
Abstract—In the past few years there is a change in the view of

high performance applications and parallel computing. Initially such

applications were targeted towards dedicated parallel machines.

Recently trend is changing towards building meta-applications

composed of several modules that exploit heterogeneous platforms

and employ hybrid forms of parallelism. The aim of this paper is to

propose a model of virtual parallel computing. Virtual parallel

computing system provides a flexible object oriented software

framework that makes it easy for programmers to write various

parallel applications.

Keywords—Applet, Efficiency, Java, LAN

I. INTRODUCTION

HE power of Internet and Intranet can be used for

integrating remote and heterogeneous computer into a

single global computing facility for parallel and collaborative

work. To gain control over the resources of Internet-based

computers for parallel computing has introduced new

difficulties and problems that have never been addressed by

parallel computing in LAN (local area network) environment

[3].

 Some of the difficulties are the heterogeneity of the

participating systems, difficulties in administering distributed

applications, security concerns of users, and matching of

applications and users. The proposed virtual parallel

computing system examines the aspect of high-performance

computing.

The scope of the virtual parallel computing system is in the

possibility of carrying out computations that require very large

computational power with the cooperation of processors on

LAN. Execution time and result of the computation are the

only parameters of interest. Another simplification is by

dealing mostly with the use of CPU-time of the processors and

less with other resources like memory. Finally, focus is on

very large computations.

II. RELATED WORK

The use of local area networks as a parallel computing

platform has been explored for many years. Numerous

Manuscript received August 20, 2005

Karanjeet S. Kahlon, Gurvinder Singh, Arjan Singh are with Department of

Computer Science & Engineering, Guru Nanak Dev University, Amritsar,

India (phone 91-183-2258802-09, Email: karanvkahlon@yahoo.com,

gsbawa71@yahoo.com, bhinderas@rediffmail.com)

research projects have aimed at this goal. A report [11]

indicates that the number of registered Internet Protocol (IP)

[24] addresses has been growing at 50%-80% per year.

 Other reports [15], [27], [16], [14], [2] indicate that most

networked machines in typical commercial organizations and

universities are underutilized and mostly idle. Given this

wealth of unused computing power, it is not surprising that

several projects [5], [6], [23], [22], [21], [30] have used

Internet to execute programs that are too compute intensive

even for a supercomputer. For example, in discovering the

world's largest known prime number [31], Prime Net reported

a sustained throughput of more than 200 billion point

instructions per second, the equivalent of seven fully-

equipped Cray T916 supercomputers at peak performance

[29]. In another case, during the first successful brute force

crack of a DES-encrypted message, it was observed that

within a single 24-hour period nearly 14,000 machines joined

the computation [4]; this is a tremendous amount of

computing power.

 There are many software systems [8], [19], [28], [12],

[20] for developing and executing programs using idle CPU

cycles in networks of workstations. A comprehensive end-to-

end solution for virtual parallel computing on the LAN must

address the concerns of programmers, users, and clients.

Implementing virtual parallel computing systems involves

many interesting and challenging technical questions like

speedup, flexibility, maximum utilization, simplicity,

accessibility, applicability and reliability and problems that are

open areas for research.

III. IDEA OF VIRTUAL PARALLEL COMPUTING

Virtual parallel computing is a variation on the idea of parallel

computing. It uses network of many separate computers as if

they were one large parallel machine, or Parallel computer.

Parallel computing systems today primarily take the form of

networks of workstations, or NOWs [16]. This allows people

to pool together existing and mostly idle workstations in their

own local or institution-wide networks. It uses them to do

parallel processing without having to purchase an expensive

supercomputer [7]. Global-scale NOWs, use computers

geographically distributed around the world and communicate

through the Internet. They have been used with great success

to solve large parallel problems as far back as the early 1990's

[26], [13] and until recently [9], [32], [25], [18].

Network Based High Performance

Computing

Karanjeet Singh Kahlon, Gurvinder Singh, and Arjan Singh

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2063International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

59
5.

pd
f

IV. PERFORMANCE METRICS

The parallel computing literature is rich in examples of

parallel algorithms that exhibit unbounded parallelism. Each,

of course, requires that workload and number of processors

increase indefinitely. Perhaps the oldest and most quoted

observation about limits to attainable speedup is Amdahl's

Law [1]. This law makes the observation that if one is to solve

a problem which contains both a serial component i.e., portion

of computing that cannot be parallelized and a parallel

component i.e., portion that can be run on a P processor

parallel computer with speedup P then the observed speedup

will be

Pps

ps

/
 (1)

Where, s and p are respectively the times needed to execute

the serial and parallel components on a single processor (in

general, s and p will be functions of some characteristics of

the instance being solved, e.g., the size of the instance). The

definition of speedup used by Amdahl corresponds to that of

relative speedup. Serial component remains a constant fraction

of the total serial work even as the workload increases.

 When dealing with problems for which c s / (s+p) 1

for some constant c, the attainable speedup is bounded even in

the face of increasing workloads and number of processors.

From Amdahl's law, one gets

Speed up =
Pps

ps

/
=

)(

1

psP

p

ps

s

)(

1

psP

p
c

c

1
 (2)

So, if 99% of the workload is parallelizable, then the

maximum speedup attainable is 100; if 99.9% is parallelizable,

the maximum attainable speedup is 1000; and if only 99.99%

is parallelizable, the speedup cannot exceed 10,000. This

reasoning was used by Amdahl to conclude that parallel

computers could not deliver significant speedup in practice as

to do this the serial component would have to be very small.

Gustafson’s law [10] can be stated as

1P
p

s
P (3)

It is proposed to use this formula for calculating the speedup

and compares the speedup obtained with the Amdahl’s law.

Efficiency is a performance metric closely related to speedup.

It is the ratio of speedup and the number of processors P.

Efficiency =
P

speedup
 (4)

V. SYSTEM OVERVIEW

The basic function of the virtual parallel computing system is

to provide any programmer on the Intranet with a simple

virtual parallel computer. This virtual machine is implemented

by utilizing all processors on the network that care to

participate at any given moment. The system is implemented

in Java and relies on its ubiquitous applet mechanism for

enabling wide scale safe participation of remote processors.

There are three types of entities in the virtual parallel

computing system

The computational extensive application program which

is to be parallellized written in Java and is divided into

sub-tasks and stored in a database in a queue. These sub-

tasks will be transferred to the client machine for

execution.

The server program which interacts with clients and waits

on a well known port for clients to connect on its local

ports, once the connection is established sub-tasks are

transferred to client machine and results are stored back

in sever after execution.

An applet program available on the web page which when

downloaded using the Internet browser on the client side

establishes the connection with server for execution of

sub-task on its CPU.

The basic architecture of the proposed system is shown in

figure 1. The application program achieves its parallelism by

concurrently spawning off many sub-computations. These

sub-computations are stored in a queue, which then forwards

them to connected clients. The clients execute the sub-

computations and return their results to the server, which

forwards them back to the application program. A set of

computers on a local area network is connected using TCP/IP

protocol and interacts with each other by stream socket

connections. TCP/IP sockets are used to implement reliable,

bi-directional, persistent, point-to-point, and stream-based

connections between machines on the network.

Fig. 1 Basic architecture of the system

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2064International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

59
5.

pd
f

VI. EXPERIMENTAL SETUP

For the sake of consistency in the measurement of the

experimental results, a homogeneous collection of 20 Pentium

PCs 1.5 GHz with 128M RAM, running Windows 98 OS, is

used to form the Intranet. All the machines are connected to

the each other via 10/100Mbps links. An integration problem

with different size of interval was taken as application

problem and was divided into different number of sub tasks.

The sub tasks were stored in a queue at server. As clients

connect to the server at different intervals these sub tasks are

allocated to them for execution. The time to complete the

whole computation with different numbers of client computer

was recorded. The data obtained from these experiments is

analyzed for speed up and efficiency of the system developed.

A. Server

Establishing a server in Java requires five steps. Step 1 is to

create a Server-Socket object. A call to the Server Socket

constructor such as

ServerSocket s = new ServerSocket (port, queueLength);

Registers an available port number and specifies a maximum

number of clients that can request connections to the server

i.e., the queue Length. If the queue is full, client connections

are automatically refused. The preceding statement

establishes the port where the server waits for connections

from clients also known as binding the server to the port. Each

client will ask to connect to the server on this port.

 Each client connection is managed with a Socket object.

Once the Server Socket is established in Step 2, the server

listens indefinitely or blocks for an attempt by a client to

connect. This is accomplished with a call to the Server Socket

accept method as in

Socket connection = s.accept ();

which returns a Socket object when a connection is

established. Step 3 is to get the Output Stream and Input

Stream objects that enable the server to communicate with the

client. The server sends information to the client via an Output

Stream object. The server receives information from the

client via an Input Stream object. To obtain the streams, the

server invokes method getOutputStream on the Socket to get a

reference to the Output Stream associated with the Socket and

invokes method getInputStream on the Socket to get a

reference to the Input Stream associated with the Socket.

 Step 4 is the processing phase in which the server and the

client communicate via the Input Stream and Output Stream

objects. In Step 5, when the transmission is complete, the

server closes the connection by invoking the close method on

the Socket. Speedup is one of the major criteria for measuring

the performance of a parallel system, With above information

for the job executed the speedup and efficiency which is

proposed to be calculated by using Amdahl’s law [1] and

Gustafson’s law [10].

B. Client

Establishing a client in Java requires four steps. In Step 1, a

Socket is created to connect to the server. The connection to

the server is established using a call to the Socket constructor

with two arguments the server’s Internet address and the port

number as in

Socket connection = new Socket (serverAddress, port);

If the connection attempt is successful, this statement returns a

Socket. A connection attempt that fails throws an instance of

a subclass of IOException; so many programs simply catch

IOException.

In Step 2, Socket methods getInputStream and

getOUtputStream are used to get references to the Socket’s

associated Input Stream and Output Stream, respectively.

Input Stream method read can be used to input

VII. RESULTS AND ANALYSIS

Experiments were repeated a number of times to verify the

consistency in the results.

The whole computation was conducted using three application

programs with different parameters as follows.

First application program was an integration problem with

range from 0 to 150 named Cat-A; the second was from 0 to

300 named Cat-B and third was from 0 to 450 named Cat-C.

Further each problem like Cat-A was executed in four sub

categories with increasing size of computation

Named A1SizeU, A1SizeV, A1SizeW and A1SizeX. Each

Problem Cat-A, Cat-B and Cat-C were executed by dividing

the range into interval of size 1, 2, unto 5.

Fig. 2 Speedup for Amdahl’s law

The Figure 2 shows the speedup obtained according to

Amdahl’s law for four jobs a1sizeU, a1sizeV, a1sizeW and

a1sizeX for the category a and with area size of one. Starting

from two processors the jobs ran in 8.306, 12.137, 16.079 and

19.817 seconds. This corresponds to a speedup of 1.967,

1.975, 1.981 and 1.985 respectively which indicates that as the

amount of computation in a job is increased there is a change

in the speedup from 1.967 to 1.985, a change of around .9

percent.

Speedup f or Cat - A_I nt 1(Amadhl 's l aw)

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 2 0 2 2

Number of P r ocessor s

A1SizeU
A1SizeV
A1SizeW
A1SizeX

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2065International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

59
5.

pd
f

The same jobs on twenty processors ran in .256, 12.136, 16.07

and 19.842. This corresponds to a speedup of 14.868, 16.196,

16.987 and 17.486 respectively. This indicates that as there is

an increase in the amount of computation in a job there is a

change in the speedup from 14.868 to 17.486 a change of

14.97 percent.

Fig. 3 Efficiency of the system

The Figure 3 shows the efficiency of the system. According to

Amdahl’s law for four jobs a1sizeU, a1sizeV, a1sizeW and

a1sizeX for the category A and with area size of one. The

efficiency is 98.23%, 98.8%. 99.089% and 99.24%

respectively for two processors, which indicates that as the

computation is increased in, jobs the change in efficiency if

from 98.23% to 99.24% which is a change of one percent. The

efficiency is 74.34%, 81%. 84.9% and 87.4% respectively for

twenty processors, which indicates that as the computation is

increased in, jobs the change in efficiency if from 74.34% to

87.4% which is a change of 13%.

Fig. 4 Speedup for Amdahl’s law

The figure 4 shows the speedup obtained according to

Gustafson’s law for four jobs a1sizeU, a1sizeV, a1sizeW and

a1sizeX for the category A and with area size of one with

twenty processors. This graph corresponds to table 1 which

shows that Starting from two processors the jobs ran in 8.306,

12.137, 16.079 and 19.817 seconds. This corresponds to a

speedup of 1.981, 1.987, 1.990 and 1.992 respectively which

indicates that as the amount of computation in a job is

increased there is a change in the speedup from 1.967 to

1.985, a change of around .55 percent. Also the table 1

indicates that there is a linear increase in the speedup

corresponding to the number of processor i.e. for two

processors the speedup is 1.981, for three processors the

speedup is 2.963 and so on for twenty processors the speedup

is 19.65. In graph 6.3 the speedup is shown for twenty

processors the jobs ran in 8.256, 12.136, 16.070 and 19.842

seconds. The speedup obtained is 19.65, 19.76, 19.82 and

19.85 respectively, which indicates the change from 19.65 to

19.85, a change of 1.007 percent.

Fig. 5 Efficiency of the system

The Figure 5 shows the efficiency of the system according to

Gustafson’s law for four jobs a1sizeU, a1sizeV, a1sizeW and

a1sizeX for the category a and with area size of one. The

efficiency is 99.1%, 99.3%. 99.589% and 99.62% respectively

for two processors, which indicates that as the computation is

increased in, jobs the change in efficiency if from 99.1% to

99.62% which is a change of .5%. The efficiency is 98.27%,

98.82%, 99.11% and 99.28% respectively which indicates that

as the computation is increased in jobs the change in

efficiency if from 98.27% to 99.28% which is a change of

1.01%.

 The above analysis indicates that according to Amdahl’s law

increase in the number of processor along with the increase in

amount of computation gives better speedup as well as

efficiency. Whereas according to Gustafson’s law there is a

E f f i c i ency f or Cat - A_I nt 1(Amadhl 's l aw)

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22

Number of P r ocessor s

A1SizeU A1SizeV

A1SizeW A1SizeX

Speedup for Cat-B_Int1(Gustafson's law)

19.6

19.65

19.7

19.75

19.8

19.85

19.9

19 20 21 22

Number of Processors

S
p

e
e

d
u

p

B1SizeU B1SizeV

B1SizeW B1SizeX

Efficiency for Cat-B_Int1(Gustafson's law)

0.98

0.985

0.99

0.995

1

0 2 4 6 8 10 12 14 16 18 20 22

Number of Processors

E
ff

ic
ie

n
c

y

B1SizeU B1SizeV

B1SizeW B1SizeX

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2066International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

59
5.

pd
f

linear increase in speedup as well as efficiency of the system

corresponding to the increase in the number of processors.

VIII.CONCLUSION

The proposed Virtual Parallel Computing system represents an

environment for distributed computing. Large number of

heterogeneous machines with different speeds and

configuration can participate to execute parallel jobs. Many

networked computers in parallel work at the same time on

different parts of the same problem. A LAN-based parallel

computing environment using Java programming language

has been created to perform parallel computing. Using

inexpensive personal computers and workstations to solve

complex problems has increasing appeal. Virtual parallel

computing supports some of the key functionality like

Speedup, Ease of use, Security, Platform Independence and

Code Mobility, Maximum utilization, Robustness, Openness

and scalability.

REFERENCES

[1] Distributed. Net: Bovine, Project Bovine. Available at

http://www.distributed. Net/rc5.

[2] Distributed. Net: Monarch, Project Monarch. Available at

http://www.distributed.net/des.

[3] Fields: 1993, S. Fields. Hunting for Wasted Computing Power: New

Software for Computing Net- works Puts Idle PC's to Work. Research

Sampler. University of Wisconsin Madison. 1993. URL:

http://www.cs.wisc.edu/condor/doc/WiscIdea.html.

[4] Freeman: 1995, N. Carriero, E. Freeman, D. Gelernter, and D.

Kaminsky. Adaptive parallelism and Piranha. Computer, 1995.

[5] Gibbs: 1997, W. Gibbs. Cyber View. Scientific American, May 1997.

[6] Gustafson: 1988, J. Gustafson, Reevaluating Amdahl's Law, CACM, 31,

5, 532-533, 1988.

[7] Internet Domain Survey: 1998 Network Wizards. Internet Domain

Survey, July 1998. Available at http:

//www.nw.com/zone/WWW/report.html.

[8] Kedem: 1995, A. Baratloo, P. Dasgupta, and Z. M. Kedem. Calypso: A

novel software system for fault-tolerant parallel processing on

distributed platforms. In Proceedings of International Symposium on

High-Performance Distributed Computing (HPDC), 1995.

[9] Levy: 1996, S. Levy. Wisecrackers. Wired, issue 4.03, Mar. 1996. URL:

http://www.wired.com/ wired/archive/4.03/crackers.html .

[10] Livny: 1991, M. Mutka and M. Livny. The available capacity of a

privately owned workstation environment. In Performance Evaluation,

1991.

[11] Nichols: 1987, D. Nichols. Using idle workstations in a shared

computing environment. In Proceedings of SOSP, 1987.

[12] Ousterhout: 1991, F. Douglis and J. Ousterhout. Transparent process

migration: Design alternatives and the Sprite implementation. Software

Practice and Experience, 1991.

[13] Patterson: 1995, T.E. Anderson, D.E. Culler, D. A. Patterson, and the

NOW Team. A case for networks of workstations: NOW. IEEE Micro,

Feb. 1995. URL: http://now.cs.berkeley. edu/Case/case.html

[14] Pearson: URL, K. Pearson. Internet based Distributed Computing

Projects. URL: http://www. nyx.net/”kpearson/distrib.html .

[15] Prouty:1995, J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J.

Walope. MPVM: A migration transparent version of PVM. Computing

Systems, 1995.

[16] Pruyne: 1996, J. Pruyne and M. Livny. Interfacing condor and pvm to

harness the cycles of workstation clusters. Journal on Future Generations

of Computer Systems, 1996.

[17] RSA Data Security: 97, RSA Laboratories Secret-Key Challenge.

Available at http://www.rsa.com/rsalabs/97challenge.

[18] RSA Data Security: des2, RSA Laboratories DES Challenge II.

Available at http: //www.rsa.com/rsalabs/des2.

[19] RSA Data Security: URL, RSA Data Security RSA Factoring Challenge.

[20] Salus: 1995, P. Salus. Casting the Net: From Arpanet to Internet and

Beyond. AddisonWesley, 1995.

[21] SETI@Home, URL: http://www.computer.org/cise/articles/seti.htm

[22] Strumpen: 1995, V. Strumpen. Coupling Hundreds of Workstations for

Parallel Molecular Sequence Analysis. Software: Practice and

Experience, 25(3), 1995, pages 291—304.

[23] Theimer: 1989, Theimer and K. Lantz. Finding idle machines in a

workstation-based distributed system. IEEE Transactions on Software

Engineering, 1989.

[24] Vesseur: 1994, L. Dikken, F. van Der Linden, J. Vesseur, and P. Sloot.

DynamicPVM: Dynamic load balancing on parallel systems. In

Proceedings High-Performance Computing and Networking, 1994.

[25] Woltman :1998, G. Woltman. Internet PrimetNet server. Available at

http://www. Entropia.com/primenet/status_htm, 1998.

[26] Woltman: URL, George Woltman. Great Internet Mersenne prime

search. Available at http: //www.mersenne.org/.

[27] Woltman: 1998(GIMPS), G. Woltman. GIMPS discovers 37th. Known

Mersenne prime. Available at http://www.mersenne.org/3021377.htm,

1998.

[28] Wulf: 1993, W. Wulf. The Collaborators Opportunity. Science. Aug.

1993.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2067International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

59
5.

pd
f

