Search results for: mechanical systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5422

Search results for: mechanical systems

4972 Microstructure and Mechanical Properties of Mg-Zn Alloys

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.

Keywords: Mg-Zn alloy, Heat treatment, Microstructure, Mechanical properties, Hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
4971 A Bayesian Network Reliability Modeling for FlexRay Systems

Authors: Kuen-Long Leu, Yung-Yuan Chen, Chin-Long Wey, Jwu-E Chen, Chung-Hsien Hsu

Abstract:

The increasing importance of FlexRay systems in automotive domain inspires unceasingly relative researches. One primary issue among researches is to verify the reliability of FlexRay systems either from protocol aspect or from system design aspect. However, research rarely discusses the effect of network topology on the system reliability. In this paper, we will illustrate how to model the reliability of FlexRay systems with various network topologies by a well-known probabilistic reasoning technology, Bayesian Network. In this illustration, we especially investigate the effectiveness of error containment built in star topology and fault-tolerant midpoint synchronization algorithm adopted in FlexRay communication protocol. Through a FlexRay steer-by-wire case study, the influence of different topologies on the failure probability of the FlexRay steerby- wire system is demonstrated. The notable value of this research is to show that the Bayesian Network inference is a powerful and feasible method for the reliability assessment of FlexRay systems.

Keywords: Bayesian Network, FlexRay, fault tolerance, network topology, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
4970 Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review

Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Azriszul Mohd Amin, Ahmad Mujahid Ahmad Zaidi, Saparudin Ariffin

Abstract:

Environmental awareness and depletion of the petroleum resources are among vital factors that motivate a number of researchers to explore the potential of reusing natural fiber as an alternative composite material in industries such as packaging, automotive and building constructions. Natural fibers are available in abundance, low cost, lightweight polymer composite and most importance its biodegradability features, which often called “ecofriendly" materials. However, their applications are still limited due to several factors like moisture absorption, poor wettability and large scattering in mechanical properties. Among the main challenges on natural fibers reinforced matrices composite is their inclination to entangle and form fibers agglomerates during processing due to fiber-fiber interaction. This tends to prevent better dispersion of the fibers into the matrix, resulting in poor interfacial adhesion between the hydrophobic matrix and the hydrophilic reinforced natural fiber. Therefore, to overcome this challenge, fiber treatment process is one common alternative that can be use to modify the fiber surface topology by chemically, physically or mechanically technique. Nevertheless, this paper attempt to focus on the effect of mercerization treatment on mechanical properties enhancement of natural fiber reinforced composite or so-called bio composite. It specifically discussed on mercerization parameters, and natural fiber reinforced composite mechanical properties enhancement.

Keywords: Mercerization treatment, mechanical properties, natural fiber and bio composite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4708
4969 Modeling Method and Application in Digital Mockup System towards Mechanical Product

Authors: Huaiyu Zhang

Abstract:

The method of modeling is the key technology for digital mockup (DMU). Based upon the developing for mechanical product DMU, the theory, method and approach for virtual environment (VE) and virtual object (VO) were studied. This paper has expounded the design goal and architecture of DMU system, analyzed the method of DMU application, and researched the general process of physics modeling and behavior modeling.

Keywords: DMU, VR, virtual environment, virtual object, physics modeling, behavior modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678
4968 Techniques for Reliability Evaluation in Distribution System Planning

Authors: T. Lantharthong, N. Phanthuna

Abstract:

This paper presents reliability evaluation techniques which are applied in distribution system planning studies and operation. Reliability of distribution systems is an important issue in power engineering for both utilities and customers. Reliability is a key issue in the design and operation of electric power distribution systems and load. Reliability evaluation of distribution systems has been the subject of many recent papers and the modeling and evaluation techniques have improved considerably.

Keywords: Reliability Evaluation, Optimization Technique, Reliability Indices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4528
4967 Experimental Studies on the Mechanical Property of Laminated Bamboo in Thailand

Authors: S. Talabgaew, V. Laemlaksakul

Abstract:

A new generation product made from bamboo strips, known as laminated bamboo, has gained importance. The objective of this research was to experiment the effect of three factors on the mechanical property of laminated bamboo. The interested factors for experimental design were (A) four bamboo species, namely Bambusa blumeana Schultes (Pai See Suk), Dendrocalamus asper Backer (Pai Tong), Dendrocalamus hamiltonii Nees (Pai Hok) and Dendrocalamus sericeus Munro (Pai Sang Mon), (B) two types of glue adhesive, polyvinyl acetate emulsion (PVAC) fortified with urea-formaldehyde (UF) and urea-formaldehyde (UF) to make parallel-oriented bamboo strips laminates and (C) glue weight per strip area, 150 g/m2 and 190 g/m2. Experimental results showed that Dendrocalamus asper Backer (Pai Tong) and Dendrocalamus sericeus Munro (Pai Sang Mon) were best used for manufacturing due to their highest MOR and MOE. The amount of glue weight 150 g/m2 yielded higher MOR and MOE than the amount of glue weight 190 g/m2. At the conclusion, the laminated bamboo manufacturers can benefit from this research in order to select right materials according to strength, cost and accessibility.

Keywords: Laminated Bamboo, Mechanical Property, 3-WayANOVA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
4966 A Thermal-Shock Fatigue Design of Automotive Heat Exchangers

Authors: A. Chidley, F. Roger, A. Traidia

Abstract:

A method is presented for using thermo-mechanical fatigue analysis as a tool in the design of automotive heat exchangers. Use of infra-red thermography to measure the real thermal history in the heat exchanger reduces the time necessary for calculating design parameters and improves prediction accuracy. Thermal shocks are the primary cause of heat exchanger damage. Thermo-mechanical simulation is based on the mean behavior of the aluminum tubes used in the heat exchanger. An energetic fatigue criterion is used to detect critical zones.

Keywords: Heat exchanger, Fatigue, Thermal shocks. I.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
4965 Regional Stability Analysis of Rotor-Ball Bearing and Rotor- Roller Bearing Systems Considering Switching Phenomena

Authors: Jafar Abbaszadeh Chekan, Kaveh Merat, Hassan Zohoor

Abstract:

In this study the regional stability of a rotor system which is supported on rolling bearings with radial clearance is studied. The rotor is assumed to be rigid. Due to radial clearance of bearings and dynamic configuration of system, each rolling elements of bearings has the possibility to be in contact with both of the races (under compression) or lose its contact. As a result, this change in dynamic of the system makes it to be known as switching system which is a type of Hybrid systems. In this investigation by adopting Multiple Lyapunov Function theorem and using Hamiltonian function as a candidate Lyapunov function, the stability of the system is studied. The purpose of this study is to inspect the regional stability of rotor-roller bearing and rotor-ball bearing systems.

Keywords: Stability analysis, Rotor-rolling bearing systems, Switching systems, Multiple Lyapunov Function Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
4964 Simulation Study on Comparison of Thermal Comfort during Heating with All-Air System and Radiant Floor System

Authors: Shiyun Liu

Abstract:

Radiant heating systems work fundamentally differently from air systems by taking advantage of both radiant and convective heat transfer to remove space heating load. There are rare studies on differences of heating systems between all-air system and radiant floor system. This paper uses the method of simulation based on state-space to calculate the indoor temperature and wall temperature of each system and shows how the dynamic heat transfer in rooms conditioned by a radiant system is different from an air system. Then this paper analyses the changes of indoor temperature of these two systems, finding out the differences between all-air heating system and radiant floor heating system to help the designer choose a more suitable heating system.

Keywords: Radiant floor, all-air system, thermal comfort, simulation, heating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735
4963 A Simulation Study of E-Glass Reinforced Polyurethane Footbed and Investigation of Parameters Effecting Elastic Behaviour of Footbed Material

Authors: Berkay Ergene, Çağın Bolat

Abstract:

In this study, we mainly focused on a simulation study regarding composite footbed in order to contribute to shoe industry. As a footbed, e-glass fiber reinforced polyurethane was determined since polyurethane based materials are already used for footbed in shoe manufacturing frequently. Flat, elliptical and rectangular grooved shoe soles were modeled and analyzed separately as TPU, 10% glass fiber reinforced, 30% glass fiber reinforced and 50% glass fiber reinforced materials according to their properties under three point bending and compression situations to determine the relationship between model, material type and mechanical behaviours of composite model. ANSYS 14.0 APDL mechanical structural module is utilized in all simulations and analyzed stress and strain distributions for different footbed models and materials. Furthermore, materials constants like young modulus, shear modulus, Poisson ratio and density of the composites were calculated theoretically by using composite mixture rule and interpreted for mechanical aspects.

Keywords: Composite, elastic behaviour, footbed, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723
4962 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics

Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen

Abstract:

This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: State estimation, control systems, observer systems, unscented Kalman filter, nonlinear vehicle dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 568
4961 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium

Authors: Nidhal Jamia, Sami El-Borgi

Abstract:

In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.

Keywords: Functionally graded piezoelectric material, mixed-mode crack, non-local theory, Schmidt method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
4960 A New Approach to ECG Biometric Systems: A Comparitive Study between LPC and WPD Systems

Authors: Justin Leo Cheang Loong, Khazaimatol S Subari, Rosli Besar, Muhammad Kamil Abdullah

Abstract:

In this paper, a novel method for a biometric system based on the ECG signal is proposed, using spectral coefficients computed through linear predictive coding (LPC). ECG biometric systems have traditionally incorporated characteristics of fiducial points of the ECG signal as the feature set. These systems have been shown to contain loopholes and thus a non-fiducial system allows for tighter security. In the proposed system, incorporating non-fiducial features from the LPC spectrum produced a segment and subject recognition rate of 99.52% and 100% respectively. The recognition rates outperformed the biometric system that is based on the wavelet packet decomposition (WPD) algorithm in terms of recognition rates and computation time. This allows for LPC to be used in a practical ECG biometric system that requires fast, stringent and accurate recognition.

Keywords: biometric, ecg, linear predictive coding, wavelet packet decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2860
4959 Endothelial-Cell-Mediated Displacement of Extracellular Matrix during Angiogenesis

Authors: Yue Du, Sahan C. B. Herath, Qing-Guo Wang, Harry Asada, Peter C. Y. Chen

Abstract:

Mechanical interaction between endothelial cells (ECs) and the extracellular matrix (or collagen gel) is known to influence the sprouting response of endothelial cells during angiogenesis. This influence is believed to impact on the capability of endothelial cells to sense soluble chemical cues. Quantitative analysis of endothelial-cell-mediated displacement of the collagen gel provides a means to explore this mechanical interaction. Existing analysis in this context is generally limited to 2D settings. In this paper, we investigate the mechanical interaction between endothelial cells and the extracellular matrix in terms of the endothelial-cellmediated displacement of the collagen gel in both 2D and 3D. Digital image correlation and Digital volume correlation are applied on confocal reflectance image stacks to analyze cell-mediated displacement of the gel. The skeleton of the sprout is extracted from phase contrast images and superimposed on the displacement field to further investigate the link between the development of the sprout and the displacement of the gel.

Keywords: Angiogenesis, digital image correlation, digital volume correlation, interaction between ECs and ECM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
4958 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems

Authors: Nyeng P. Gyang

Abstract:

Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.

Keywords: Cloud computing systems, multicore systems, parallel delaunay triangulation, parallel surface modeling and generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
4957 Powerful Laser Diode Matrixes for Active Vision Systems

Authors: Dzmitry M. Kabanau, Vladimir V. Kabanov, Yahor V. Lebiadok, Denis V. Shabrov, Pavel V. Shpak, Gevork T. Mikaelyan, Alexandr P. Bunichev

Abstract:

This article is deal with the experimental investigations of the laser diode matrixes (LDM) based on the AlGaAs/GaAs heterostructures (lasing wavelength 790-880 nm) to find optimal LDM parameters for active vision systems. In particular, the dependence of LDM radiation pulse power on the pulse duration and LDA active layer heating as well as the LDM radiation divergence are discussed.

Keywords: Active vision systems, laser diode matrixes, thermal properties, radiation divergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
4956 Design Neural Network Controller for Mechatronic System

Authors: Ismail Algelli Sassi Ehtiwesh, Mohamed Ali Elhaj

Abstract:

The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the neural network control strategy that may be used for the control of the mechatronic system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy of neural network control using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with other kinds of control.

Keywords: Neural-Network controller, Mechatronic, electrohydraulic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
4955 Importance of Hardware Systems and Circuits in Secure Software Development Life Cycle

Authors: Mir Shahriar Emami

Abstract:

Although it is fully impossible to ensure that a software system is quite secure, developing an acceptable secure software system in a convenient platform is not unreachable. In this paper, we attempt to analyze software development life cycle (SDLC) models from the hardware systems and circuits point of view. To date, the SDLC models pay merely attention to the software security from the software perspectives. In this paper, we present new features for SDLC stages to emphasize the role of systems and circuits in developing secure software system through the software development stages, the point that has not been considered previously in the SDLC models.

Keywords: Systems and circuits security, software security, software process engineering, SDLC, SSDLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
4954 Flexible Manufacturing System

Authors: Peter Kostal, Karol Velisek

Abstract:

Flexible manufacturing system is a system that is able to respond to changed conditions. In general, this flexibility is divided into two key categories and several subcategories. The first category is the so called machine flexibility which enables to make various products by the given machinery. The second category is routing flexibility enabling to execute the same operation by various machines. Flexible manufacturing systems usually consist of three main parts: CNC machine tools, transport system and control system. A higher level of flexible manufacturing systems is represented by the so called intelligent manufacturing systems.

Keywords: drawing-free manufacturing, flexible manufacturing system, industrial robot, material flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4915
4953 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

Authors: Krishnaiah Arkanti, Ramulu Malothu

Abstract:

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Keywords: Equal Channel Angular Extrusion, Severe Plastic Deformation, Copper, Mechanical Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
4952 Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites

Authors: Marianna I. Triantou, Konstantina I. Stathi, Petroula A. Tarantili

Abstract:

In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.

Keywords: Acrylonitrile-butadiene-styrene terpolymer, blends, graphene, polypropylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3755
4951 Evaluation of Stent Performances using FEA considering a Realistic Balloon Expansion

Authors: Won-Pil Park, Seung-Kwan Cho, Jai-Young Ko, Anders Kristensson, S.T.S. Al-Hassani, Han-Sung Kim, Dohyung Lim

Abstract:

A number of previous studies were rarely considered the effects of transient non-uniform balloon expansion on evaluation of the properties and behaviors of stents during stent expansion, nor did they determine parameters to maximize the performances driven by mechanical characteristics. Therefore, in order to fully understand the mechanical characteristics and behaviors of stent, it is necessary to consider a realistic modeling of transient non-uniform balloon-stent expansion. The aim of the study is to propose design parameters capable of improving the ability of vascular stent through a comparative study of seven commercial stents using finite element analyses of a realistic transient non-uniform balloon-stent expansion process. In this study, seven representative commercialized stents were evaluated by finite element (FE) analysis in terms of the criteria based on the itemized list of Food and Drug Administration (FDA) and European Standards (prEN). The results indicate that using stents composed of opened unit cells connected by bend-shaped link structures and controlling the geometrical and morphological features of the unit cell strut or the link structure at the distal ends of stent may improve mechanical characteristics of stent. This study provides a better method at the realistic transient non-uniform balloon-stent expansion by investigating the characteristics, behaviors, and parameters capable of improving the ability of vascular stent.

Keywords: Finite Element Analysis, Mechanical Characteristic, Transient Non-uniform Balloon-Stent Expansion, Vascular Stent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
4950 Temperature Evolution, Microstructure and Mechanical Properties of Heat-Treatable Aluminum Alloy Welded by Friction Stir Welding: Comparison with Tungsten Inert Gas

Authors: Saliha Gachi, Mouloud Aissani, Fouad Boubenider

Abstract:

Friction Stir Welding (FSW) is a solid-state welding technique that can join material without melting the plates to be welded. In this work, we are interested to demonstrate the potentiality of FSW for joining the heat-treatable aluminum alloy 2024-T3 which is reputed as difficult to be welded by fusion techniques. Thereafter, the FSW joint is compared with another one obtained from a conventional fusion process Tungsten Inert Gas (TIG). FSW welds are made up using an FSW tool mounted on a milling machine. Single pass welding was applied to fabricated TIG joint. The comparison between the two processes has been made on the temperature evolution, mechanical and microstructure behavior. The microstructural examination revealed that FSW weld is composed of four zones: Base metal (BM), Heat affected zone (HAZ), Thermo-mechanical affected zone (THAZ) and the nugget zone (NZ). The NZ exhibits a recrystallized equiaxed refined grains that induce better mechanical properties and good ductility compared to TIG joint where the grains have a larger size in the welded region compared with the BM due to the elevated heat input. The microhardness results show that, in FSW weld, the THAZ contains the lowest microhardness values and increase in the NZ; however, in TIG process, the lowest values are localized on the NZ.

Keywords: Friction stir welding, tungsten inert gaz, aluminum, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
4949 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: Computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid, SDOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
4948 A Review on Impacts of Grid-Connected PV System on Distribution Networks

Authors: Davud Mostafa Tobnaghi

Abstract:

This paper aims to investigate and emphasize the importance of the grid-connected photovoltaic (PV) systems regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance. The development of Photovoltaic systems and expansion plans relating to the futuristic in worldwide is elaborated. The most important impacts of grid connected photovoltaic systems on distribution networks as well as the Penetration level of PV system was investigated.

Keywords: Grid-connected photovoltaic system, distribution network, penetration levels, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4786
4947 Performance Evaluation of the Post-Installed Anchor for Sign Structure

Authors: Wooyoung Jung, Minho Kwon, Jinsup Kim, Buseog Ju

Abstract:

Numerous experimental tests for post-installed anchor systems drilled in hardened concrete were conducted in order to estimate pull-out and shear strength accounting for uncertainties such as torque ratios, embedment depths and different diameters in demands. In this study, the strength of the systems was significantly changed by the effect of those three uncertainties during pull-out experimental tests, whereas the shear strength of the systems was not affected by torque ratios. It was also shown that concrete cone failure or damage mechanism was generally investigated during and after pull-out tests and in shear strength tests, mostly the anchor systems were failed prior to failure of primary structural system. Furthermore, 3D finite element model for the anchor systems was created by ABAQUS for the numerical analysis. The verification of finite element model was identical till the failure points to the load-displacement relationship specified by the experimental tests.

Keywords: Post-installed anchor, Pull-out test, Shear test, Torque , ABAQUS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
4946 A Method for Evaluating the Mechanical Stress on Mandibular Advancement Devices

Authors: Tsung-yin Lin, Yi-yu Lee, Ching-hua Hung

Abstract:

This study focuses on the stress analysis of Mandibular Advancement Devices (MADs), which are considered as a standard treatment of snoring that promoted by American Academy of Sleep Medicine (AASM). Snoring is the most significant feature of sleep-disordered breathing (SDB). SDB will lead to serious problems in human health. Oral appliances are ensured in therapeutic effect and compliance, especially the MADs. This paper proposes a new MAD design, and the finite element analysis (FEA) is introduced to precede the stress simulation for this MAD.

Keywords: Finite element analysis, mandibular advancement devices, mechanical stress, snoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
4945 A Comparative Study of Vapour Compression Heat Pump Systems under Air to Air and Air to Water Mode

Authors: Kemal Çomakli, Uğur Çakir

Abstract:

This research evaluated and compared the thermodynamic performance of heat pump systems which can be run under two different modes as air to air and air to water by using only one compressor. To achieve this comparison an experimental performance study was made on a traditional vapor compressed heat pump system that can be run air to air mode and air to water mode by help of a valve. The experiments made under different thermal conditions. Thermodynamic performance of the systems are presented and compared with each other for different working conditions.

Keywords: Air source heat pump, Energy Analysis, Heat Pump

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
4944 Response Quality Evaluation in Heterogeneous Question Answering System: A Black-box Approach

Authors: Goh Ong Sing, C. Ardil, Wilson Wong, Shahrin Sahib

Abstract:

The evaluation of the question answering system is a major research area that needs much attention. Before the rise of domain-oriented question answering systems based on natural language understanding and reasoning, evaluation is never a problem as information retrieval-based metrics are readily available for use. However, when question answering systems began to be more domains specific, evaluation becomes a real issue. This is especially true when understanding and reasoning is required to cater for a wider variety of questions and at the same time achieve higher quality responses The research in this paper discusses the inappropriateness of the existing measure for response quality evaluation and in a later part, the call for new standard measures and the related considerations are brought forward. As a short-term solution for evaluating response quality of heterogeneous systems, and to demonstrate the challenges in evaluating systems of different nature, this research presents a black-box approach using observation, classification scheme and a scoring mechanism to assess and rank three example systems (i.e. AnswerBus, START and NaLURI).

Keywords: Evaluation, question answering, response quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
4943 Force on a High Voltage Capacitor with Asymmetrical Electrodes

Authors: Jiří Primas, Michal Malík, Darina Jašíková, Václav Kopecký

Abstract:

When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This phenomenon is most likely to be caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. A method to measure this force has been devised and used. A formula describing the force has also been derived. After comparing the data gained through experiments with those acquired using the theoretical formula, a difference was found above a certain value of current. This paper also gives reasons for this difference.

Keywords: Capacitor with asymmetrical electrodes, Electricalfield, Mechanical force, Motion of ions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943