WASET
	%0 Journal Article
	%A A. Basu and  A. A. Purohit and  M. M. Vaidya and  M. D. Kudale
	%D 2016
	%J International Journal of Geological and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 109, 2016
	%T Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
	%U https://publications.waset.org/pdf/10003410
	%V 109
	%X Mumbai, being traditionally the epicenter of India's
trade and commerce, the existing major ports such as Mumbai and
Jawaharlal Nehru Ports (JN) situated in Thane estuary are also
developing its waterfront facilities. Various developments over the
passage of decades in this region have changed the tidal flux
entering/leaving the estuary. The intake at Pir-Pau is facing the
problem of shortage of water in view of advancement of shoreline,
while jetty near Ulwe faces the problem of ship scheduling due to
existence of shallower depths between JN Port and Ulwe Bunder. In
order to solve these problems, it is inevitable to have information
about tide levels over a long duration by field measurements.
However, field measurement is a tedious and costly affair;
application of artificial intelligence was used to predict water levels
by training the network for the measured tide data for one lunar tidal
cycle. The application of two layered feed forward Artificial Neural
Network (ANN) with back-propagation training algorithms such as
Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to
predict the yearly tide levels at waterfront structures namely at Ulwe
Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe,
and Vashi for a period of lunar tidal cycle (2013) was used to train,
validate and test the neural networks. These trained networks having
high co-relation coefficients (R= 0.998) were used to predict the tide
at Ulwe, and Vashi for its verification with the measured tide for the
year 2000 & 2013. The results indicate that the predicted tide levels
by ANN give reasonably accurate estimation of tide. Hence, the
trained network is used to predict the yearly tide data (2015) for
Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was
predicted by using the neural network which was trained with the
help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The
measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is
maximum amplification of tide by about 10-20 cm with a phase lag
of 10-20 minutes with reference to the tide at Apollo Bunder
(Mumbai). LM training algorithm is faster than GD and with increase
in number of neurons in hidden layer and the performance of the
network increases. The predicted tide levels by ANN at Pir-Pau and
Ulwe provides valuable information about the occurrence of high and
low water levels to plan the operation of pumping at Pir-Pau and
improve ship schedule at Ulwe.
	%P 52 - 65