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Abstract—Emergence of smartphones brings to live the concept
of converged devices with the availability of web amenities. Such
trend also challenges the mobile devices manufactures and service
providers in many aspects, such as security on mobile phones,
complex and long time design flow, as well as higher development
cost. Among these aspects, security on mobile phones is getting more
and more attention. Microkernel based virtualization technology will
play a critical role in addressing these challenges and meeting mobile
market needs and preferences, since virtualization provides essential
isolation for security reasons and it allows multiple operating systems
to run on one processor accelerating development and cutting devel-
opment cost. However, virtualization benefits do not come for free.
As an additional software layer, it adds some inevitable virtualization
overhead to the system, which may decrease the system performance.
In this paper we evaluate and analyze the virtualization performance
cost of L4 microkernel based virtualization on a competitive mobile
phone by comparing the L4Linux, a para-virtualized Linux on top of
L4 microkernel, with the native Linux performance using lmbench
and a set of typical mobile phone applications.

Keywords—L4 microkernel, virtualization overhead, mobile
phone.

I. INTRODUCTION

Recent years, as 3G/beyond-3G mobile communication
technology becomes mature, more and more mobile phones
are connected to Internet. People start using mobile phones
to download audio, video files as well as mobile phone
applications from Internet. Typical examples are iPhone App-
Store and Android Market. Such trend makes modern mobile
phones no longer closed systems like the traditional ones.
As a consequence, the security of mobile phones faces big
challenges. At the meantime, mobile phone users tend to
put important personal contents into mobile phones, such as
personal information, contacts, emails, credit card number and
even passwords. All these put further pressure on the security
aspect in modern mobile phones.

Currently in order to address the security challenges in
mobile phones, several different methods are used, such as
implementing complete open devices (including open OS),
separating application domain and cellular domain, using
strict API level certification policies and restricting run-time
environment (e.g. Java). However, all these solutions have
their own limitations and restrictions [1]. To overcome these
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limitations, virtualization technology is chosen as another
alternative to enhance the security in modern mobile phones.

Virtualization technology can date back to IBM’s VM/370
system [2][3][4] in 1960’s, which is the first commercial vir-
tual machine system on the world. The initial motivation to use
a virtual machine system is to support multiple operating sys-
tems and multiplex expensive mainframe hardware. A virtual
machine (VM) is a duplicate of a real computer system, whose
resources are fully controlled by a virtual machine monitor
(VMM). The VMM provides users with an efficient, isolated
processing environment, which is essential to allow more
than one operating system running on one single machine.
At present, virtualization technology is primarily applied on
servers and workstations to help system administrators reduce
management overhead. In the future, virtualization will be
a solution for security and software reliability [5], e.g. in
mobile phones. The enhanced security is achieved by isolating
trusted data and code from malicious ones so that even though
one guest operating system running on the virtual machine
is compromised, the integrity of the rest system can not be
damaged.

Current virtualization technology can be generally divided
into two categories:

1) Full virtualization: unmodified guest OS can be run on
the virtual machine directly. The guest OS does not
realize that it is running in a virtualized environment.
Full virtualization is usually realized either by Dynamic
Binary Translation (DBT) (e.g. VMware ESX [6] [7])
or by hardware assistant (e.g. Xen [8]).

2) Para-virtualization: unlike full virtualization approach,
modifications are needed to de-privilege the guest OS.
Usually modifications of system call interface, memory
management, and interrupt handling are necessary. The
advantage of para-virtutalization approach is its high
performance. Examples of this approach are Xen and L4
microkernel based virtualization approach (L4Linux).

The requirements for virtualization on mobile phones are
quite different from virtualization on high performance sys-
tems. Some suitable virtualization technologies for high per-
formance systems may become unapplicable on mobile phones
due to hardware resources and power consumption limitations.
For example, in full virtualization by DBT, the executed
instructions are intercepted and replaced in real time. This is
computationally intensive and unsuitable for mobile systems.
And the hardwares dedicated for virtualization, which are
usually available for PC and server systems are not yet
available at the embedded market. With its high performance
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virtue, Para-virtualization is currenlty the emerging solution
for virtualization in mobile phones. Examples are Trango
(current VMWare MVP)[9], VirtualLogix virtualization tech-
nology [10] and L4 microkernel virtualization technology [11].
This is substantially determined by the fact that on mobile
phones, high performance efficiency is preferred because of
limited resources. Among all these available embedded system
virtualization solutions, only the L4 microkernel virtualization
approach is open-source, which is a big advantage in research
work. It gives us the possibility to deeply understand the
embedded system virtualization approach and allows us to do
detailed analysis and evaluation. Furthermore it provides us
more space for optimization in the future.

L4 microkernel was designed and optimized for 486 and
Pentium architectures. It has been proved quite efficient on
x86 systems [12][13][14]. However, on ARM processors,
which are usually used in mobile phones, the efficiency of
L4 microkernel, especially used as a VMM, has not been
extensively investigated yet. In order to narrow this gap and
to get exact performance data of L4 microkernel based VMM
on mobile phones, we evaluated the performance of L4 Fiasco
microkernel (Re-implementation of L4 microkernel from TU
Dresden. In the rest of this paper, we call it L4 for short) as
a VMM on a modern mobile phone platform by comparing
the performance of L4Linux and native Linux. The experiment
results presented not only the virtualization overhead of basic
system operations on L4Linux but also the virtualization
overhead of a set of typical mobile phone applications above
L4Linux. Both of these are usually concerned by mobile
phone system developers. Furthermore, with the help of our
evaluation results, potential points to be optimized as well as
the methods to optimize the performance of applications above
L4Linux can be identified.

The rest of this paper is organized as following. We first
begin with related works in Section 2. Then in Section 3
we introduce some basics about the Fiasco L4 microkernel
virtualization approach, i.e. L4Linux. In Section 4, we describe
our evaluation methodology. In Section 5 and Section 6, the
evaluation results are presented and analyzed respectively.
After the evaluation results, in Section 7, a short discussion is
given. Finally, we conclude in Section 8.

II. RELATED WORKS

The well known performance evaluations of L4 microkernel,
are presented in [12][14]. In [14], several aspects of micro-
kernel are addressed, such as kernel-user switches overhead,
address space switches overhead, thread switches and inter-
process communication (IPC) overhead, which are usually
considered to be expensive on microkernel. It is proved that
the significant overheads are usually due to the inefficient
implementation, not inherited from the microkernel itself.
The work in [12] especially focused on the virtualization
overhead of L4Linux. To identify the virtualization overhead,
the same set of benchmarks (i.e. lmbench, hbench and AIM)
are executed on both native Linux and L4Linux on the same
hardware platform then the obtained results are compared. The
typical virtualization overhead of L4linux was shown to be

around 5% to 10% [12]; by comparing the performance of
L4Linux with another microkernel based virtualized Linux,
MKLinux, it is concluded that the performance of the under-
lying microkernel indeed affect the virtualization overhead.
An inefficient microkernel can make the system several times
slower. All the works above are carried out on x86 platforms.
None of them addressed the performance of L4 microkernel
on embedded systems, for example, ARM processor based
systems.

Concerning the performance of VMM for embedded sys-
tems, there have been some works [15][16]. The main target
of [16] is to describe the optimization techniques used on
Pistachio L4 microkernel, a re-implementation of L4 microker-
nel from University Karlsruhe. Some selected lmbench results
are given to prove the effects of their optimizations. No real
application performance was presented there. In [15], Xen is
ported and evaluated as a VMM on ARM processor based
system. lmbench is also used to investigate the performance
of basic system operations. Simple performance comparison
between Xen and Pistachio L4 microkernel is performed. A
User Interface program is used as a real application benchmark
to reflect the performance of Xen on common operations in
mobile phones. The evaluation results show that Xen has
moderate virtualization overheads on ARM processor.

III. L4LINUX BASICS

L4 microkernel only provides basic services needed to
implement arbitrary systems (including virtual machines), such
as address space management, thread management, and IPC. It
runs in the most privilleged mode of the hardware so that it can
control resources of the whole system. Additionally, it offers
good isolation characteristic, which is necessary to run several
subsystems concurrently on a single machine. Therefore, L4
microkernel has all the essentials that a VMM should have.
By using L4 microkernel as a VMM, several virtual machines
can run in parallel. An typical VM on L4 microkernel is the
L4Linux.

L4Linux is a para-virtualized Linux on top of L4 micro-
kernel where Linux is explicitly modified according to the
virtual machine interfaces. The first port was done in 1996 at
TU Dresden [17]. Since then it has been continuously updated
to the newest Linux version. The supported architectures also
have extended into embedded processors, e.g. ARM proces-
sors. Up to now, the latest version is L4Linux2.6.30.

A. Implementation

L4Linux is implemented with server-client approach, which
is illustrated in Figure 1: an L4 task is used as a Linux-
server that provides all the Linux services to the user pro-
cesses/clients, which are also implemented as L4 tasks in
different address spaces. User processes can only commu-
nicate with the Linux-server through IPC, which is one of
the most important primitives that are supplied by the L4
kernel. As a result, the Linux-server and the untrusted user
processes are isolated from each other. Moreover they are also
isolated from the rest of the system. This is the reason why
microkernel virtualization approach can enhance the security
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Linux−user
process

Linux−user
processLinux−server

kernel mode

user mode

Isolated Address Spaces

L4 Microkernel

Fig. 1. L4Linux Implementation

aspect. Because the user processes/tasks from virtual machine
are separated from the rest of the system, even though the
guest OS on the virtual machine is compromised, the damage
will not propagate to the rest of the system. Applied to mobile
phones, this means even if a downloaded virus took control
of the guest OS, telephone call still can be made, because the
modem part of the mobile phone is protected from the attack.

B. System Calls

As the Linux-server and user processes are isolated from
each other, system calls on L4Linux can not be directly
handled by the kernel/Linux-server like in the native Linux. A
mechanism called syscall redirection is applied to implement
system calls on L4Linux. This mechanism is realized by using
a user-level exception handler. Since L4 microkernel uses
different system call numbers than native Linux, when an user
process triggers a Linux system call, the L4 microkernel treats
this as an exception, which is redirected to the Linux-server
by the user-level exception handler (step 2 in Figure 2). Upon
receiving this redirected system call, L4Linux processes this as
a normal system call on native Linux and after that it will reply
to the user process that triggered the system call by sending an
IPC. The whole handling process is shown in Figure 2, from
which we can see that each system call on L4Linux costs 2
kernel entry/exit pairs and 2 address space switches. This is
much more expensive than in native Linux.

Linux−user

process

IPC

Linux

L4 Microkernel

redirection

syscall
1

2 44

4

Linux−server

3 syscall
handling

Fig. 2. System Call on L4Linux

C. Signaling

For security reasons, directly manipulating thread’s stack,
stack pointer, as well as instruction pointer from other threads
in the same address space (like in native Linux) is not allowed
in L4Linux. Instead, a user level signal-handler is added
to every user process to solve this. Once the signal-handler
receives a message from the Linux-server, it makes the main
thread/Linux-server running in the same address space save its
state and enter Linux by manipulating the main thread/Linux-
server’s stack pointer and instruction pointer.

D. Pagefault Handling

Pagefaults are handled by the Linux-server, which works as
a pager for the user processes it creates. When a pagefault
occurs, similar with the procedure of a system call, the L4
kernel treats the pagefault as an exception and redirects it to
the Linux-server by sending an IPC. After the Linux-server
receives the notification, it checks the shadow page tables that
are maintained in user-level and assigns a new page from
its own address space to the corresponding user process by
mapping operations. The real page tables are kept within L4
and can not be directly accessed by user-level processes for
security reasons. Maintaining the shadow page tables is quite
expensive [18].

E. Interrupt Handling

The interrupt handling scheme on native Linux is emu-
lated on L4Linux. In native Linux, the interrupt handler is
implemented with two parts, top-halves interrupt handlers and
bottom-havels interrupt handlers. In L4Linux, the top-halves
interrupt handlers are replaced by separate dedicated threads
that wait for interrupt messages sent by L4 kernel when
hardware interrupt is triggered. Each thread corresponds to one
hardware interrupt source. The bottom-halves are implemented
by one single thread, which has higher priority than the Linux-
server so that the interrupt handlers and Linux-server can
execute sequentially.

IV. EVALUATION METHODOLOGY

The evaluation in this paper differentiates itself from the
previous evaluation works [12][15][16] in the following point:
besides executing microbenchmarks (lmbench), a group of
typical mobile phone applications are tested as application
specific benchmarks to estimate the performance of L4 mi-
crokernel based VMM in real use cases. The reason for this
approach is: microbenchmarks are usually used to detailedly
analyze basic operations of operating system, e.g. system
calls. From the discussion in Section III-B we can see that
system calls on L4Linux are expensive due to the virtualization
approach of L4Linux. Therefore, evaluating the weak points
could help us find low-level bottlenecks and potential points
that can be further optimized in the future. However, we should
keep in mind that the results of lmbench do not indicate
the overall performance, as it only measures the performance
of basic system operations, which do not represent any real
applications. To get the impression of the performance in real
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use scenarios, we further evaluate with the application specific
benchmarks. With this method, we can identify how much the
real applications suffer from the low-level bottlenecks and the
relations between the performance of low-level operations and
high-level applications.

TABLE I
HARDWARE PLATFORM CONFIGURATIONS

Infineon XMM6180
CPU ARM1176JZS
Level 1 Cache 16K I-Cache, 16K D-Cache
Level 2 Cache N.A.
CPU Frequency 364Mhz
Memory 64MB DDR
Memory Frequency 180Mhz
FPU N.A.

From the evaluation we expect to answer the following two
questions:

1) How large is the virtualization overhead on basic system
operations?

2) Does this overhead matter in real use scenarios?

To evaluate the performance of L4 microkernel based VMM
on modern mobile phone platform, we use XMM

TM6180
platform from Infineon Technologies as our evaluation hard-
ware platform. The core component of XMM6180 is In-
fineon’s X-GOLD

TM618 single chip basedband processor
[19], which integrates wireless communication modem, mixed
signal audio, measurement subsystem and power management
unit on a single chip. It not only offers the modem functionality
such as GSM, UMTS, GPRS, EDGE, HSxPA, but also pro-
vides many multimedia extensions, e.g. hardware accelerator
for video recording and playback, integrated audio codes etc..
Table I shows the details of the platform configurations1. To
generate comparable evaluation results, the same hardware
platform and configurations are used across all the measure-
ments in this paper.

To measure the virtualization overhead of L4 microkernel
based VMM, we setup two benchmark environments: the first
one is used to generate performance results of L4Linux, which
is done by running all the benchmarks directly over L4Linux;
the second one is executed as a comparison experiment where
the same set of benchmarks are re-executed on native Linux.
Any deviations from these two performance results are caused
by the virtualization layer, i.e. virtualization overhead. The
L4Linux used in this paper is L4Linux2.6.30. To make the
results comparable, the same version of native Linux is chosen.
This scheme is shown in Figure 3.

V. MICROBENCHMARKS

lmbench is developed by Larry McVoy and Carl Staelin
from 1993 to 1995 [20]. Since then it has been widely used to
measure the performance bottlenecks on many machines and
operating systems. It is also commonly used for evaluating
VMMs [12][15][16]. lmbench contains a suite of benchmarks
that are designed to measure basic operations, such as system

1The CPU frequency, memory frequency and cache size in Table I ONLY
stand for the configurations we used in this paper.

Benchmarks

L4Linux

VMM
(L4 Microkernel & Run Time Environment)

ARM1176JZS

Benchmarks

Linux

ARM1176JZS

Evaluation Environment 1 Evaluation Environment 2

Infineon X−GOLD618 Infineon X−GOLD618

Fig. 3. Evaluation Environments

calls, context switches, memory access etc. All these bench-
marks basically fall into two categories: latency benchmarks
and bandwidth benchmarks. Depending on different bench-
marking purposes, lmbench can be configured to measure
performance of both operating system and hardware platform.
As in this paper, the same hardware platform is used for
all the measurements, lmbench is configured to execute the
benchmarks related to operating systems only. Due to limited
memory size of the board, all the benchmarks used in the
experiment are compiled dynamically linked.

TABLE II
lmbench LATENCY RESULTS

Test Cases Native Linux(us) L4Linux (us)
Simple syscall 0.7158 22.3718
Simple read 3.6399 34.3318
Simple write 3.1738 30.9641
Simple stat 16.2348 106.0476
Simple fstat 4.2553 44.4267
Simple open/close 39.0611 208.7772
Select on 10 fd’s 4.3945 50.335
Select on 100 fd’s 28.5861 82.4257
Select on 250 fd’s 68.8872 122.4306
Select on 500 fd’s 136.3443 221.5062
Signal handler install 2.619 36.2203
Signal hander overhead 9.8543 136.0835
Protection fault 4.0656 43.9095
Pipe 127.8178 698.4668
AU UNIX sock stream 205.9367 876.9344
Process fork+exit 5213.2701 54736.8421
Process fork+execve 15915.493 110000
Process fork+/bin/sh -c 45000 232000
pagefaults 46.0907 307.4131

1) Latencies: Table II shows selected results of lmbench
latency measurements. Results of both native Linux and
L4Linux are listed in this table so that we can compare
the differences. Figure 4 illustrates the corresponding slow-
down/overhead of L4Linux, which is normalized to the perfor-
mance of native Linux. As the figure indicates, executing these
basic operations on L4Linux can be quite expensive compared
with native Linux, especially the simple syscall benchmark,
which is about 30 times slower than the one on native Linux.

The reason for this significant overhead is as follows: on
native Linux, user tasks and kernel share the same address
space. Each system call costs nothing but a CPU mode change;
On L4Linux, as explained in Section III-B, Linux-server and
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Pagefault

fork+/bin/sh -c

fork+execve

fork+exit

AF_UNIX sock

Pipe

Protection fault

Sig handler ovr

Sig handler install

Select on 500 fd’s

Select on 250 fd’s

Select on 100 fd’s

Select on 10 fd’s

open/close

fstat

stat

write

read

syscall

 0  5  10  15  20  25  30  35

Native Linux

L4Linux

.
.

Fig. 4. lmbench Latency Results (normalized to native Linux performance)

user processes are isolated in different address spaces. Each
system call costs 2 kernel entry/exit pairs plus 2 address space
switches, which are time consuming procedures.

The overhead of kernel entry/exit and address space
switches can directly attribute to three aspects [14]: pure
kernel instructions execution, cache and TLB flushing. Since
the processor (ARM1176JZS) uses physically indexed cache,
cache flushing is not necessary during address space switches.
Therefore, cache flushing is not a main contributor to this over-
head. In current version of L4Linux, frequent TLB flushing is
also eliminated by applying ASID (Address Space Identifier).
As a consequence, the TLB can be retained across all the
address spaces. Considering the above facts, we can conclude
the significant overhead in system calls comes from executing
all the additional kernel instructions when kernel entry/exits
and address space switches are executed within system calls.

As additional signal-handler is used to avoid direct inter-
thread manipulation in signal handling, the cost of signal
handling is more expensive than the one on native Linux.
In benchmarks fork, fork+execv and fork+sh in Table II,
processes are created and executed. All these need to update
page tables, which is realized by maintaining a set of shadow
page tables. Manipulating shadow page tables and mapping
guest virtual addresses to host physical addresses also add a
lot of overhead to these operations.

2) Context Switch: Table III lists some selected results of
context switch latencies both on native Linux and L4Linux.
Without considering cache footprint (while the process size is
0k bytes), one context switch on L4Linux takes about 3 times
longer than on native Linux. This overhead becomes lower
when size of the processes increases. This is because when
the size of process increases, the context switch overhead is
dominated by cache interference.

Figure 5 plots the complete context switch results, from
which we can see that the surface that is constructed by the
context switch latencies of L4Linux is above the corresponding

TABLE III
SELECTED lmbench CONTEXT SWITCH RESULTS

Test Cases Native Linux (us) L4Linux(us)
2p 0k 40.02 132.9
8p 0k 69.53 180.04
2p 4k 63.29 169.1
8p 4k 121.35 236.16
2p 8k 100.10 196.84
8p 8k 158.13 263.18
2p 16k 158.94 231.11
8p 16k 189.60 276
2p 32k 107.83 176.37
8p 32k 136.71 225.43
2p 64k 104.52 186.83
8p 64k 140.77 244.75

Native Linux
     200
     150
     100
      50

L4Linux
     250
     200
     150

 0  10  20  30  40  50  60

Process Size (kB)

 0  10 20 30 40 50 60

Number of Processes

 0

 50

 100

 150

 200

 250

 300

Latency (us)

Fig. 5. lmbench Context Switch Results

surface of native Linux. This means context switches on
L4Linux always take longer time than on native Linux.

3) Memory Access Bandwidth: The performance of mem-
ory access is presented in Figure 6 where we can hardly
differentiate the curve of native Linux and its counterpart
from L4Linux, which means the memory read bandwidth and
memory write bandwidth of L4Linux are quite close to the
native Linux. This is mainly due to the fact that in this
benchmark simply an unrolled loop that sums up a series
of integers is executed, which does not request any kernel
services. Therefore, nearly no overhead is added to the system.
This is the advantage of L4 virtualization approach. Because
L4Linux does not try to emulate or intercept any instructions,
the performance is nearly the same with the native one when
the user process executes computing intensive tasks.

In the memory read bandwidth curve there is a sharp
decrease when the block size is 16k bytes. This is because
level 1 cache of ARM11 is 16k. The memory read bandwidth
decreases tremendously when the accessing memory block
size is larger than the cache size. As there is no level 2 cache
available on our hardware platform, there is no second sharp
decrease in this figure. The curve of memory write bandwidth
is relatively flat compared with the memory read bandwidth
curve. This is caused by the fact that on ARM1176JZS the
cache is read allocate. The data accessed in the write band-
width benchmark are not cached during execution. Therefore,
the write bandwidth is not affected by the cache size. Thus
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Fig. 6. Memory Read & Write Bandwidth

the write bandwidth does not change when the block size
increases.

From the results of lmbench we can conclude that the
performance of basic system operations on L4Linux is much
lower than the one on native Linux. This is due to the
virtualization overhead caused by the kernel entry/exits and
address space switches during system call processing. Memory
access on L4Linux performs just as efficiently as it does on
native Linux. This is because no kernel services are need
during execution. This also implies that by avoiding kernel
services the virtualization overhead can be eliminated.

VI. APPLICATION SPECIFIC BENCHMARKS

lmbench only measures the performance of basic system
operations. It does not represent any real application scenario.
In order to evaluate the performance of L4Linux under more
realistic use cases, we executed a series of application specific
benchmarks, which will be described in details in this section.

Modern mobile phones are not only used as a simple
communication tool but also as an entertainment device as well
as personal digital assistant (PDA). Audio and video playback,
digital image viewing & processing, web page browsing and
word processing applications are commonly found nearly on
all of the modern mobile phones. In order to generate more
realistic benchmark results, which give us the impression
of virtualization overhead under real use cases, we selected
a series of application specific benchmarks from MiBench
[21] and some other open source application to evaluate the
performance of L4Linux. All the selected benchmarks can be
divided into the following three groups:

1) Multimedia Applications: we choose lame, mad,
mplayer, jpeg, tiff2bw, tiffdither, tiffmedian and typeset
to represent the multimedia application benchmark set,
which covers MP3 encoding, decoding, video decoding,
digital image processing and HTML typesetting.

2) Office Automation: as modern mobile phone users tend
to heavily rely on mobile phone as PDA to do word
processing work, the office automation functionality
becomes more and more important on modern mobile
phones. The following typical applications are selected

in this category to evaluate the performance in this
aspect: ghostscript, stringsearch, ispell and rsynth.

3) Telecommunications: as the original basic functional-
ity of a mobile phone, telecommunicate applications
are chosen as the last category. It includes CRC32,
FFT/IFFT, GSM encode/decode as well as adpcm en-
code/decode.

All the benchmarks are executed and timed on both native
Linux and L4Linux. The benchmark results are listed in Table
IV in terms of absolute execution time.

TABLE IV
APPLICATION SPECIFIC BENCHMARK RESULTS

Benchmarks Native Linux (s) L4Linux (s)
Multimedia Applications
lame 78.69 81.1
mad (small MP3 file) 0.232 0.598
mad (large MP3 file) 1.828 2.506
mad (larger MP3 file) 7.842 9.012
mplayer 5.512 5.712
jpeg 0.84 1.44
tiff2bw 0.64 1.814
tiffdither 1.44 1.892
tiffmedian 1.742 3.52
typeset 7.86 9.118
Office Automation
ghostscript 6.188 7.7354
ispell 6.658 8.71
stringsearch 0.07 0.332
rsynth 24.75 25.642
Telecommunications
CRC32 0.7 1.088
FFT 10.794 11.63
GSM 9.8 10.61
adpcm 0.37 1.088

Figure 7 and Figure 8 illustrate the virtualization overhead
in terms of slow-down. Unlike the situation in lmbench, as the
figures show us, in most of the benchmarks the performance
of L4Linux is very close to the native Linux, e.g. in case of
lame and mplayer the overhead is only about 3%. This is much
better than the performance of lmbench. An explanation for
this is that these two applications are all CPU bounded appli-
cations where system calls are seldom triggered. Therefore, the
huge system call overhead does not dominate anymore. What
is more, L4 does not use the traditional “trap and emulate”
virtualization approach. It does not try to emulate or intercept
any instructions. Thus, most of the instructions can be directly
executed on the CPU, which further reduces the virtualization
overhead. This is the same explanation for the memory access
bandwidth benchmark in lmbench.

At the same time, we also notice that some other appli-
cations, like jpeg and mad small, that also belong to the
group of computing intensive applications, have much higher
overhead compared with lame and mplayer. After further
analysis of Table IV we can find that all the benchmarks
with high overhead have short execution time compared with
those with lower overhead, e.g. stringsearch 0.07s, adpcm
0.37s, mad small 0.232s, tiff2bw 0.64s, jpeg 0.84s. Based on
this observation we assume that this inconsistent overhead is
mainly produced during process creation and destruction. The
absolute time for creating process and destroying process turns
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Fig. 7. Virtualization Overhead of Multimedia Applications
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Fig. 8. Virtualization Overhead of Office Automation and Telecommunica-
tions Applications

to dominate when the execution time is short. This means if
we use larger input file to extend the execution time of the
benchmarks, the overhead will decrease accordingly. To prove
this assumption, we re-measure the mad benchmark with two
other MP3 files with different sizes. As expected, the overhead
is reduced from 158% to 37% and 15% respectively. The
overhead of stringsearch, adpcm, jpeg, tiff2bw, tiffmedian as
well as tiffdither can be reduced in the same way. Considering
the real use case that usually the input files are large enough to
hide such kind of overhead, we can conclude that with typical
mobile phone applications where the significant overhead of
basic system operations do not dominate, L4Linux performs
nearly as efficiently as native Linux.

VII. DISCUSSION

The evaluation results from Section V and Section VI tell
us that the virtualization overhead of L4 microkernel is use-
case dependent. The overhead of system calls on L4Linux
is significant while for computing intensive applications the
overhead can become nearly neglectable. This is mostly caused
by the virtualization mechanism applied by L4Linux. The
more system calls are triggered, the more L4 microkernel ser-
vices are involved, the more overhead is added to the system.
This means applications with lots of system calls will suffer
a lot from the virtualization overhead while the ones with
few system calls can perform very efficiently. This rule gives
us a guideline for developing and optimizing L4Linux based
applications: frequent use of system calls should be avoided
in performance critical applications; by avoiding triggering
system calls frequently, the performance of applications can
be improved.

VIII. CONCLUSIONS AND FUTURE WORK

Based on our evaluation results, we can conclude that
L4 microkernel based para-virtualization approach is feasible
for modern mobile phones. Considering all the benefits the
virtualization approach provides, such as a promising solution
to the security challenge on modern mobile phones, accelerat-
ing development and cutting development cost, the inevitable
virtualization overhead (around 5% for typical mobile phone
applications) it adds to the system is acceptable and affordable.

At the same time, our evaluation results also indicate that the
virtualization overhead of L4 microkernel based VMM is use
case dependent. The overhead of system calls that trigger lots
of kernel activities is significant while for those CPU bounded
applications the overhead becomes nearly neglectable. This
suggests us a guideline for developing and optimizing L4Linux
based applications: frequent use of system calls should be
avoided in performance critical applications.

The results of our evaluation also point out directions
for the future works. First of all, kernel profiling work and
detailed analysis need to be done in order to identify the
hotspot within the significant system call overhead. After that
proper optimizations need to be developed and evaluated.
Secondly, rather than performance cost, further impacts of the
virtualization on mobile phones need to be evaluated, with
respect to power consumption, memory footprint and resources
usage.
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