pittsburgh style LCSs approach is used for automated discovery of CPRs. An appropriate encoding scheme is suggested to represent a chromosome consisting of fixed size set of CPRs. Suitable genetic operators are designed for the set of CPRs and individual CPRs and also appropriate fitness function is proposed that incorporates basic constraints on CPR. Experimental results are presented to demonstrate the performance of the proposed learning classifier system.

Keywords: Censored Production Rule, Data Mining, GeneticAlgorithm, Learning Classifier System, Machine Learning, PittsburgApproach, , Reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
5898 Online Learning: Custom Design to Promote Learning for Multiple Disciplines

Authors: S. Silverstone, J. Phadungtin

Abstract:

Today-s Wi Fi generation utilize the latest technology in their daily lives. Instructors at National University, the second largest non profit private institution of higher learning in California, are incorporating these new tools to modify their Online class formats to better accommodate these new skills in their distance education delivery modes. The University provides accelerated learning in a one-course per month format both Onsite and Online. Since there has been such a significant increase in Online classes over the past three years, and it is expected to grow even more over the over the next five years, Instructors cannot afford to maintain the status quo and not take advantage of these new options. It is at the discretion of the instructors which accessory they use and how comfortable and familiar they are with the technology. This paper explores the effects and summarizes students- comments of some of these new technological options which have been recently provided in order to make students- online learning experience more exciting and meaningful.

Keywords: Asynchronous chats, synchronous learning, VoIP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
5897 Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms

Authors: Shashank N. Mathur, Anil K. Ahlawat, Virendra P. Vishwakarma

Abstract:

In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.

Keywords: Artificial Neural Networks, back propagation, Counterpropagation networks, face recognition, learning algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686