Search results for: Fluid viscosity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1057

Search results for: Fluid viscosity

577 Production of Biodiesel from Roasted Chicken Fat and Methanol: Free Catalyst

Authors: Jorge Ramírez-Ortiz, Merced Martínez Rosales, Horacio Flores Zúñiga

Abstract:

Transesterification reactions free of catalyst between roasted chicken fat with methanol were carried out in a batch reactor in order to produce biodiesel to temperatures from 120°C to 140°C. Parameters related to the transesterification reactions, including temperature, time and the molar ratio of chicken fat to methanol also investigated. The maximum yield of the reaction was of 98% under conditions of 140°C, 4 h of reaction time and a molar ratio of chicken fat to methanol of 1:31. The biodiesel thus obtained exhibited a viscosity of 6.3 mm2/s and a density of 895.9 kg/m3. The results showed this process can be right choice to produce biodiesel since this process does not use any catalyst. Therefore, the steps of neutralization and washing are avoided, indispensables in the case of the alkaline catalysis.

Keywords: Biodiesel, non-catalyst, roasted chicken fat, transesterification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132
576 Environmental Modeling of Storm Water Channels

Authors: L. Grinis

Abstract:

Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.

Keywords: Baffles, open channel, physical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
575 Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity

Authors: Phool Singh, Ashok Jangid, N. S. Tomer, Deepa Sinha

Abstract:

The aim of this paper is to investigate twodimensional unsteady flow of a viscous incompressible fluid about stagnation point on permeable stretching sheet in presence of time dependent free stream velocity. Fluid is considered in the influence of transverse magnetic field in the presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. Using time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by using Runge-Kutta Fehlberg method with the help of Newton-Raphson shooting technique. In the present work the effect of unsteadiness parameter, magnetic field parameter, radiation parameter, stretching parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Skin-friction coefficient and Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.

Keywords: Magneto hydrodynamics, stretching sheet, thermal radiation, unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
574 The Modeling of Viscous Microenvironment for the Coupled Enzyme System of Bioluminescence Bacteria

Authors: Irina E. Sukovataya, Oleg S. Sutormin, Valentina A. Kratasyuk

Abstract:

Effect of viscosity of media on kinetic parameters of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase was investigated with addition of organic solvents (glycerol and sucrose), because bioluminescent enzyme systems based on bacterial luciferases offer a unique and general tool for analysis of the many analytes and enzymes in the environment, research and clinical laboratories and other fields. The possibility of stabilization and increase of activity of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase activity in vicious aqueous-organic mixtures have been shown.

Keywords: The coupled enzyme system of bioluminescence bacteria NAD(P)H:FMN-oxidoreductase–luciferase, glycerol, stabilization of enzymes, sucrose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
573 Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations

Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi

Abstract:

Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).

Keywords: Acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
572 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS

Authors: Raza Abdulla Saeed

Abstract:

In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a threedimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.

Keywords: Computational Fluid Dynamics, Hydraulic Francis Turbine, Numerical Simulation, Two-Phase Mixture Cavitation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3198
571 High Speed Video Transmission for Telemedicine using ATM Technology

Authors: J. P. Dubois, H. M. Chiu

Abstract:

In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.

Keywords: ATM, multiplexing, queueing, telemedicine, VBR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
570 Failure Analysis of Methanol Evaporator

Authors: D. Sufi Ahmadi, B. Bagheri

Abstract:

Thermal water hammer is a special type of water hammer which rarely occurs in heat exchangers. In biphasic fluids, if steam bubbles are surrounded by condensate, regarding lower condensate temperature than steam, they will suddenly collapse. As a result, the vacuum caused by an extreme change in volume lead to movement of the condensates in all directions and their collision the force produced by this collision leads to a severe stress in the pipe wall. This phenomenon is a special type of water hammer. According to fluid mechanics, this phenomenon is a particular type of transient flows during which abrupt change of fluid leads to sudden pressure change inside the tube. In this paper, the mechanism of abrupt failure of 80 tubes of 481 tubes of a methanol heat exchanger is discussed. Initially, due to excessive temperature differences between heat transfer fluids and simultaneous failure of 80 tubes, thermal shock was presupposed as the reason of failure. Deeper investigation on cross-section of failed tubes showed that failure was, ductile type of failure, so the first hypothesis was rejected. Further analysis and more accurate experiments revealed that failure of tubes caused by thermal water hammer. Finally, the causes of thermal water hammer and various solutions to avoid such mechanism are discussed.

Keywords: Thermal water hammer, Brittle Failure, Condensate thermal shock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
569 Parametric and Analysis Study of the Melting in Slabs Heated by a Laminar Heat Transfer Fluid in Downward and Upward Flows

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

The present work aims to investigate numerically the thermal and flow characteristics of a rectangular latent heat storage unit (LHSU) during the melting process of a phase change material (PCM). The LHSU consists of a number of vertical and identical plates of PCM separated by rectangular channels. The melting process is initiated when the LHSU is heated by a heat transfer fluid (HTF: water) flowing in channels in a downward or upward direction. The proposed study is motivated by the need to optimize the thermal performance of the LHSU by accelerating the charging process. A mathematical model is developed and a fixed-grid enthalpy formulation is adopted for modeling the melting process coupling with convection-conduction heat transfer. The finite volume method was used for discretization. The obtained numerical results are compared with experimental, analytical and numerical ones found in the literature and reasonable agreement is obtained. Thereafter, the numerical investigations were carried out to highlight the effects of the HTF flow direction and the aspect ratio of the PCM slabs on the heat transfer characteristics and thermal performance enhancement of the LHSU.

Keywords: Phase change material, thermal energy storage, latent heat storage unit, melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
568 Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour during Closing Manoeuvring Operation of a Butterfly Valve

Authors: M. Ezkurra, J. A. Esnaola, M. Martinez-Agirre, U. Etxeberria, U. Lertxundi, L. Colomo, M. Begiristain, I. Zurutuza

Abstract:

Butterfly valves are widely used industrial piping components as on-off and flow controlling devices. The main challenge in the design process of this type of valves is the correct dimensioning to ensure proper mechanical performance as well as to minimise flow losses that affect the efficiency of the system. Butterfly valves are typically dimensioned in a closed position based on mechanical approaches considering uniform hydrostatic pressure, whereas the flow losses are analysed by means of CFD simulations. The main limitation of these approaches is that they do not consider either the influence of the dynamics of the manoeuvring stage or coupled phenomena. Recent works have included the influence of the flow on the mechanical behaviour for different opening angles by means of one-way FSI approach. However, these works consider steady-state flow for the selected angles, not capturing the effect of the transient flow evolution during the manoeuvring stage. Two-way FSI modelling approach could allow overcoming such limitations providing more accurate results. Nevertheless, the use of this technique is limited due to the increase in the computational cost. In the present work, the applicability of FSI one-way and two-way approaches is evaluated for the analysis of butterfly valves, showing that not considering fluid-structure coupling involves not capturing the most critical situation for the valve disc.

Keywords: Butterfly valves, fluid-structure interaction, one-way approach, two-way approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
567 Correlation to Predict Thermal Performance According to Working Fluids of Vertical Closed-Loop Pulsating Heat Pipe

Authors: Niti Kammuang-lue, Kritsada On-ai, Phrut Sakulchangsatjatai, Pradit Terdtoon

Abstract:

The objectives of this paper are to investigate effects of dimensionless numbers on thermal performance of the vertical closed-loop pulsating heat pipe (VCLPHP) and to establish a correlation to predict the thermal performance of the VCLPHP. The CLPHPs were made of long copper capillary tubes with inner diameters of 1.50, 1.78, and 2.16mm and bent into 26 turns. Then, both ends were connected together to form a loop. The evaporator, adiabatic, and condenser sections length were equal to 50 and 150 mm. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with constant filling ratio of 50% by total volume. Inlet temperature of heating medium and adiabatic section temperature was constantly controlled at 80 and 50oC, respectively. Thermal performance was represented in a term of Kutateladze number (Ku). It can be concluded that when Prandtl number of liquid working fluid (Prl), and Karman number (Ka) increases, thermal performance increases. On contrary, when Bond number (Bo), Jacob number (Ja), and Aspect ratio (Le/Di) increases, thermal performance decreases. Moreover, the correlation to predict more precise thermal performance has been successfully established by analyzing on all dimensionless numbers that have effect on the thermal performance of the VCLPHP.

Keywords: Vertical closed-loop pulsating heat pipe, working fluid, thermal performance, dimensionless parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
566 Investigation of Solvent Effect on Viscosity of Lubricant in Disposable Medical Devices

Authors: Hamed Bagheri, Seyd Javid Shariati

Abstract:

The effects of type and amount of solvent on lubricant which is used in disposable medical devices are investigated in this article. Two kinds of common solvent, n-Hexane and n-Heptane, are used. The mechanical behavior of syringe has shown that n-Heptane has better mixing ratio and also more effective spray process in the barrel of syringe than n-Hexane because of similar solubility parameter to silicon oil. The results revealed that movement of plunger in the barrel increases when pure silicone is used because non-uniform film is created on the surface of barrel, and also, it seems that the form of silicon is converted from oil to gel due to sterilization process. The results showed that the convenient mixing ratio of solvent/lubricant oil is 80/20.

Keywords: Disposable medical devices, lubricant oil, solvent effect, solubility parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
565 Experimental Investigation of Surface Roughness Effect on Single Phase Fluid Flow and Heat Transfer in Micro-Tube

Authors: Mesbah. M. Salem, Mohamed. H. Elhsnawi, Saleh B. Mohamed

Abstract:

An experimental investigation was conducted to study the effect of surface roughness on friction factor and heat transfer characteristics in single-phase fluid flow in a stainless steel micro-tube having diameter of 0.85 mm and average internal surface roughness of 1.7 μm with relative surface roughness of 0.002. Distilled water and R134a liquids were used as the working fluids and testing was conducted with Reynolds numbers ranging from 100 to 10,000 covering laminar, transition and turbulent flow conditions. The experiments were conducted with the micro-tube oriented horizontally with uniform heat fluxes applied at the test section. The results indicated that the friction factor of both water and R134a can be predicted by the Hagen-Poiseuille equation for laminar flow and the modified Miller correlation for turbulent flow and early transition from laminar to turbulent flows. The heat transfer results of water and R134a were in good agreement with the conventional theory in the laminar flow region and lower than the Adam’s correlation for turbulent flow region which deviates from conventional theory.

Keywords: Pressure drop, heat transfer, distilled water, R134a, micro-tube, laminar and turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3837
564 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model

Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth

Abstract:

This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.

Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
563 Finite Volume Method for Flow Prediction Using Unstructured Meshes

Authors: Juhee Lee, Yongjun Lee

Abstract:

In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.

Keywords: Finite volume method, fluid flow, laminar flow, unstructured grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
562 Effect of Buoyancy Ratio on Non-Darcy Mixed Convection in a Vertical Channel: A Thermal Non-equilibrium Approach

Authors: Manish K. Khandelwal, P. Bera, A. Chakrabarti

Abstract:

This article presents a numerical study of the doublediffusive mixed convection in a vertical channel filled with porous medium by using non-equilibrium model. The flow is assumed fully developed, uni-directional and steady state. The controlling parameters are thermal Rayleigh number (RaT ), Darcy number (Da), Forchheimer number (F), buoyancy ratio (N), inter phase heat transfer coefficient (H), and porosity scaled thermal conductivity ratio (γ). The Brinkman-extended non-Darcy model is considered. The governing equations are solved by spectral collocation method. The main emphasize is given on flow profiles as well as heat and solute transfer rates, when two diffusive components in terms of buoyancy ratio are in favor (against) of each other and solid matrix and fluid are thermally non-equilibrium. The results show that, for aiding flow (RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a certain value of H, beyond that decreases smoothly and converges to a constant, whereas in case of opposing flow (RaT = -1000), the result is same for N = 0 and 1. The variation of Nuf in (N, Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases (aiding and opposing) the flow destabilize on increasing N by inviting point of inflection or flow separation on the velocity profile. Overall, the buoyancy force have significant impact on the non-Darcy mixed convection under LTNE conditions.

Keywords: buoyancy ratio, mixed convection, non-Darcy model, thermal non-equilibrium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
561 Effects of Soybean Methyl Ester on the Performance Characteristics of Compression Ignition Engine

Authors: S. K. Fasogbon, A. A. Asere

Abstract:

Depletion and hazardous gas emissions associated with fossil fuels have caused scientists and global attention to focus on the use of “alternative, eco-friendly substitutes for use in Compression Ignition Engines. In this work, biodiesel was produced by trans-esterification of soybean obtained from a Nigerian market using Sodium Hydroxide (NaOH) as a catalyst.” After the production, the physical properties (specific gravity to kinematic viscosity and net calorific value) of the Soybean-biodiesel produced and petrol diesel obtained from a filling station in Nigeria were determined, and these properties conform to conventional standards (ASTM). A cummins-6V-92TA DDEC diesel (Compression ignition, CI) engine was run on various biodiesel-petrol diesel blends (0/100, 10/90, 20/80, 30/70 and 40/60), the B20 (blend 20/80) was found to be the most satisfactory.

Keywords: Effects, Soybean, Methyl Ester, Performance, compression Ignition Engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
560 Influence of Silica Fume on Ultrahigh Performance Concrete

Authors: Vitoldas Vaitkevičius, Evaldas Šerelis

Abstract:

Silica fume, also known as microsilica (MS) or  condensed silica fume is a by-product of the production of silicon  metal or ferrosilicon alloys. Silica fume is one of the most effective  pozzolanic additives which could be used for ultrahigh performance  and other types of concrete. Despite the fact, however is not entirely  clear, which amount of silica fume is most optimal for UHPC. Main  objective of this experiment was to find optimal amount of silica  fume for UHPC with and without thermal treatment, when different  amount of quartz powder is substituted by silica fume. In this work  were investigated four different composition of UHPC with different  amount of silica fume. Silica fume were added 0, 10, 15 and 20% of  cement (by weight) to UHPC mixture. Optimal amount of silica fume  was determined by slump, viscosity, qualitative and quantitative  XRD analysis and compression strength tests methods.

Keywords: Compressive strength, silica fume, ultrahigh performance concrete, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4579
559 Experimental Investigation of Heat Transfer on Vertical Two-Phased Closed Thermosyphon

Authors: M. Hadi Kusuma, Nandy Putra, Anhar Riza Antariksawan, Ficky Augusta Imawan

Abstract:

Heat pipe is considered to be applied as a passive system to remove residual heat that generated from reactor core when incident occur or from spent fuel storage pool. The objectives are to characterized the heat transfer phenomena, performance of heat pipe, and as a model for large heat pipe will be applied as passive cooling system on nuclear spent fuel pool storage. In this experimental wickless heat pipe or two-phase closed thermosyphon (TPCT) is used. Variation of heat flux are 611.24 Watt/m2 - 3291.29 Watt/m2. Variation of filling ratio are 45 - 70%. Variation of initial pressure are -62 to -74 cm Hg. Demineralized water is used as working fluid in the TPCT. The results showed that increasing of heat load leads to an increase of evaporation of the working fluid. The optimum filling ratio obtained for 60% of TPCT evaporator volume, and initial pressure variation gave different TPCT wall temperature characteristic. TPCT showed best performance with 60% filling ratio and can be consider to be applied as passive residual heat removal system or passive cooling system on spent fuel storage pool.

Keywords: Two-phase closed thermo syphon, heat pipe, passive cooling, spent fuel storage pool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
558 Trans-Esterification for Production of Biodiesel from Waste Frying Oil (WFO)

Authors: N. Akhavan Moghaddam, K. Tahvildari, S.Taghvaie

Abstract:

Biodisel is a type of biofuel having similar properties of diesel fuel but lacks substances (undesirable emissions) such as sulfur, nitrogen and aromatic polycyclic. Upon filtration of waste oil, the biodiesel fuel was produced via carrying out transestrification reaction of triglycerides followed by conducting viscosity, density, flash point, cloud point, pour point and copper strip corrosion tests on the samples and comparing with EN14214 and ASTM 6751 standards and all results were found in the permitted limit. The highest yield of biodiesel production reaction was found 46.6435 g when Sodium Hydroxide catalyst in amount of 0.375g was employed, 44.2347 g when Sodium methoxide catalyst in amount of 0.5g was employed and 56.5124 g when acid sulfuric catalyst in amount of 1g was employed and 47.3290 g when two stage reaction was done.

Keywords: Biodiesel, Transesterification, Basic catalyst, Acidic catalyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
557 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation

Authors: A. Naamane, M. Hasnaoui

Abstract:

Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.

Keywords: Asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688
556 Mathematical Modeling of Asphaltene Precipitation: A Review

Authors: Josefina Barnachea Janier, Radzuan B. Razali, Afza Shafie, Brahim Belhaouari Samir

Abstract:

In the Enhanced Oil Recovery (EOR) method, use of Carbon dioxide flooding whereby CO2 is injected into an oil reservoir to increase output when extracting oil resulted significant recovery worldwide. The carbon dioxide function as a pressurizing agent when mixed into the underground crude oil will reduce its viscosity and will enable a rapid oil flow. Despite the CO2’s advantage in the oil recovery, it may result to asphaltene precipitation a problem that will cause the reduction of oil produced from oil wells. In severe cases, asphaltene precipitation can cause costly blockages in oil pipes and machinery. This paper presents reviews of several studies done on mathematical modeling of asphaltene precipitation. The synthesized result from several researches done on this topic can be used as guide in order to better understand asphaltene precipitation. Likewise, this can be used as initial reference for students, and new researchers doing study on asphaltene precipitation.

Keywords: Asphaltene precipitation, crude oil, carbon dioxide flooding, enhanced oil recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3965
555 Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants

Authors: Punit Kumar, Niraj Kumar

Abstract:

The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness.

Keywords: EHL, Carreau, Shear-thinning, Surface Roughness, Amplitude, Wavelength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
554 Preparation of Homogeneous Dense Composite of Zirconia and Alumina (ZTA)using Colloidal Filtration

Authors: H. Wakily, M. Mehrali, H. S. C. Metselaar

Abstract:

Homogeneous composites of alumina and zirconia with a small amount of MgO (<1 wt %) were prepared by colloidal filtration. The object of using ZrO2 (15wt %) was to provide zirconia toughened alumina (ZTA). Suspensions of alumina and Zirconia with various solid loadings and various concentrations of Dolapix CE64 as surfactant were studied. The stability of these suspensions was investigated using rheological measurements. The optimum amount of using Dolapix was 0.8wt% for ZTA containing MgO suspension which gave low apparent viscosity in basic area (100 mPa s at shear rate of 50 s-1). The satisfactory mixtures were made into sample pallets using colloidal filtration. The process was completed with pressureless sintering in suitable temperature. Phase, grain size and qualitative compositional analysis were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM) images. ZTA containing 0.05 wt% MgO shows the lowest grain size for alumina around 0.5 μm. Densification studies show that near full densities (>99%) were obtained for ZTA ceramic containing 0.05 wt% MgO in 1500 °C.

Keywords: Colloidal filtration, Dolapix, MgO, Zirconiatoughened alumina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2967
553 Computational Fluid Dynamics Simulation Approach for Developing a Powder Dispensing Device

Authors: Rallapalli Revanth, Shivakumar Bhavi, Vijay Kumar Turaga

Abstract:

Dispensing powders manually can be difficult as it requires to gradually pour and check the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and is user dependent and it is also difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various powder dispensing mechanisms are being designed to overcome these challenges. Battery operated screw conveyor mechanism is being innovated to overcome above problems faced. These inventions are numerically evaluated at concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices, saving time and money by reducing the number of prototypes and testing. In this study, powder dispensation from the trocar's end is simulated by using the Dense Discrete Phase Model technique along with Kinetic Theory of Granular Flow. The powder is viewed as a secondary flow in air (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation side is done by rotation of the screw conveyor. The performance is calculated for 1 sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.

Keywords: Multiphase flow, screw conveyor, transient, DDPM - KTGF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339
552 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings

Authors: A. W. J. Wong, I. H. Ibrahim

Abstract:

Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.

Keywords: Buildings, CFD simulation, natural ventilation, urban airflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
551 A Shape Optimization Method in Viscous Flow Using Acoustic Velocity and Four-step Explicit Scheme

Authors: Yoichi Hikino, Mutsuto Kawahara

Abstract:

The purpose of this study is to derive optimal shapes of a body located in viscous flows by the finite element method using the acoustic velocity and the four-step explicit scheme. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint conditions by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimization technique, the Galerkin finite element method is used as a spatial discretization and the four-step explicit scheme is used as a temporal discretization to solve the state equation and the adjoint equation. As the interpolation, the orthogonal basis bubble function for velocity and the linear function for pressure are employed. In case that the orthogonal basis bubble function is used, the mass matrix can be diagonalized without any artificial centralization. The shape optimization is performed by the presented method.

Keywords: Shape Optimization, Optimal Control Theory, Finite Element Method, Weighted Gradient Method, Fluid Force, Orthogonal Basis Bubble Function, Four-step Explicit Scheme, Acoustic Velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
550 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions

Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant

Abstract:

The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.

Keywords: Complex terrain, cross-ventilation, wind driven ventilation, Computational Fluid Dynamics (CFD), wind resource.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
549 Prediction of Oxygen Transfer and Gas Hold-Up in Pneumatic Bioreactors Containing Viscous Newtonian Fluids

Authors: Caroline E. Mendes, Alberto C. Badino

Abstract:

Pneumatic reactors have been widely employed in various sectors of the chemical industry, especially where are required high heat and mass transfer rates. This study aimed to obtain correlations that allow the prediction of gas hold-up (Ԑ) and volumetric oxygen transfer coefficient (kLa), and compare these values, for three models of pneumatic reactors on two scales utilizing Newtonian fluids. Values of kLa ​​were obtained using the dynamic pressure-step method, while e was used for a new proposed measure. Comparing the three models of reactors studied, it was observed that the mass transfer was superior to draft-tube airlift, reaching e of 0.173 and kLa of 0.00904s-1. All correlations showed good fit to the experimental data (R2≥94%), and comparisons with correlations from the literature demonstrate the need for further similar studies due to shortage of data available, mainly for airlift reactors and high viscosity fluids.

Keywords: Bubble column, internal loop airlift, gas hold-up, kLa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
548 Mixed Convection in a Vertical Heated Channel: Influence of the Aspect Ratio

Authors: Ameni Mokni , Hatem Mhiri , Georges Le Palec , Philippe Bournot

Abstract:

In mechanical and environmental engineering, mixed convection is a frequently encountered thermal fluid phenomenon which exists in atmospheric environment, urban canopy flows, ocean currents, gas turbines, heat exchangers, and computer chip cooling systems etc... . This paper deals with a numerical investigation of mixed convection in a vertical heated channel. This flow results from the mixing of the up-going fluid along walls of the channel with the one issued from a flat nozzle located in its entry section. The fluiddynamic and heat-transfer characteristics of vented vertical channels are investigated for constant heat-flux boundary conditions, a Rayleigh number equal to 2.57 1010, for two jet Reynolds number Re=3 103 and 2104 and the aspect ratio in the 8-20 range. The system of governing equations is solved with a finite volumes method and an implicit scheme. The obtained results show that the turbulence and the jet-wall interaction activate the heat transfer, as does the drive of ambient air by the jet. For low Reynolds number Re=3 103, the increase of the aspect Ratio enhances the heat transfer of about 3%, however; for Re=2 104, the heat transfer enhancement is of about 12%. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and average Nusselt number, in terms of Rayleigh, Reynolds numbers and dimensionless geometric parameters are presented.

Keywords: Aspect Ratio, Channel, Jet, Mixed convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161