Search results for: High performance thin layer chromatography
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11101

Search results for: High performance thin layer chromatography

10651 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors

Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo

Abstract:

The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.

Keywords: Ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
10650 Optical Reflectance of Pure and Doped Tin Oxide: From Thin Films to Poly-Crystalline Silicon/Thin Film Device

Authors: Smaali Assia, Outemzabet Ratiba, Media El Mahdi, Kadi Mohamed

Abstract:

Films of pure tin oxide SnO2 and in presence of antimony atoms (SnO2-Sb) deposited onto glass substrates have shown a sufficiently high energy gap to be transparent in the visible region, a high electrical mobility and a carrier concentration which displays a good electrical conductivity [1]. In this work, the effects of polycrystalline silicon substrate on the optical properties of pure and Sb doped tin oxide is investigated. We used the APCVD (atmospheric pressure chemical vapour deposition) technique, which is a low-cost and simple technique, under nitrogen ambient, for growing this material. A series of SnO2 and SnO2-Sb have been deposited onto polycrystalline silicon substrates with different contents of antimony atoms at the same conditions of deposition (substrate temperature, flow oxygen, duration and nitrogen atmosphere of the reactor). The effect of the substrate in terms of morphology and nonlinear optical properties, mainly the reflectance, was studied. The reflectance intensity of the device, compared to the reflectance of tin oxide films deposited directly on glass substrate, is clearly reduced on the overall wavelength range. It is obvious that the roughness of the poly-c silicon plays an important role by improving the reflectance and hence the optical parameters. A clear shift in the minimum of the reflectance upon doping level is observed. This minimum corresponds to strong free carrier absorption, resulting in different plasma frequency. This effect is followed by an increase in the reflectance depending of the antimony doping. Applying the extended Drude theory to the combining optical and electrical obtained results these effects are discussed.

Keywords: Doping, oxide, reflectance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2891
10649 Unsteady Water Boundary Layer Flow with Non-Uniform Mass Transfer

Authors: G. Revathi, P. Saikrishnan

Abstract:

In the present analysis an unsteady laminar forced convection water boundary layer flow is considered. The fluid properties such as viscosity and Prandtl number are taken as variables such that those are inversely proportional to temperature. By using quasi-linearization technique the nonlinear coupled partial differential equations are linearized and the numerical solutions are obtained by using implicit finite difference scheme with the appropriate selection of step sizes. Non-similar solutions have been obtained from the starting point of the stream-wise coordinate to the point where skin friction value vanishes. The effect non-uniform mass transfer along the surface of the cylinder through slot is studied on the skin friction and heat transfer coefficients.

Keywords: Boundary layer, heat transfer, non-similar solution, non-uniform mass, unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
10648 Adsorption and Electrochemical Regeneration for Industrial Wastewater Treatment

Authors: H. M. Mohammad, A. Martin, N. Brown, N. Hodson, P. Hill, E. Roberts

Abstract:

Graphite intercalation compound (GIC) has been demonstrated to be a useful, low capacity and rapid adsorbent for the removal of organic micropollutants from water. The high electrical conductivity and low capacity of the material lends itself to electrochemical regeneration. Following electrochemical regeneration, equilibrium loading under similar conditions is reported to exceed that achieved by the fresh adsorbent. This behavior is reported in terms of the regeneration efficiency being greater than 100%. In this work, surface analysis techniques are employed to investigate the material in three states: ‘Fresh’, ‘Loaded’ and ‘Regenerated’. ‘Fresh’ GIC is shown to exhibit a hydrogen and oxygen rich surface layer approximately 150 nm thick. ‘Loaded’ GIC shows a similar but slightly thicker surface layer (approximately 370 nm thick) and significant enhancement in the hydrogen and oxygen abundance extending beyond 600 nm from the surface. 'Regenerated’ GIC shows an oxygen rich layer, slightly thicker than the fresh case at approximately 220 nm while showing a very much lower hydrogen enrichment at the surface. Results demonstrate that while the electrochemical regeneration effectively removes the phenol model pollutant, it also oxidizes the exposed carbon surface. These results may have a significant impact on the estimation of adsorbent life.

Keywords: Graphite, adsorbent, electrochemical, regeneration, phenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674
10647 Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting

Authors: P. Meethum, C. Suvanjumrat

Abstract:

Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work.

Keywords: Aluminum, die casting, fuel cap, motorcycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2568
10646 Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks

Authors: M. Zerikat, S. Chekroun

Abstract:

This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.

Keywords: Electric drive, Induction motor, speed control, Adaptive control, neural network, High Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
10645 Geometrical Structure and Layer Orientation Effects on Strength, Material Consumption and Building Time of FDM Rapid Prototyped Samples

Authors: Ahmed A. D. Sarhan, Chong Feng Duan, Mum Wai Yip, M. Sayuti

Abstract:

Rapid Prototyping (RP) technologies enable physical parts to be produced from various materials without depending on the conventional tooling. Fused Deposition Modeling (FDM) is one of the famous RP processes used at present. Tensile strength and compressive strength resistance will be identified for different sample structures and different layer orientations of ABS rapid prototype solid models. The samples will be fabricated by a FDM rapid prototyping machine in different layer orientations with variations in internal geometrical structure. The 0° orientation where layers were deposited along the length of the samples displayed superior strength and impact resistance over all the other orientations. The anisotropic properties were probably caused by weak interlayer bonding and interlayer porosity.

Keywords: Building orientation, compression strength, rapid prototyping, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
10644 Phthalate Exposure among Roma Population in Slovakia

Authors: Miroslava Šidlovská, Ida Petrovičová, Tomáš Pilka, Branislav Kolena

Abstract:

Phthalates are ubiquitous environmental pollutants well known because of their endocrine disrupting activity in human organism. The aim of our study was, by biological monitoring, investigate exposure to phthalates of Roma ethnicity group i.e. children and adults from 5 families (n=29, average age 11.8 ± 7.6 years) living in western Slovakia. Additionally, we analysed some associations between anthropometric measures, questionnaire data i.e. socio-economic status, eating and drinking habits, practise of personal care products and household conditions in comparison with concentrations of phthalate metabolites. We used for analysis of urine samples high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) to determine concentrations of phthalate metabolites monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), mono(2-ethyl- 5-hydroxyhexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP) and mono(2-etylhexyl) phthalate (MEHP). Our results indicate that ethnicity, lower socioeconomic status and different housing conditions in Roma population can affect urinary concentration of phthalate metabolites.

Keywords: Biomonitoring, ethnicity, human exposure, phthalate metabolites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
10643 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: Artificial neural network, ANN, high performance concrete, rebound hammer, strength prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
10642 Performance Evaluation of XMAC and BMAC Routing Protocol under Static and Mobility Scenarios in Wireless Sensor Network

Authors: M. V. Ramana Rao, T. Adilakshmi

Abstract:

Based on application requirements, nodes are static or mobile in Wireless Sensor Networks (WSNs). Mobility poses challenges in protocol design, especially at the link layer requiring mobility adaptation algorithms to localize mobile nodes and predict link quality to be established with them. This study implements XMAC and Berkeley Media Access Control (BMAC) routing protocols to evaluate performance under WSN’s static and mobility conditions. This paper gives a comparative study of mobility-aware MAC protocols. Routing protocol performance, based on Average End to End Delay, Average Packet Delivery Ratio, Average Number of hops, and Jitter is evaluated.

Keywords: Wireless Sensor Network (WSN), Medium Access Control (MAC), Berkeley Media Access Control (BMAC), mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
10641 Corrosion Monitoring of Weathering Steel in a Simulated Coastal-Industrial Environment

Authors: Ch. Thee, Junhua Dong, Wei Ke

Abstract:

The atmospheres in many cities along the coastal lines in the world have been rapidly changed to coastal-industrial atmosphere. Hence, it is vital to investigate the corrosion behavior of steel exposed to this kind of environment. In this present study, Electrochemical Impedance Spectrography (EIS) and film thickness measurement were applied to monitor the corrosion behavior of weathering steel covered with a thin layer of the electrolyte in a wet-dry cyclic condition, simulating a coastal-industrial environment at 25oC and 60% RH. The results indicate that in all cycles, the corrosion rate increases during the drying process due to an increase in anion concentration and an acceleration of oxygen diffusion enhanced by the effect of the thinning out of the electrolyte. During the wet-dry cyclic corrosion test, the long-term corrosion behavior of this steel depends on the periods of exposure. Corrosion process is first accelerated and then decelerated. The decelerating corrosion process is contributed to the formation of the protective rust, favored by the wet-dry cycle and the acid regeneration process during the rusting process.

Keywords: Atmospheric corrosion, EIS, low alloy, rust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
10640 Analysis of Coal Tar Compositions Produced from Sub-Bituminous Kalimantan Coal Tar

Authors: D. S. Fardhyanti, A. Damayanti

Abstract:

Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kinds of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar are 33.25% (PT KPC) and 17.58% (Arutmin-Kalimantan). The total naphtalene compounds contained in coal tar is 14.15% (PT KPC) and 17.13% (Arutmin-Kalimantan).

Keywords: Coal tar, pyrolysis, gas chromatography-mass spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3647
10639 Design Optimization of Aerocapture with Aerodynamic-Environment-Adaptive Variable Geometry Flexible Aeroshell

Authors: Naohiko Honma, Kojiro Suzuki

Abstract:

This paper proposes the concept of aerocapture with aerodynamic-environment-adaptive variable geometry flexible aeroshell that vehicle deploys. The flexible membrane is composed of thin-layer film or textile as its aeroshell in order to solve some problems obstructing realization of aerocapture technique. Multi-objective optimization study is conducted to investigate solutions and derive design guidelines. As a result, solutions which can avoid aerodynamic heating and enlarge the corridor width up to 10% are obtained successfully, so that the effectiveness of this concept can be demonstrated. The deformation-use optimum solution changes its drag coefficient from 1.6 to 1.1, along with the change in dynamic pressure. Moreover, optimization results show that deformation-use solution requires the membrane for which upper temperature limit and strain limit are more than 700 K and 120%, respectively, and elasticity (Young-s modulus) is of order of 106 Pa.

Keywords: Aerocapture, flexible aeroshell, optimization, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
10638 Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board

Authors: Anil Kumar Pandey

Abstract:

Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals.

Keywords: Channel simulation, electromagnetic simulation, power-aware signal integrity analysis, power integrity, PIPro.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
10637 Network Based High Performance Computing

Authors: Karanjeet Singh Kahlon, Gurvinder Singh, Arjan Singh

Abstract:

In the past few years there is a change in the view of high performance applications and parallel computing. Initially such applications were targeted towards dedicated parallel machines. Recently trend is changing towards building meta-applications composed of several modules that exploit heterogeneous platforms and employ hybrid forms of parallelism. The aim of this paper is to propose a model of virtual parallel computing. Virtual parallel computing system provides a flexible object oriented software framework that makes it easy for programmers to write various parallel applications.

Keywords: Applet, Efficiency, Java, LAN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
10636 Backplane Serial Signaling and Protocol for Telecom Systems

Authors: Ali Poureslami, Hossein Borhanifar, Seyed Ali Alavian

Abstract:

In this paper, we implement a modern serial backplane platform for telecommunication inter-rack systems. For combination high reliability and low cost protocol property, we applied high level data link control (HDLC) protocol with low voltage differential signaling (LVDS) bus for card to card communicated over backplane. HDLC protocol is a high performance with several operation modes and is famous in telecommunication systems. LVDS bus is a high reliability with high immunity against electromagnetic interference (EMI) and noise.

Keywords: Backplane, BLVDS, HDLC, EMI, I2C, LCT, OSC, SFP, SNMP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
10635 Use Cuticular Hydrocarbons as Chemotaxonomic of The Pamphagidae Pamphagus elephas (Insecta, Orthoptera) of Algeria

Authors: M. Bounechada, F. Benia, M. Aiouaz, S. Bouharati, N. Djirar, H. Benamrani

Abstract:

The cuticular hydrocarbons of Pamphagus elephas (Orthoptera: Pamphagidae) has been analysed by gas chromatography and by combined gas chromatograph-mass spectrometry. The following hydrocarbon classes have been identified in insect cuticular hydrocarbons are: n-alkanes and methylalkanes comprising Monomethyl-, dimethyl-and trimethylalkanes. Sexual dimorphism is observed in long chain alkanes (C24-C36) present on male and female. The cuticulars hydrocarbons of P.elephas ranged from 24 to 36 carbons and incluted n-alkanes, Dimethylalkanes and Trimethylalkanes. nalkanes represented by (C24-C36,72,7% on male and 79,2% on female), internally branched Monomethylalkanes identified were (C25, C30-C32,C35-C37;11% on male and 9,4% on female), Dimethylalkanes detected are (C31-C32, C36; 2,2% on male and 2,06% on female) and Trimethylalkanes detected are (C32, C36; 3,1% on male and 4, 97 on female). Larvae male and female (stage 7) showed the same quality of n-alkanes observed in adults. However a difference quantity is noted.

Keywords: Cuticular hydrocarbons, Gas chromatography, Mass spectrometry, Pamphagus elephas, , Sexual dimorphism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
10634 Structural and Optical Characterization of Silica@PbS Core–Shell Nanoparticles

Authors: A. Pourahmad, Sh. Gharipour

Abstract:

The present work describes the preparation and characterization of nanosized SiO2@PbS core-shell particles by using a simple wet chemical route. This method utilizes silica spheres formation followed by successive ionic layer adsorption and reaction method assisted lead sulphide shell layer formation. The final product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopic, infrared spectroscopy (IR) and transmission electron microscopy (TEM) experiments. The morphological studies revealed the uniformity in size distribution with core size of 250 nm and shell thickness of 18 nm. The electron microscopic images also indicate the irregular morphology of lead sulphide shell layer. The structural studies indicate the face-centered cubic system of PbS shell with no other trace for impurities in the crystal structure.

Keywords: Core-shell, nanostructure, semiconductor, optical property, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
10633 Multivariate Analysis of Students’ Performance in Math Courses and Specific Engineering Courses

Authors: H. Naccache, R. Hleiss

Abstract:

The aim of this research is to study the relationship between the performance of engineering students in different math courses and their performance in specific engineering courses. The considered courses are taken mainly by engineering students during the first two years of their major. Several factors are being studied, such as gender and final grades in the math and specific engineering courses. Participants of this study comprised a sample of more than thousands of engineering students at Lebanese University during their tertiary academic years. A significant relationship tends to appear between these factors and the performance of students in engineering courses. Moreover, female students appear to outperform their male counterparts in both the math and engineering courses, and a high correlation was found between their grades in math courses and their grades in specific engineering courses. The results and implications of the study were being discussed.

Keywords: Education, engineering, math, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
10632 Performance Evaluation of Para-virtualization on Modern Mobile Phone Platform

Authors: Yang Xu, Felix Bruns, Elizabeth Gonzalez, Shadi Traboulsi, Klaus Mott, Attila Bilgic

Abstract:

Emergence of smartphones brings to live the concept of converged devices with the availability of web amenities. Such trend also challenges the mobile devices manufactures and service providers in many aspects, such as security on mobile phones, complex and long time design flow, as well as higher development cost. Among these aspects, security on mobile phones is getting more and more attention. Microkernel based virtualization technology will play a critical role in addressing these challenges and meeting mobile market needs and preferences, since virtualization provides essential isolation for security reasons and it allows multiple operating systems to run on one processor accelerating development and cutting development cost. However, virtualization benefits do not come for free. As an additional software layer, it adds some inevitable virtualization overhead to the system, which may decrease the system performance. In this paper we evaluate and analyze the virtualization performance cost of L4 microkernel based virtualization on a competitive mobile phone by comparing the L4Linux, a para-virtualized Linux on top of L4 microkernel, with the native Linux performance using lmbench and a set of typical mobile phone applications.

Keywords: L4 microkernel, virtualization overhead, mobilephone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
10631 Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity

Authors: Chia-Ling Chang, Chung-Sheng Liao

Abstract:

The present study focuses on the discussion over the parameter of Artificial Neural Network (ANN). Sensitivity analysis is applied to assess the effect of the parameters of ANN on the prediction of turbidity of raw water in the water treatment plant. The result shows that transfer function of hidden layer is a critical parameter of ANN. When the transfer function changes, the reliability of prediction of water turbidity is greatly different. Moreover, the estimated water turbidity is less sensitive to training times and learning velocity than the number of neurons in the hidden layer. Therefore, it is important to select an appropriate transfer function and suitable number of neurons in the hidden layer in the process of parameter training and validation.

Keywords: Artificial Neural Network (ANN), sensitivity analysis, turbidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
10630 Investigation of the Effect of Impulse Voltage to Flashover by Using Water Jet

Authors: Harun Gülan, Muhsin Tunay Gencoglu, Mehmet Cebeci

Abstract:

The main function of the insulators used in high voltage (HV) transmission lines is to insulate the energized conductor from the pole and hence from the ground. However, when the insulators fail to perform this insulation function due to various effects, failures occur. The deterioration of the insulation results either from breakdown or surface flashover. The surface flashover is caused by the layer of pollution that forms conductivity on the surface of the insulator, such as salt, carbonaceous compounds, rain, moisture, fog, dew, industrial pollution and desert dust. The source of the majority of failures and interruptions in HV lines is surface flashover. This threatens the continuity of supply and causes significant economic losses. Pollution flashover in HV insulators is still a serious problem that has not been fully resolved. In this study, a water jet test system has been established in order to investigate the behavior of insulators under dirty conditions and to determine their flashover performance. Flashover behavior of the insulators is examined by applying impulse voltages in the test system. This study aims to investigate the insulator behaviour under high impulse voltages. For this purpose, a water jet test system was installed and experimental results were obtained over a real system and analyzed. By using the water jet test system instead of the actual insulator, the damage to the insulator as a result of the flashover that would occur under impulse voltage was prevented. The results of the test system performed an important role in determining the insulator behavior and provided predictability.

Keywords: Insulator, pollution flashover, high impulse voltage, water jet model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1228
10629 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator

Authors: Thiang, Handry Khoswanto, Rendy Pangaldus

Abstract:

Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.

Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
10628 Design Calculation and Performance Testing of Heating Coil in Induction Surface Hardening Machine

Authors: Soe Sandar Aung, Han Phyo Wai, Nyein Nyein Soe

Abstract:

The induction hardening machines are utilized in the industries which modify machine parts and tools needed to achieve high ware resistance. This paper describes the model of induction heating process design of inverter circuit and the results of induction surface hardening of heating coil. In the design of heating coil, the shape and the turn numbers of the coil are very important design factors because they decide the overall operating performance of induction heater including resonant frequency, Q factor, efficiency and power factor. The performance will be tested by experiments in some cases high frequency induction hardening machine.

Keywords: Induction Heating, Resonant Circuit, InverterCircuit, Coil Design, Induction Hardening Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22263
10627 Studying the Effect of Ethanol and Operating Temperature on Purification of Lactulose Syrup Containing Lactose

Authors: N. Zanganeh, M. Zabet

Abstract:

Lactulose is a synthetic disaccharide which has remarkable applications in food and pharmaceutical fields. Lactulose is not found in nature and it is produced by isomerization reaction of lactose in an alkaline environment. It should be noted that this reaction has a very low yield since significant amount of lactose stays un-reacted in the system. Basically, purification of lactulose is difficult and costly. Previous studies have revealed that solubility of lactose and lactulose are significantly different in ethanol. Considering the fact that solubility is also affected by temperature itself, we investigated the effect of ethanol and temperature on separation process of lactose from the syrup containing lactose and lactulose. For this purpose, a saturated solution containing lactulose and lactose was made at three different temperatures; 25⁰C (room temperature), 31⁰C, and 37⁰C first.  Five samples containing 2g saturated solution was taken and then 2g, 3g, 4g, 5g, and 6g ethanol separately was added to the sampling tubes. Sampling tubes were kept at respective temperatures afterward. The concentration of lactose and lactulose after separation process measured and analyzed by High Performance Liquid Chromatography (HPLC). Results showed that ethanol has such a greater impact than operating temperature on purification process. Also, it was observed that the maximum rate of separation occurred at initial amount of added ethanol.

Keywords: Ethanol, lactose, lactulose syrup, purification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112
10626 Noise Performance Optimization of a Fast Wavelength Calibration Algorithm for OSAs

Authors: Thomas Fuhrmann

Abstract:

A new fast correlation algorithm for calibrating the wavelength of Optical Spectrum Analyzers (OSAs) was introduced in [1]. The minima of acetylene gas spectra were measured and correlated with saved theoretical data [2]. So it is possible to find the correct wavelength calibration data using a noisy reference spectrum. First tests showed good algorithmic performance for gas line spectra with high noise. In this article extensive performance tests were made to validate the noise resistance of this algorithm. The filter and correlation parameters of the algorithm were optimized for improved noise performance. With these parameters the performance of this wavelength calibration was simulated to predict the resulting wavelength error in real OSA systems. Long term simulations were made to evaluate the performance of the algorithm over the lifetime of a real OSA.

Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
10625 Study of Characteristics of Multi-Layer Piezoelectric Transformers by using 3-D Finite Element Method

Authors: C. Panya-Isara, T. Kulworawanichpong, P. Pao-La-Or

Abstract:

Piezoelectric transformers are electronic devices made from piezoelectric materials. The piezoelectric transformers as the name implied are used for changing voltage signals from one level to another. Electrical energy carried with signals is transferred by means of mechanical vibration. Characterizing in both electrical and mechanical properties leads to extensively use and efficiency enhancement of piezoelectric transformers in various applications. In this paper, study and analysis of electrical and mechanical properties of multi-layer piezoelectric transformers in forms of potential and displacement distribution throughout the volume, respectively. This paper proposes a set of quasi-static mathematical model of electromechanical coupling for piezoelectric transformer by using a set of partial differential equations. Computer-based simulation utilizing the three-dimensional finite element method (3-D FEM) is exploited as a tool for visualizing potentials and displacements distribution within the multi-layer piezoelectric transformer. This simulation was conducted by varying a number of layers. In this paper 3, 5 and 7 of the circular ring type were used. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.

Keywords: Multi-layer Piezoelectric Transformer, 3-D Finite Element Method (3-D FEM), Electro-mechanical Coupling, Mechanical Vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
10624 The Effect of Glass Thickness on Stress in Vacuum Glazing

Authors: Farid Arya, Trevor Hyde, Andrea Trevisi, Paolo Basso, Danilo Bardaro

Abstract:

Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG.

Keywords: ABAQUS, glazing, stress, vacuum glazing, vacuum insulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840
10623 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: Laser scribing, LightScribe DVD, graphene oxide, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
10622 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 450