Search results for: pelvic floor muscle training
791 Development of New Control Techniques for Vibration Isolation of Structures using Smart Materials
Authors: Shubha P Bhat, Krishnamurthy, T.C.Manjunath, C. Ardil
Abstract:
In this paper, the effects of the restoring force device on the response of a space frame structure resting on sliding type of bearing with a restoring force device is studied. The NS component of the El - Centro earthquake and harmonic ground acceleration is considered for earthquake excitation. The structure is modeled by considering six-degrees of freedom (three translations and three rotations) at each node. The sliding support is modeled as a fictitious spring with two horizontal degrees of freedom. The response quantities considered for the study are the top floor acceleration, base shear, bending moment and base displacement. It is concluded from the study that the displacement of the structure reduces by the use of the restoring force device. Also, the peak values of acceleration, bending moment and base shear also decreases. The simulation results show the effectiveness of the developed and proposed method.Keywords: DOF, Space structures, Acceleration, Excitation, Smart structure, Vibration, Isolation, Earthquakes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838790 Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System
Authors: O. Belalia Douma, B. Boukhatem, M. Ghrici
Abstract:
Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Fuzzy Inference System (FIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, superplasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.
Keywords: Self-compacting concrete, fly ash, strength prediction, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849789 Analysis of the Coupled Stretching Bending Problem of Stiffened Plates by a BEM Formulation Based on Reissner's Hypothesis
Authors: Gabriela R. Fernandes, Danilo H. Konda, Luiz C. F. Sanches
Abstract:
In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner?s hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.
Keywords: Boundary elements, Building floor structures, Platebending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980788 Lack of BIM Training: Investigating Practical Solutions for the State of Kuwait
Authors: Noor M. Abdulfattah, Ahmed M. Khalafallah, Nabil A. Kartam
Abstract:
Despite the evident benefits of building information modeling (BIM) to the construction industry, it faces significant implementation challenges in the State of Kuwait. This study investigates the awareness of construction stakeholders of BIM implementation challenges, and identifies various solutions to overcome these challenges. Specifically, the main objectives of this study are to: (1) characterize the barriers that deter utilization of BIM, (2) examine the awareness of engineers, architects, and construction stakeholders of these barriers, and (3) identify practical solutions to facilitate BIM utilization. A questionnaire survey was designed to collect data on the aforementioned objectives from local companies and senior BIM experts. It was found that engineers are highly aware of BIM implementation barriers. In addition, it was concluded from the questionnaire that the biggest barrier is the lack of BIM training. Based on expert feedback, the study concluded with a number of recommendations on how to overcome the barriers of BIM utilization. This should prove useful to the construction industry stakeholders and can lead to significant changes to design and construction practices.
Keywords: Building information modeling, construction, challenges, information technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472787 Text Mining Technique for Data Mining Application
Authors: M. Govindarajan
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In decision tree approach is most useful in classification problem. With this technique, tree is constructed to model the classification process. There are two basic steps in the technique: building the tree and applying the tree to the database. This paper describes a proposed C5.0 classifier that performs rulesets, cross validation and boosting for original C5.0 in order to reduce the optimization of error ratio. The feasibility and the benefits of the proposed approach are demonstrated by means of medial data set like hypothyroid. It is shown that, the performance of a classifier on the training cases from which it was constructed gives a poor estimate by sampling or using a separate test file, either way, the classifier is evaluated on cases that were not used to build and evaluate the classifier are both are large. If the cases in hypothyroid.data and hypothyroid.test were to be shuffled and divided into a new 2772 case training set and a 1000 case test set, C5.0 might construct a different classifier with a lower or higher error rate on the test cases. An important feature of see5 is its ability to classifiers called rulesets. The ruleset has an error rate 0.5 % on the test cases. The standard errors of the means provide an estimate of the variability of results. One way to get a more reliable estimate of predictive is by f-fold –cross- validation. The error rate of a classifier produced from all the cases is estimated as the ratio of the total number of errors on the hold-out cases to the total number of cases. The Boost option with x trials instructs See5 to construct up to x classifiers in this manner. Trials over numerous datasets, large and small, show that on average 10-classifier boosting reduces the error rate for test cases by about 25%.Keywords: C5.0, Error Ratio, text mining, training data, test data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487786 Codebook Generation for Vector Quantization on Orthogonal Polynomials based Transform Coding
Authors: R. Krishnamoorthi, N. Kannan
Abstract:
In this paper, a new algorithm for generating codebook is proposed for vector quantization (VQ) in image coding. The significant features of the training image vectors are extracted by using the proposed Orthogonal Polynomials based transformation. We propose to generate the codebook by partitioning these feature vectors into a binary tree. Each feature vector at a non-terminal node of the binary tree is directed to one of the two descendants by comparing a single feature associated with that node to a threshold. The binary tree codebook is used for encoding and decoding the feature vectors. In the decoding process the feature vectors are subjected to inverse transformation with the help of basis functions of the proposed Orthogonal Polynomials based transformation to get back the approximated input image training vectors. The results of the proposed coding are compared with the VQ using Discrete Cosine Transform (DCT) and Pairwise Nearest Neighbor (PNN) algorithm. The new algorithm results in a considerable reduction in computation time and provides better reconstructed picture quality.
Keywords: Orthogonal Polynomials, Image Coding, Vector Quantization, TSVQ, Binary Tree Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148785 Speech Recognition Using Scaly Neural Networks
Authors: Akram M. Othman, May H. Riadh
Abstract:
This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.Keywords: Feature extraction, Liner prediction coefficients, neural network, Speech Recognition, Scaly ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736784 Soft-Sensor for Estimation of Gasoline Octane Number in Platforming Processes with Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
Authors: Hamed.Vezvaei, Sepideh.Ordibeheshti, Mehdi.Ardjmand
Abstract:
Gasoline Octane Number is the standard measure of the anti-knock properties of a motor in platforming processes, that is one of the important unit operations for oil refineries and can be determined with online measurement or use CFR (Cooperative Fuel Research) engines. Online measurements of the Octane number can be done using direct octane number analyzers, that it is too expensive, so we have to find feasible analyzer, like ANFIS estimators. ANFIS is the systems that neural network incorporated in fuzzy systems, using data automatically by learning algorithms of NNs. ANFIS constructs an input-output mapping based both on human knowledge and on generated input-output data pairs. In this research, 31 industrial data sets are used (21 data for training and the rest of the data used for generalization). Results show that, according to this simulation, hybrid method training algorithm in ANFIS has good agreements between industrial data and simulated results.Keywords: Adaptive Neuro-Fuzzy Inference Systems, GasolineOctane Number, Soft-sensor, Catalytic Naphtha Reforming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192783 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components
Authors: M. Yoneda
Abstract:
The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2fw, 3fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.
Keywords: Simplified method, Human walking vertical force, Higher component, Pedestrian bridge vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813782 Electromyography Activity of the Rectus Femoris and Biceps Femoris Muscles during Prostration and Squat Exercise
Authors: Mohd Safee M. K., Wan Abas W. A. B, Ibrahim F., Abu Osman N. A., Abdul Malik N. A.
Abstract:
This paper investigates the activity of the rectus femoris (RF) and biceps femoris (BF) in healthy subjects during salat (prostration) and specific exercise (squat exercise) using electromyography (EMG). A group of undergraduates aged between 19 to 25 years voluntarily participated in this study. The myoelectric activity of the muscles were recorded and analyzed. The finding indicated that there were contractions of the muscles during the salat and exercise with almost same EMG’s level. From the result, Wilcoxon’s Rank Sum test showed significant difference between prostration and squat exercise (p<0.05) but the differences was very small; RF (8.63%MVC) and BF (11.43%MVC). Therefore, salat may be useful in strengthening exercise and also in rehabilitation programs for lower limb activities. This pilot study conducted initial research into the biomechanical responses of human muscles in various positions of salat.
Keywords: Electromyography, exercise, muscle, salat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153781 A New Face Detection Technique using 2D DCT and Self Organizing Feature Map
Authors: Abdallah S. Abdallah, A. Lynn Abbott, Mohamad Abou El-Nasr
Abstract:
This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the two-dimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised SOM training session is used to cluster feature vectors into groups, and to assign “face" or “non-face" labels to those clusters. Evaluation was performed using a new image database of 286 images, containing 1027 faces. After training, our detection technique achieved a detection rate of 77.94% during subsequent tests, with a false positive rate of 5.14%. To our knowledge, the proposed technique is the first to combine DCT-based feature extraction with a SOM for detecting human faces within color images. It is also one of a few attempts to combine a feature-invariant approach, such as color-based skin segmentation, together with appearance-based face detection. The main advantage of the new technique is its low computational requirements, in terms of both processing speed and memory utilization.Keywords: Face detection, skin color segmentation, self-organizingmap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542780 BEM Formulations Based on Kirchhoffs Hypoyhesis to Perform Linear Bending Analysis of Plates Reinforced by Beams
Authors: Gabriela R. Fernandes, Renato F. Denadai, Guido J. Denipotti
Abstract:
In this work, are discussed two formulations of the boundary element method - BEM to perform linear bending analysis of plates reinforced by beams. Both formulations are based on the Kirchhoff's hypothesis and they are obtained from the reciprocity theorem applied to zoned plates, where each sub-region defines a beam or a slab. In the first model the problem values are defined along the interfaces and the external boundary. Then, in order to reduce the number of degrees of freedom kinematics hypothesis are assumed along the beam cross section, leading to a second formulation where the collocation points are defined along the beam skeleton, instead of being placed on interfaces. On these formulations no approximation of the generalized forces along the interface is required. Moreover, compatibility and equilibrium conditions along the interface are automatically imposed by the integral equation. Thus, these formulations require less approximation and the total number of the degree s of freedom is reduced. In the numerical examples are discussed the differences between these two BEM formulations, comparing as well the results to a well-known finite element code.
Keywords: Boundary elements, Building floor structures, Platebending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663779 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces
Authors: K. Akilandeswari, G. M. Nasira
Abstract:
Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183778 Modeling and Simulation of In-vessel Core Handling in PFBR Operator Training Simulator
Authors: Bindu Sankar, Jaideep Chakraborty, Rashmi Nawlakha, A. Venkatesan, S. Raghupathy, T. Jayanthi, S.A.V. Satya Murty
Abstract:
Component handling system is one of the important sub systems of Prototype Fast Breeder Reactor (PFBR) used for fuel handling. Core handling system is again a sub system of component handling system. Core handling system consists of in-vessel and ex-vessel subassembly handling. In-vessel core handling involves transfer arm, large rotatable plug and small rotatable plug operations. Modeling and simulation of in-vessel core handling is a part of development of Prototype Fast Breeder Reactor Operator Training Simulator. This paper deals with simulation and modeling of operations of transfer arm, large rotatable plug and small rotatable plug needed for in-vessel core handling. Process modeling was developed in house using platform independent Cµ code with OpenGL (Open Graphics Library). The control logic models and virtual panel were modeled using simulation tool.
Keywords: Animation, Core Handling System, Prototype Fast Breeder Reactor, Simulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708777 Seismic Base Shear Force Depending on Building Fundamental Period and Site Conditions: Deterministic Formulation and Probabilistic Analysis
Authors: S. Dorbani, M. Badaoui, D. Benouar
Abstract:
The aim of this paper is to investigate the effect of the building fundamental period of reinforced concrete buildings of (6, 9, and 12-storey), with different floor plans: Symmetric, mono-symmetric, and unsymmetric. These structures are erected at different epicentral distances. Using the Boumerdes, Algeria (2003) earthquake data, we focused primarily on the establishment of the deterministic formulation linking the base shear force to two parameters: The first one is the fundamental period that represents the numerical fingerprint of the structure, and the second one is the epicentral distance used to represent the impact of the earthquake on this force. In a second step, with a view to highlight the effect of uncertainty in these parameters on the analyzed response, these parameters are modeled as random variables with a log-normal distribution. The variability of the coefficients of variation of the chosen uncertain parameters, on the statistics on the seismic base shear force, showed that the effect of uncertainty on fundamental period on this force statistics is low compared to the epicentral distance uncertainty influence.
Keywords: Base shear force, fundamental period, epicentral distance, uncertainty, lognormal variable, statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298776 A Robust Al-Hawalees Gaming Automation using Minimax and BPNN Decision
Authors: Ahmad Sharieh, R Bremananth
Abstract:
Artificial Intelligence based gaming is an interesting topic in the state-of-art technology. This paper presents an automation of a tradition Omani game, called Al-Hawalees. Its related issues are resolved and implemented using artificial intelligence approach. An AI approach called mini-max procedure is incorporated to make a diverse budges of the on-line gaming. If number of moves increase, time complexity will be increased in terms of propositionally. In order to tackle the time and space complexities, we have employed a back propagation neural network (BPNN) to train in off-line to make a decision for resources required to fulfill the automation of the game. We have utilized Leverberg- Marquardt training in order to get the rapid response during the gaming. A set of optimal moves is determined by the on-line back propagation training fashioned with alpha-beta pruning. The results and analyses reveal that the proposed scheme will be easily incorporated in the on-line scenario with one player against the system.
Keywords: Artificial neural network, back propagation gaming, Leverberg-Marquardt, minimax procedure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935775 Lowering Error Floors by Concatenation of Low-Density Parity-Check and Array Code
Authors: Cinna Soltanpur, Mohammad Ghamari, Behzad Momahed Heravi, Fatemeh Zare
Abstract:
Low-density parity-check (LDPC) codes have been shown to deliver capacity approaching performance; however, problematic graphical structures (e.g. trapping sets) in the Tanner graph of some LDPC codes can cause high error floors in bit-error-ratio (BER) performance under conventional sum-product algorithm (SPA). This paper presents a serial concatenation scheme to avoid the trapping sets and to lower the error floors of LDPC code. The outer code in the proposed concatenation is the LDPC, and the inner code is a high rate array code. This approach applies an interactive hybrid process between the BCJR decoding for the array code and the SPA for the LDPC code together with bit-pinning and bit-flipping techniques. Margulis code of size (2640, 1320) has been used for the simulation and it has been shown that the proposed concatenation and decoding scheme can considerably improve the error floor performance with minimal rate loss.Keywords: Concatenated coding, low–density parity–check codes, array code, error floors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992774 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator
Authors: Thiang, Handry Khoswanto, Rendy Pangaldus
Abstract:
Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.
Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287773 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation
Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana
Abstract:
This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.Keywords: Brain Computer Interface (BCI), gait trainer, Spinal Cord Injury (SCI), neurorehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273772 Optimal Power Allocation for the Proposed Asymmetric Turbo Code for 3G Systems
Authors: K. Ramasamy, B. Balamuralithara, Mohammad Umar Siddiqi
Abstract:
We proposed a new class of asymmetric turbo encoder for 3G systems that performs well in both “water fall" and “error floor" regions in [7]. In this paper, a modified (optimal) power allocation scheme for the different bits of new class of asymmetric turbo encoder has been investigated to enhance the performance. The simulation results and performance bound for proposed asymmetric turbo code with modified Unequal Power Allocation (UPA) scheme for the frame length, N=400, code rate, r=1/3 with Log-MAP decoder over Additive White Gaussian Noise (AWGN) channel are obtained and compared with the system with typical UPA and without UPA. The performance tests are extended over AWGN channel for different frame size to verify the possibility of implementation of the modified UPA scheme for the proposed asymmetric turbo code. From the performance results, it is observed that the proposed asymmetric turbo code with modified UPA performs better than the system without UPA and with typical UPA and it provides a coding gain of 0.4 to 0.52dB.
Keywords: Asymmetric turbo code, Generator polynomial, Interleaver, UPA, WCDMA, cdma2000.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887771 Identification Common Microbes Observed on Polyester Tufting
Authors: A. Ashjaran, M.E. Yazdanshenas, R. Ghazi Saeidi, S. Moghadamifar
Abstract:
Tufting carpet is a very suitable substrate for growing microorganism such as pathogenic microbes, due to the direct touch with human body, long washing periods and laying on the floor; in fact there are 3 major problems: To risk human health, Prepare bad odors and Destruction of the products.. In the presented research, for investigation of presence most common microbes on polyester tufting, first goods laid in a public place (in the corridor fair) for 30 days and the existence of some microbes were investigate on it with two methods of enrichment in nutrient environments such as thioglycolate and noutrunt brath, and shake the dust off the polyester tufting onto cultivation mediums such as blood agar and noutrunt agar. After the microorganism colonics are grown, the colonies were separated and six microbial tests such as cataloes and sitrat were carried out in five phases on the colonics for identifying the varieties of bacteria. As a result of tests, 5 type of bacteria, such as Escherichia coli, staphylococcus saprophytic as were identified. Each of the mentioned bacteria can be seriously harmful for the heath of human.Keywords: Microorganisms, Polyester tufting, Escherichia coli, Staphylococcus saprophytic, Blood agar, Thioglycolate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662770 Waste Generation in Iranian Building Industry: Addressing a Theory
Authors: Golnaz Moghimi, Alireza Afsharghotli, Alireza Rezaei
Abstract:
Construction waste has been gradually increased as a result of upsizing construction projects which are occurred within the lifecycle of buildings. Since waste management is a major priority and has profound impacts on the volume of waste generated in construction stage, the majority of efforts have been attempted to reuse, recycle and reduce waste. However, there is still room to study on lack of sufficient knowledge about waste management in construction industry. This paper intends to provide an insight into the effect of project management knowledge areas on waste management solely on construction stage. To this end, a survey among Iranian building construction industry contractors was conducted to identify the effectiveness of project management knowledge areas on three jobsite key factors including ‘Site activity’, ‘Training’, and ‘Awareness’. As a result, four management disciplines were identified as most influential ones on amount of construction waste. These disciplines were Project Cost Management, Quality Management, Human Resource Management, and Integration Management. Based on the research findings, a new model was presented to develop effective construction waste strategies.Keywords: Awareness, PMBOK, site activity, training, waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233769 An Approach for Reducing the Computational Complexity of LAMSTAR Intrusion Detection System using Principal Component Analysis
Authors: V. Venkatachalam, S. Selvan
Abstract:
The security of computer networks plays a strategic role in modern computer systems. Intrusion Detection Systems (IDS) act as the 'second line of defense' placed inside a protected network, looking for known or potential threats in network traffic and/or audit data recorded by hosts. We developed an Intrusion Detection System using LAMSTAR neural network to learn patterns of normal and intrusive activities, to classify observed system activities and compared the performance of LAMSTAR IDS with other classification techniques using 5 classes of KDDCup99 data. LAMSAR IDS gives better performance at the cost of high Computational complexity, Training time and Testing time, when compared to other classification techniques (Binary Tree classifier, RBF classifier, Gaussian Mixture classifier). we further reduced the Computational Complexity of LAMSTAR IDS by reducing the dimension of the data using principal component analysis which in turn reduces the training and testing time with almost the same performance.Keywords: Binary Tree Classifier, Gaussian Mixture, IntrusionDetection System, LAMSTAR, Radial Basis Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746768 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: Distillation, machine learning, neural networks, quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729767 Perception of Hygiene Knowledge among Staff Working in Top Five Famous Restaurants of Male’
Authors: Zulaikha Reesha Rashaad
Abstract:
One of the major factors which can contribute greatly to success of catering businesses is to employ food and beverage staff having sound hygiene knowledge. Individuals having sound knowledge of hygiene has a higher chance of following safe food practices in food production. One of the leading causes of food poisoning and food borne illnesses has been identified as lack of hygiene knowledge among food and beverage staff working in catering establishments and restaurants. This research aims to analyze the hygiene knowledge among food and beverage staff working in top five restaurants of Male’, in relation to their age, educational background, occupation and training. The research uses quantitative and descriptive methods in data collection and in data analysis. Data was obtained through random sampling technique with self-administered survey questionnaires which was completed by 60 respondents working in 5 different restaurants operating at top level in Male’. The respondents of the research were service staff and chefs working in these restaurants. The responses to the questionnaires have been analyzed by using SPSS. The results of the research indicated that age, education level, occupation and training correlated with hygiene knowledge perception scores.Keywords: Food and beverage staff, food poisoning, food production, hygiene knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1090766 Connected Vertex Cover in 2-Connected Planar Graph with Maximum Degree 4 is NP-complete
Authors: Priyadarsini P. L. K, Hemalatha T.
Abstract:
This paper proves that the problem of finding connected vertex cover in a 2-connected planar graph ( CVC-2 ) with maximum degree 4 is NP-complete. The motivation for proving this result is to give a shorter and simpler proof of NP-Completeness of TRA-MLC (the Top Right Access point Minimum-Length Corridor) problem [1], by finding the reduction from CVC-2. TRA-MLC has many applications in laying optical fibre cables for data communication and electrical wiring in floor plans.The problem of finding connected vertex cover in any planar graph ( CVC ) with maximum degree 4 is NP-complete [2]. We first show that CVC-2 belongs to NP and then we find a polynomial reduction from CVC to CVC-2. Let a graph G0 and an integer K form an instance of CVC, where G0 is a planar graph and K is an upper bound on the size of the connected vertex cover in G0. We construct a 2-connected planar graph, say G, by identifying the blocks and cut vertices of G0, and then finding the planar representation of all the blocks of G0, leading to a plane graph G1. We replace the cut vertices with cycles in such a way that the resultant graph G is a 2-connected planar graph with maximum degree 4. We consider L = K -2t+3 t i=1 di where t is the number of cut vertices in G1 and di is the number of blocks for which ith cut vertex is common. We prove that G will have a connected vertex cover with size less than or equal to L if and only if G0 has a connected vertex cover of size less than or equal to K.Keywords: NP-complete, 2-Connected planar graph, block, cut vertex
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002765 Performance, Carcass Yield, Hematological Parameters, and Feather Pecking Damage of Thai Indigenous Chickens Raised Indoors or with Outdoor Access
Authors: W. Molee, P. Puttaraksa, S. Pitakwong, S. Khempaka
Abstract:
An experiment was conducted to determine the effect of the rearing system on growth performance, carcass yield, hematological parameters, and feather pecking damage of Thai indigenous chickens. Three hundred and sixty 1-d-old chicks were randomly assigned to 2 treatments: indoor treatment and outdoor access treatment. In the indoor treatment, the chickens were housed in floor pens (5 birds/m2). In the outdoor access treatment, the chickens were housed in a similar indoor house; in addition, they also had an outdoor grass paddock (1 bird/m2). All birds were provided with same diet and were raised for 16 wk of age. The results showed that growth performance and carcass yield were not different among treatment (P>0.05). Outdoor access had no effect on hematological parameters (P>0.05). However, the feather pecking damage of the chickens in the outdoor access treatment was lower than that of the chickens in the indoor treatment (P<0.05).Keywords: Hematology, performance, rearing system, Thai indigenous chickens
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845764 Determination of Penicillins Residues in Livestock and Marine Products by LC/MS/MS
Authors: Ji Young Song, Soo Jung Hu, Hyunjin Joo, Joung Boon Hwang, Mi Ok Kim, Shin Jung Kang, Dae Hyun Cho
Abstract:
Multi-residue analysis method for penicillins was developed and validated in bovine muscle, chicken, milk, and flatfish. Detection was based on liquid chromatography tandem mass spectrometry (LC/MS/MS). The developed method was validated for specificity, precision, recovery, and linearity. The analytes were extracted with 80% acetonitrile and clean-up by a single reversed-phase solid-phase extraction step. Six penicillins presented recoveries higher than 76% with the exception of Amoxicillin (59.7%). Relative standard deviations (RSDs) were not more than 10%. LOQs values ranged from 0.1 and to 4.5 ug/kg. The method was applied to 128 real samples. Benzylpenicillin was detected in 15 samples and Cloxacillin was detected in 7 samples. Oxacillin was detected in 2 samples. But the detected levels were under the MRL levels for penicillins in samples.Keywords: Penicillins, livestock product, Multi-residue analysis, LC/MS/MS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3417763 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: Artificial neural network, back-propagation, tide data, training algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710762 An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks
Authors: N. M. Nawi, M. R. Ransing, R. S. Ransing
Abstract:
The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.Keywords: Back-propagation, activation function, conjugategradient, search direction, gain variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837