Search results for: DSMC algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3425

Search results for: DSMC algorithm

2975 Combined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems

Authors: Younis R. Elhaddad

Abstract:

Combinatorial optimization problems arise in many scientific and practical applications. Therefore many researchers try to find or improve different methods to solve these problems with high quality results and in less time. Genetic Algorithm (GA) and Simulated Annealing (SA) have been used to solve optimization problems. Both GA and SA search a solution space throughout a sequence of iterative states. However, there are also significant differences between them. The GA mechanism is parallel on a set of solutions and exchanges information using the crossover operation. SA works on a single solution at a time. In this work SA and GA are combined using new technique in order to overcome the disadvantages' of both algorithms.

Keywords: Genetic Algorithm, Optimization problems, Simulated Annealing, Traveling Salesman Problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439
2974 Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line

Authors: Amany M. El-Zonkoly, Hussein Desouki

Abstract:

Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.

Keywords: Entropy calculation, FACTS, SSSC, UPFC, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
2973 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
2972 Development of Perez-Du Mortier Calibration Algorithm for Ground-Based Aerosol Optical Depth Measurement with Validation using SMARTS Model

Authors: Jedol Dayou, Jackson Hian Wui Chang, Rubena Yusoff, Ag. Sufiyan Abd. Hamid, Fauziah Sulaiman, Justin Sentian

Abstract:

Aerosols are small particles suspended in air that have wide varying spatial and temporal distributions. The concentration of aerosol in total columnar atmosphere is normally measured using aerosol optical depth (AOD). In long-term monitoring stations, accurate AOD retrieval is often difficult due to the lack of frequent calibration. To overcome this problem, a near-sea-level Langley calibration algorithm is developed using the combination of clear-sky detection model and statistical filter. It attempts to produce a dataset that consists of only homogenous and stable atmospheric condition for the Langley calibration purposes. In this paper, a radiance-based validation method is performed to further investigate the feasibility and consistency of the proposed algorithm at different location, day, and time. The algorithm is validated using SMARTS model based n DNI value. The overall results confirmed that the proposed calibration algorithm feasible and consistent for measurements taken at different sites and weather conditions.

Keywords: Aerosol optical depth, direct normal irradiance, Langley calibration, radiance-based validation, SMARTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
2971 Proposing a Pareto-based Multi-Objective Evolutionary Algorithm to Flexible Job Shop Scheduling Problem

Authors: Seyed Habib A. Rahmati

Abstract:

During last decades, developing multi-objective evolutionary algorithms for optimization problems has found considerable attention. Flexible job shop scheduling problem, as an important scheduling optimization problem, has found this attention too. However, most of the multi-objective algorithms that are developed for this problem use nonprofessional approaches. In another words, most of them combine their objectives and then solve multi-objective problem through single objective approaches. Of course, except some scarce researches that uses Pareto-based algorithms. Therefore, in this paper, a new Pareto-based algorithm called controlled elitism non-dominated sorting genetic algorithm (CENSGA) is proposed for the multi-objective FJSP (MOFJSP). Our considered objectives are makespan, critical machine work load, and total work load of machines. The proposed algorithm is also compared with one the best Pareto-based algorithms of the literature on some multi-objective criteria, statistically.

Keywords: Scheduling, Flexible job shop scheduling problem, controlled elitism non-dominated sorting genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
2970 A Comparison between Heuristic and Meta-Heuristic Methods for Solving the Multiple Traveling Salesman Problem

Authors: San Nah Sze, Wei King Tiong

Abstract:

The multiple traveling salesman problem (mTSP) can be used to model many practical problems. The mTSP is more complicated than the traveling salesman problem (TSP) because it requires determining which cities to assign to each salesman, as well as the optimal ordering of the cities within each salesman's tour. Previous studies proposed that Genetic Algorithm (GA), Integer Programming (IP) and several neural network (NN) approaches could be used to solve mTSP. This paper compared the results for mTSP, solved with Genetic Algorithm (GA) and Nearest Neighbor Algorithm (NNA). The number of cities is clustered into a few groups using k-means clustering technique. The number of groups depends on the number of salesman. Then, each group is solved with NNA and GA as an independent TSP. It is found that k-means clustering and NNA are superior to GA in terms of performance (evaluated by fitness function) and computing time.

Keywords: Multiple Traveling Salesman Problem, GeneticAlgorithm, Nearest Neighbor Algorithm, k-Means Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3230
2969 AGV Guidance System: An Application of Simple Active Contour for Visual Tracking

Authors: M.Asif, M.R.Arshad, P.A.Wilson

Abstract:

In this paper, a simple active contour based visual tracking algorithm is presented for outdoor AGV application which is currently under development at the USM robotic research group (URRG) lab. The presented algorithm is computationally low cost and able to track road boundaries in an image sequence and can easily be implemented on available low cost hardware. The proposed algorithm used an active shape modeling using the B-spline deformable template and recursive curve fitting method to track the current orientation of the road.

Keywords: Active contour, B-spline, recursive curve fitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
2968 Digital Control Algorithm Based on Delta-Operator for High-Frequency DC-DC Switching Converters

Authors: Renkai Wang, Tingcun Wei

Abstract:

In this paper, a digital control algorithm based on delta-operator is presented for high-frequency digitally-controlled DC-DC switching converters. The stability and the controlling accuracy of the DC-DC switching converters are improved by using the digital control algorithm based on delta-operator without increasing the hardware circuit scale. The design method of voltage compensator in delta-domain using PID (Proportion-Integration- Differentiation) control is given in this paper, and the simulation results based on Simulink platform are provided, which have verified the theoretical analysis results very well. It can be concluded that, the presented control algorithm based on delta-operator has better stability and controlling accuracy, and easier hardware implementation than the existed control algorithms based on z-operator, therefore it can be used for the voltage compensator design in high-frequency digitally- controlled DC-DC switching converters.

Keywords: Digitally-controlled DC-DC switching converter, finite word length, control algorithm based on delta-operator, high-frequency, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
2967 A Novel Plausible Deniability Scheme in Secure Steganography

Authors: Farshad Amin, Majid Soleimanipour, Alireza Karimi

Abstract:

The goal of steganography is to avoid drawing suspicion to the transmission of a hidden message. If suspicion is raised, steganography may fail. The success of steganography depends on the secrecy of the action. If steganography is detected, the system will fail but data security depends on the robustness of the applied algorithm. In this paper, we propose a novel plausible deniability scheme in steganography by using a diversionary message and encrypt it with a DES-based algorithm. Then, we compress the secret message and encrypt it by the receiver-s public key along with the stego key and embed both messages in a carrier using an embedding algorithm. It will be demonstrated how this method can support plausible deniability and is robust against steganalysis.

Keywords: Steganography, Cryptography, Information Hiding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
2966 Identification of the Parameters of a AC Servomotor Using Genetic Algorithm

Authors: J. G. Batista, K. N. Sousa, J. L. Nunes, R. L. S. Sousa, G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measured and/or expected values.

Keywords: Modeling, AC servomotor, Permanent Magnet Synchronous Motor-PMSM, Genetic Algorithm, Vector Control, Robotic Manipulator, Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
2965 Introducing a Platform for Encryption Algorithms

Authors: Ahmad Habibizad Navin, Yasaman Hashemi, Omid Mirmotahari

Abstract:

In this paper, we introduce a novel platform encryption method, which modify its keys and random number generators step by step during encryption algorithms. According to complexity of the proposed algorithm, it was safer than any other method.

Keywords: Decryption, Encryption, Algorithm, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
2964 Optimization of Unweighted Minimum Vertex Cover

Authors: S. Balaji, V. Swaminathan, K. Kannan

Abstract:

The Minimum Vertex Cover (MVC) problem is a classic graph optimization NP - complete problem. In this paper a competent algorithm, called Vertex Support Algorithm (VSA), is designed to find the smallest vertex cover of a graph. The VSA is tested on a large number of random graphs and DIMACS benchmark graphs. Comparative study of this algorithm with the other existing methods has been carried out. Extensive simulation results show that the VSA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.

Keywords: vertex cover, vertex support, approximation algorithms, NP - complete problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
2963 Nature Inspired Metaheuristic Algorithms for Multilevel Thresholding Image Segmentation - A Survey

Authors: C. Deepika, J. Nithya

Abstract:

Segmentation is one of the essential tasks in image processing. Thresholding is one of the simplest techniques for performing image segmentation. Multilevel thresholding is a simple and effective technique. The primary objective of bi-level or multilevel thresholding for image segmentation is to determine a best thresholding value. To achieve multilevel thresholding various techniques has been proposed. A study of some nature inspired metaheuristic algorithms for multilevel thresholding for image segmentation is conducted. Here, we study about Particle swarm optimization (PSO) algorithm, artificial bee colony optimization (ABC), Ant colony optimization (ACO) algorithm and Cuckoo search (CS) algorithm.

Keywords: Ant colony optimization, Artificial bee colony optimization, Cuckoo search algorithm, Image segmentation, Multilevel thresholding, Particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3520
2962 A Parallel Quadtree Approach for Image Compression using Wavelets

Authors: Hamed Vahdat Nejad, Hossein Deldari

Abstract:

Wavelet transforms are multiresolution decompositions that can be used to analyze signals and images. Image compression is one of major applications of wavelet transforms in image processing. It is considered as one of the most powerful methods that provides a high compression ratio. However, its implementation is very time-consuming. At the other hand, parallel computing technologies are an efficient method for image compression using wavelets. In this paper, we propose a parallel wavelet compression algorithm based on quadtrees. We implement the algorithm using MatlabMPI (a parallel, message passing version of Matlab), and compute its isoefficiency function, and show that it is scalable. Our experimental results confirm the efficiency of the algorithm also.

Keywords: Image compression, MPI, Parallel computing, Wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
2961 Hybrid Genetic-Simulated Annealing Approach for Fractal Image Compression

Authors: Y.Chakrapani, K.Soundera Rajan

Abstract:

In this paper a hybrid technique of Genetic Algorithm and Simulated Annealing (HGASA) is applied for Fractal Image Compression (FIC). With the help of this hybrid evolutionary algorithm effort is made to reduce the search complexity of matching between range block and domain block. The concept of Simulated Annealing (SA) is incorporated into Genetic Algorithm (GA) in order to avoid pre-mature convergence of the strings. One of the image compression techniques in the spatial domain is Fractal Image Compression but the main drawback of FIC is that it involves more computational time due to global search. In order to improve the computational time along with acceptable quality of the decoded image, HGASA technique has been proposed. Experimental results show that the proposed HGASA is a better method than GA in terms of PSNR for Fractal image Compression.

Keywords: Fractal Image Compression, Genetic Algorithm, HGASA, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
2960 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning

Authors: Chunming Xu

Abstract:

Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.

Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
2959 An Improved Fast Video Clip Search Algorithm for Copy Detection using Histogram-based Features

Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we present an improved fast and robust search algorithm for copy detection using histogram-based features for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal histogram feature which is robust to color distortion. Furthermore, by Combining with a temporal division method, the spatial and temporal features of the video sequence are integrated to realize fast and robust video search for copy detection. Experimental results show the proposed algorithm can detect the similar video clip more accurately and robust than conventional fast video search algorithm.

Keywords: Fast search, Copy detection, Adjacent pixel intensity difference quantization (APIDQ), DC image, Histogram feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
2958 An Introduction to E-Content Producing Algorithm for Screen-Recorded Videos

Authors: J. Darsareh, M. Nikafrooz

Abstract:

Some teachers and e-content producers, based on their experiences, try to produce educational videos using screen recording software. There are many challenges they may encounter while producing screen-recorded videos. These are in the domains of technical and pedagogical challenges like; designing the production roadmap, preparing the screen, setting the recording software, recording the screen, editing, etc. This article presents some procedures for producing acceptable and well-made videos. These procedures are presented in the form of an algorithm for producing screen-recorded video. This algorithm presents the main producing phases, including design, pre-production, production, post-production, and distribution. These phases consist of some steps which are supported by several technical and pedagogical considerations. Following these phases and steps according to the suggested order helps the producers to produce their intended and desired video by saving time and also facing fewer technical problems. It is expected that by using this algorithm, e-content producers and teachers gain better performance in producing educational videos.

Keywords: E-content, educational video production, screen recording software, screen-recorded videos, e-content producing algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268
2957 A Modified Cross Correlation in the Frequency Domain for Fast Pattern Detection Using Neural Networks

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

Recently, neural networks have shown good results for detection of a certain pattern in a given image. In our previous papers [1-5], a fast algorithm for pattern detection using neural networks was presented. Such algorithm was designed based on cross correlation in the frequency domain between the input image and the weights of neural networks. Image conversion into symmetric shape was established so that fast neural networks can give the same results as conventional neural networks. Another configuration of symmetry was suggested in [3,4] to improve the speed up ratio. In this paper, our previous algorithm for fast neural networks is developed. The frequency domain cross correlation is modified in order to compensate for the symmetric condition which is required by the input image. Two new ideas are introduced to modify the cross correlation algorithm. Both methods accelerate the speed of the fast neural networks as there is no need for converting the input image into symmetric one as previous. Theoretical and practical results show that both approaches provide faster speed up ratio than the previous algorithm.

Keywords: Fast Pattern Detection, Neural Networks, Modified Cross Correlation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
2956 Skyline Extraction using a Multistage Edge Filtering

Authors: Byung-Ju Kim, Jong-Jin Shin, Hwa-Jin Nam, Jin-Soo Kim

Abstract:

Skyline extraction in mountainous images can be used for navigation of vehicles or UAV(unmanned air vehicles), but it is very hard to extract skyline shape because of clutters like clouds, sea lines and field borders in images. We developed the edge-based skyline extraction algorithm using a proposed multistage edge filtering (MEF) technique. In this method, characteristics of clutters in the image are first defined and then the lines classified as clutters are eliminated by stages using the proposed MEF technique. After this processing, we select the last line using skyline measures among the remained lines. This proposed algorithm is robust under severe environments with clutters and has even good performance for infrared sensor images with a low resolution. We tested this proposed algorithm for images obtained in the field by an infrared camera and confirmed that the proposed algorithm produced a better performance and faster processing time than conventional algorithms.

Keywords: MEF, mountainous image, navigation, skyline

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
2955 Tuning of Power System Stabilizers in a Multi- Machine Power System using C-Catfish PSO

Authors: M. H. Moradi, S. M. Moosavi, A. R. Reisi

Abstract:

The main objective of this paper is to investigate the enhancement of power system stability via coordinated tuning of Power System Stabilizers (PSSs) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem. Chaotic catfish particle swarm optimization (C-Catfish PSO) algorithm is used to minimize the ITAE objective function. The proposed algorithm is evaluated on a two-area, 4- machines system. The robustness of the proposed algorithm is verified on this system under different operating conditions and applying a three-phase fault. The nonlinear time-domain simulation results and some performance indices show the effectiveness of the proposed controller in damping power system oscillations and this novel optimization algorithm is compared with particle swarm optimization (PSO).

Keywords: Power system stabilizer, C-Catfish PSO, ITAE objective function, Power system control, Multi-machine power system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2414
2954 Minimal Spanning Tree based Fuzzy Clustering

Authors: Ágnes Vathy-Fogarassy, Balázs Feil, János Abonyi

Abstract:

Most of fuzzy clustering algorithms have some discrepancies, e.g. they are not able to detect clusters with convex shapes, the number of the clusters should be a priori known, they suffer from numerical problems, like sensitiveness to the initialization, etc. This paper studies the synergistic combination of the hierarchical and graph theoretic minimal spanning tree based clustering algorithm with the partitional Gath-Geva fuzzy clustering algorithm. The aim of this hybridization is to increase the robustness and consistency of the clustering results and to decrease the number of the heuristically defined parameters of these algorithms to decrease the influence of the user on the clustering results. For the analysis of the resulted fuzzy clusters a new fuzzy similarity measure based tool has been presented. The calculated similarities of the clusters can be used for the hierarchical clustering of the resulted fuzzy clusters, which information is useful for cluster merging and for the visualization of the clustering results. As the examples used for the illustration of the operation of the new algorithm will show, the proposed algorithm can detect clusters from data with arbitrary shape and does not suffer from the numerical problems of the classical Gath-Geva fuzzy clustering algorithm.

Keywords: Clustering, fuzzy clustering, minimal spanning tree, cluster validity, fuzzy similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405
2953 A Fuzzy Dynamic Load Balancing Algorithm for Homogenous Distributed Systems

Authors: Ali M. Alakeel

Abstract:

Load balancing in distributed computer systems is the process of redistributing the work load among processors in the system to improve system performance. Most of previous research in using fuzzy logic for the purpose of load balancing has only concentrated in utilizing fuzzy logic concepts in describing processors load and tasks execution length. The responsibility of the fuzzy-based load balancing process itself, however, has not been discussed and in most reported work is assumed to be performed in a distributed fashion by all nodes in the network. This paper proposes a new fuzzy dynamic load balancing algorithm for homogenous distributed systems. The proposed algorithm utilizes fuzzy logic in dealing with inaccurate load information, making load distribution decisions, and maintaining overall system stability. In terms of control, we propose a new approach that specifies how, when, and by which node the load balancing is implemented. Our approach is called Centralized-But-Distributed (CBD).

Keywords: Dynamic load balancing, fuzzy logic, distributed systems, algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
2952 Automatic Camera Calibration for Images of Soccer Match

Authors: Qihe Li, Yupin Luo

Abstract:

Camera calibration plays an important role in the domain of the analysis of sports video. Considering soccer video, in most cases, the cross-points can be used for calibration at the center of the soccer field are not sufficient, so this paper introduces a new automatic camera calibration algorithm focus on solving this problem by using the properties of images of the center circle, halfway line and a touch line. After the theoretical analysis, a practicable automatic algorithm is proposed. Very little information used though, results of experiments with both synthetic data and real data show that the algorithm is applicable.

Keywords: Absolute conic, camera calibration, circular points, line at infinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
2951 Localization by DKF Multi Sensor Fusion in the Uncertain Environments for Mobile Robot

Authors: Omid Sojodishijani, Saeed Ebrahimijam, Vahid Rostami

Abstract:

This paper presents an optimized algorithm for robot localization which increases the correctness and accuracy of the estimating position of mobile robot to more than 150% of the past methods [1] in the uncertain and noisy environment. In this method the odometry and vision sensors are combined by an adapted well-known discrete kalman filter [2]. This technique also decreased the computation process of the algorithm by DKF simple implementation. The experimental trial of the algorithm is performed on the robocup middle size soccer robot; the system can be used in more general environments.

Keywords: Discrete Kalman filter, odometry sensor, omnidirectional vision sensor, Robot Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
2950 Survey on Image Mining Using Genetic Algorithm

Authors: Jyoti Dua

Abstract:

One image is worth more than thousand words. Images if analyzed can reveal useful information. Low level image processing deals with the extraction of specific feature from a single image. Now the question arises: What technique should be used to extract patterns of very large and detailed image database? The answer of the question is: “Image Mining”. Image Mining deals with the extraction of image data relationship, implicit knowledge, and another pattern from the collection of images or image database. It is nothing but the extension of Data Mining. In the following paper, not only we are going to scrutinize the current techniques of image mining but also present a new technique for mining images using Genetic Algorithm.

Keywords: Image Mining, Data Mining, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
2949 An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm

Authors: Essam Al Daoud

Abstract:

This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate than other implemented methods.

Keywords: Least squares, neighbor joining, phylogenetic tree, wild dogpack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
2948 Vibration Base Identification of Impact Force Using Genetic Algorithm

Authors: R. Hashemi, M.H.Kargarnovin

Abstract:

This paper presents the identification of the impact force acting on a simply supported beam. The force identification is an inverse problem in which the measured response of the structure is used to determine the applied force. The identification problem is formulated as an optimization problem and the genetic algorithm is utilized to solve the optimization problem. The objective function is calculated on the difference between analytical and measured responses and the decision variables are the location and magnitude of the applied force. The results from simulation show the effectiveness of the approach and its robustness vs. the measurement noise and sensor location.

Keywords: Genetic Algorithm, Inverse problem, Optimization, Vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
2947 An Index based Forward Backward Multiple Pattern Matching Algorithm

Authors: Raju Bhukya, DVLN Somayajulu

Abstract:

Pattern matching is one of the fundamental applications in molecular biology. Searching DNA related data is a common activity for molecular biologists. In this paper we explore the applicability of a new pattern matching technique called Index based Forward Backward Multiple Pattern Matching algorithm(IFBMPM), for DNA Sequences. Our approach avoids unnecessary comparisons in the DNA Sequence due to this; the number of comparisons of the proposed algorithm is very less compared to other existing popular methods. The number of comparisons rapidly decreases and execution time decreases accordingly and shows better performance.

Keywords: Comparisons, DNA Sequence, Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
2946 Enhance Image Transmission Based on DWT with Pixel Interleaver

Authors: Muhanned Alfarras

Abstract:

The recent growth of using multimedia transmission over wireless communication systems, have challenges to protect the data from lost due to wireless channel effect. Images are corrupted due to the noise and fading when transmitted over wireless channel, in wireless channel the image is transmitted block by block, Due to severe fading, entire image blocks can be damaged. The aim of this paper comes out from need to enhance the digital images at the wireless receiver side. Proposed Boundary Interpolation (BI) Algorithm using wavelet, have been adapted here used to reconstruction the lost block in the image at the receiver depend on the correlation between the lost block and its neighbors. New Proposed technique by using Boundary Interpolation (BI) Algorithm using wavelet with Pixel interleaver has been implemented. Pixel interleaver work on distribute the pixel to new pixel position of original image before transmitting the image. The block lost through wireless channel is only effects individual pixel. The lost pixels at the receiver side can be recovered by using Boundary Interpolation (BI) Algorithm using wavelet. The results showed that the New proposed algorithm boundary interpolation (BI) using wavelet with pixel interleaver is better in term of MSE and PSNR.

Keywords: Image Transmission, Wavelet, Pixel Interleaver, Boundary Interpolation Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593