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Abstract—Students in high education are presented with new terms
and concepts in nearly every lecture they attend. Many of them prefer
Web-based self-tests for evaluation of their concepts understanding
since they can use those tests independently of tutors’ working hours
and thus avoid the necessity of being in a particular place at a
particular time. There is a large number of multiple-choice tests in
almost every subject designed to contribute to higher level learning
or discover misconceptions. Every single test provides immediate
feedback to a student about the outcome of that test. In some cases
a supporting system displays an overall score in case a test is taken
several times by a student. What we still find missing is how to
secure delivering of personalized feedback to a user while taking
into consideration the user’s progress. The present work is motivated
to throw some light on that question.
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I. Introduction
Automated evaluation of students concepts’ understanding

has been a subject of interest to researchers from various fields.
One part of the research focuses on the cognitive site [15],
[26] while the part is considering modelling and technical
implementations [22], [16], [19]. At the same time researches
from both sides consider which types of rules should be used
in the decision making process resulting giving feedback to
students.

Historically viewed, Boolean logic [13] and [33] has been
the most common basis in automated decision making process.
Boolean logic operates with two values 0 and 1. This implies
serious restrictions while describing non-binary occurrences,
[14], [20]. Fuzzy logic [7], [12], [17], rough sets theory [27],
[28], [29], [30], [31], grey theory, [11], [18] [32], many valued
logics, [23] and formal concept analysis, [24] are among
the well known attempts to describe continues processes and
situations where several degrees of truth are required.

Students in high education are presented with new terms and
concepts in nearly every lecture they attend. Many of them
prefer Web-based self-tests for evaluation of their concepts
understanding since they can use those tests independently of
tutors’ working hours and thus avoid the necessity of being in
a particular place at a particular time. There is a large number
of multiple-choice tests in almost every subject designed to
contribute to higher level learning or discover misconceptions.
Every single test provides immediate feedback to a student
about the outcome of that test. In some cases a supporting
system displays an overall score in case a test is taken several
times by a student. What we still find missing is how to secure
delivering of personalized feedback to a user while taking
into consideration the user’s progress. The present work is
motivated to throw some light on that question.
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The rest of the paper is organized as follows. Related work
and supporting theory may be found in Section II. The decision
process is presented in Section III. Conclusions and future
work can be found in Section IV.

II. Preliminaries

Rough Sets were originally introduced in [27]. The pre-
sented approach provides exact mathematical formulation of
the concept of approximative (rough) equality of sets in a
given approximation space. An approximation space is a pair
A = (U,R), where U is a set called universe, and R ⊂ U × U
is an indiscernibility relation.

Equivalence classes of R are called elementary sets (atoms)
in A. The equivalence class of R determined by an element
x ∈ U is denoted by R(x). Equivalence classes of R are called
granules generated by R. The following definitions are often
used while describing a rough set X, X ⊂ U:
• the R-upper approximation of X, R�(x) :=

⋃
x∈U{R(x) :

R(x) ∩ X � ∅}
• the R-lower approximation of X, R�(x) :=

⋃
x∈U{R(x) :

R(x) ⊆ X}
• the R-boundary region of X, RNR(X) := R�(X) − R�(X)
In the rough set theory [28], objects are described by

either physical observations or measurements. Consider an
information system A = (U, A) where information about an
object x ∈ U is given by means of some attributes from A,
i.e., an object x can be identified with the so-called signature
of x : In f (x) = a(x) : a ∈ A.
• The R-positive region of X with respect to the relation R

is POS R(X) = RX
• The R-negative region of X with respect to the relation R

is the set NEGR(X) = U − RX
• The R-boundary region of X with respect to the relation

R is the set BNR(X) = RX − RX
Based on the knowledge R, we can say that
• the elements of POS R(X) certainly belong to X,
• the elements of NEGR(X) certainly do not belong to X,
• we cannot tell if the elements of BNR(X) belong to X or

not, Fig. 1.
In [1] rough sets are described via three-valued logic. The

value t corresponds to positive region of a set, the value f
- to the negative region, and the undefined value u - to the
border of the set. Due to the properties of the above regions
in rough set theory, the logic’s semantics is based on a non-
deterministic matrix (Nmatrix).

Definition 1: [2] A non-deterministic matrix (Nmatrix) for
a propositional language L is a tuple M = (T ,D,O), where:

• T is a non-empty set of truth values.
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Fig. 1. The R-positive region, the R-negative region of X and the R-boundary
region of X

TABLE I
Negation in the predicate language LRS

� f u t
t u f

• ∅ ⊂ D ⊆ T is the set of designated values.
• For every n-ary connective ’�’ of L, O includes a corre-

sponding n-ary function �̃ from T n to 2T − ∅.
The semantics the predicate language LRS is given by the

Nmatrix MRS = (T ,D,O), where T = { f , u, t},D = {t}, and
−,∪,∩ are interpreted as set-theoretic operations on rough sets.
Their semantics is given in Table I, Table II, Table III, and
Table IV where f , u and t stand for the appropriate singleton
sets.

The implication is defined as A→ B = ¬A ∨ B, for further
details see Table V.

A. Non Binary Logics

Three-valued logic is often viewed as an extension to two-
valued logic where apart from the two truth values ’true’ and
’false’ one operates with another truth value called ’unknown’.
The last truth value is sometimes understood as ’undefined’, or
’neither’. Among the widely applied in practise three-valued
logics are Łukasiewicz’s and Kleene’s [6], [25].

The semantic characterization of a four-valued logic for
expressing practical deductive processes is presented in [4] and

TABLE II
The

∼
∪ operation in the predicate language LRS

∼
∪ f u t
f f u t
u u {u, t} t
t t t t

TABLE III
The

∼
∩ operation in the predicate language LRS

∼
∩ f u t
f f f f
u f {f, u} u
t f u t

TABLE IV
The

∼¬ operation in the predicate language LRS

∼¬ f u t
t u f

TABLE V
The

∼→ operation in the predicate language LRS

∼→ f u t
f t t t
u u {u, t} t
t f u t

[5]. In most information systems the management of databases
is not considered to include neither explicit nor hidden incon-
sistencies. In real life situation information often come from
different contradicting sources. Thus different sources can
provide inconsistent data while deductive reasoning may result
in hidden inconsistencies. The idea in Belnap’s approach is to
develop a logic that is not that dependable of inconsistencies.
The Belnap’s logic has four truth values ’T, F, Both, None’.
The meaning of these values can be described as follows:
• an atomic sentence is stated to be true only (T),
• an atomic sentence is stated to be false only (F),
• an atomic sentence is stated to be both true and false,

for instance, by different sources, or in different points of
time (Both), and

• an atomic sentences status is unknown. That is, neither
true, nor false (None).

The information about the truth-value of a sentence can have
values from None to Both. Extensions of Belnap’s logic are
discussed in [21].

B. Fuzzy Functions

Fuzzy reasoning methods are often applied in intelligent
systems, decision making and fuzzy control. Some of them
present a reasoning result as a real number, while others use
fuzzy sets. Fuzzy reasoning methods involving various fuzzy
implications and compositions are discussed by many authors,
f. ex. [3], and [8].

The included in this subsection definitions of fuzzy sets and
fuzzy functions are taken from [35].

Definition 2: Let X be a space of points (objects), and
x ∈ X being a generic element. A fuzzy set (class) A in X is
characterized by a membership (characteristic) function fA(x)
which associates with each point in X a real number in the
interval [0, 1].

The value of fA(x) represents the ”grade of membership”
of x in A. This in contrast to the classical set theory where a
membership function takes one of the two values 1 and 0, an
element belongs the set or it does not.

C. Grey Theory

Grey theory is an effective method used to solve uncertainty
problems with discrete data and incomplete information. The
theory includes five major parts: grey prediction, grey rela-
tional analysis, grey decision, grey programming and grey
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control, [10], [11], and [18]. A quantitative approach for
assessing the qualitative nature of organizational visions is
presented in [32].

Definition 3: A grey system is defined as a system con-
taining uncertain information presented by a grey number and
grey variables.

Definition 4: Let X be the universal set. Then a grey set G
of X is defined by its two mappings μG(x) and μ

G
(x).

{
μG(x) : x→ [0, 1]
μ

G
(x) : x→ [0, 1]

μG(x) ≥ μ
G

(x), x ∈ X, X = R, μG(x) and μ
G

(x) are the upper
and lower membership functions in G respectively.

When μG(x) = μ
G

(x), the grey set G becomes a fuzzy set. It
shows that grey theory considers the condition of the fuzziness
and can deal flexibly with the fuzziness situation.

The grey number can be defined as a number with uncer-
tain information. For example, the ratings of attributes are
described by the linguistic variables; there will be a numerical
interval expressing it. This numerical interval will contain
uncertain information. A grey number is often written as ⊗G,
(⊗G = G|μμ).

Definition 5: Lower-limit, upper-limit, and interval grey
numbers.
⊗G = [G,∞] - if only the lower limit of G can be possibly

estimated and G is defined as a lower-limit grey number.
⊗G = [−∞,G] - if only the upper limit of G can be possibly

estimated and G is defined as a upper-limit grey number.
⊗G = [G,G] - the lower and upper limits of G can be

estimated and G is defined as an interval grey number.
Grey number operation is an operation defined on sets

of intervals, rather than real numbers. The length of a grey
number ⊗G is defined as

L(⊗G) = [G −G].

Definition 6: [24] For two grey numbers ⊗G1 = [G1,G1]
and ⊗G2 = [G2,G2], the possibility degree of ⊗G1 ≤ ⊗G2 can
be expressed as follows:

P{⊗G1 ≤ ⊗G2} =

max(0, L� −max(0,G1 −G2))
L�

where L� = L(⊗G1) + L(⊗G2).

D. Formal Concepts

Let P be a non-empty ordered set. If sup{x, y} and in f {x, y}
exist for all x, y ∈ P, then P is called a lattice [9]. In a
lattice illustrating partial ordering of knowledge values, the
logical conjunction is identified with the meet operation and
the logical disjunction with the join operation.

A context is a triple (G,M, I) where G and M are sets and
I ⊂ G × M. The elements of G and M are called objects and
attributes respectively [9], [34].

For A ⊆ G and B ⊆ M, define

A′ = {m ∈ M | (∀g ∈ A) gIm},

B′ = {g ∈ G | (∀m ∈ B) gIm}

where A′ is the set of attributes common to all the objects
in A and B′ is the set of objects possessing the attributes in
B.

A concept of the context (G,M, I) is defined to be a pair
(A, B) where A ⊆ G, B ⊆ M, A′ = B and B′ = A. The extent
of the concept (A, B) is A while its intent is B. A subset A
of G is the extent of some concept if and only if A′′ = A in
which case the unique concept of the which A is an extent is
(A, A′). The corresponding statement applies to those subsets
B ∈ M which is the intent of some concepts.

The set of all concepts of the context (G,M, I) is denoted
by B(G,M, I). 〈B(G,M, I);≤〉 is a complete lattice and it is
known as the concept lattice of the context (G,M, I).

III. The Approach

Student’s understanding of a recently introduced term is
evaluated automatedly using Web-based tests where a question
is followed by a set of answers. A test contains one question
and three answer alternatives
• correct (c),
• incorrect (w) or
• unanswered (u).
A test is randomly taken from set of tests related to the

same term.
The three answer alternatives can naturally be placed in

the three regions in rough set theory, provided the positive
region corresponds to understanding, the negative region to
lack of understanding, and the boundary region to lack of data
(unanswered questions). The 3 valued logic connected to rough
set theory, [1] is going to be applied for drawing conclusions
when a test is taken several tymes by a particular student.

The 3 valued logic related to rough sets operates with rules
defined in Table II and Table III while establishing the truth
value of the result of two events. The rules in Table II are of
more optimistic nature where the rules in Table III are more
conservative. Applying one of them only is insufficient since:
• if we use only Table II and one of the outcomes is

positive then the accumulative result will be always
positive,

• if we use only Table III and one of the outcomes is
negative then the accumulative result will be always
negative.

Example 1: Results from trials and feedback for two cases
are shown in Table VI and Table VII.
Therefore we suggest a combination of these rules. Note that
our intention is not to introduce a new logic but to find a way
to provide more adequate feedback to students.

The outcomes from the 1st and the 2nd trial are based on
Table II. The idea is to apply rules that will reflect student’s
progress and at the same time give encouragement.

The conclusion after the 3rd trial is based on the outcomes
of the the 2nd trial and the 3rd trial applying rules from Table
III. In other words the rules from Table III will have a control
function.
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TABLE VI
Case 1

1st test 2st test Feedback 3rd test Feedback Recommendation
w c possible w lack of Theoretical explanations

understanding understanding are suggested

TABLE VII
Case 2

1st test 2st test Feedback 3rd test Feedback Recommendation
c u some u cannot confirm Some examples are

understanding understanding suggested

Outcomes from further trials are to be incorporated using
the alternation between rules from Table II and Table III.

A small prototype was practically implemented and used
in a subject at master level. The limited number of students
gave an opportunity for receiving their personal views on the
usefulness of such evaluation. As expected they prefer to work
independently and to be able to test their understanding in
a neutral environment. While being pleased with this new
approach we still struggle with developing a pool of questions
of reasonable size as well as good answer alternatives.

IV. Conclusion

This work was motivated by the need for providing sensible
feedback to students about their current progress. Further work
is needed to find out whether such reasoning can be used to
give early indication about substantial misconceptions that can
f. ex. cause student’s inability to continue a particular study.
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