Search results for: Content based image retrieval (CBIR)
12720 A Stereo Image Processing System for Visually Impaired
Authors: G. Balakrishnan, G. Sainarayanan, R. Nagarajan, Sazali Yaacob
Abstract:
This paper presents a review on vision aided systems and proposes an approach for visual rehabilitation using stereo vision technology. The proposed system utilizes stereo vision, image processing methodology and a sonification procedure to support blind navigation. The developed system includes a wearable computer, stereo cameras as vision sensor and stereo earphones, all moulded in a helmet. The image of the scene infront of visually handicapped is captured by the vision sensors. The captured images are processed to enhance the important features in the scene in front, for navigation assistance. The image processing is designed as model of human vision by identifying the obstacles and their depth information. The processed image is mapped on to musical stereo sound for the blind-s understanding of the scene infront. The developed method has been tested in the indoor and outdoor environments and the proposed image processing methodology is found to be effective for object identification.Keywords: Blind navigation, stereo vision, image processing, object preference, music tones.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 411512719 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation
Authors: Aicha Majda, Abdelhamid El Hassani
Abstract:
Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.Keywords: Graph cuts, lung CT scan, lung parenchyma segmentation, patch based similarity metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74312718 Single Image Defogging Method Using Variational Approach for Edge-Preserving Regularization
Authors: Wan-Hyun Cho, In-Seop Na, Seong-ChaeSeo, Sang-Kyoon Kim, Soon-Young Park
Abstract:
In this paper, we propose the variational approach to solve single image defogging problem. In the inference process of the atmospheric veil, we defined new functional for atmospheric veil that satisfy edge-preserving regularization property. By using the fundamental lemma of calculus of variations, we derive the Euler-Lagrange equation foratmospheric veil that can find the maxima of a given functional. This equation can be solved by using a gradient decent method and time parameter. Then, we can have obtained the estimated atmospheric veil, and then have conducted the image restoration by using inferred atmospheric veil. Finally we have improved the contrast of restoration image by various histogram equalization methods. The experimental results show that the proposed method achieves rather good defogging results.
Keywords: Image defogging, Image restoration, Atmospheric veil, Transmission, Variational approach, Euler-Lagrange equation, Image enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 294112717 Design of a DCT-based Image Compression with Efficient Enhancement Filter
Authors: Yen-Yu Chen, Pao-Ching Chu, Ya-Ling Tsai
Abstract:
The algorithm represents the DCT coefficients to concentrate signal energy and proposes combination and dictator to eliminate the correlation in the same level subband for encoding the DCT-based images. This work adopts DCT and modifies the SPIHT algorithm to encode DCT coefficients. The proposed algorithm also provides the enhancement function in low bit rate in order to improve the perceptual quality. Experimental results indicate that the proposed technique improves the quality of the reconstructed image in terms of both PSNR and the perceptual results close to JPEG2000 at the same bit rate.
Keywords: JPEG 2000, enhancement filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169312716 Subjective Assessment about Super Resolution Image Resolution
Authors: Seiichi Gohshi, Hiroyuki Sekiguchi, Yoshiyasu Shimizu, Takeshi Ikenaga
Abstract:
Super resolution (SR) technologies are now being applied to video to improve resolution. Some TV sets are now equipped with SR functions. However, it is not known if super resolution image reconstruction (SRR) for TV really works or not. Super resolution with non-linear signal processing (SRNL) has recently been proposed. SRR and SRNL are the only methods for processing video signals in real time. The results from subjective assessments of SSR and SRNL are described in this paper. SRR video was produced in simulations with quarter precision motion vectors and 100 iterations. These are ideal conditions for SRR. We found that the image quality of SRNL is better than that of SRR even though SRR was processed under ideal conditions.Keywords: Super Resolution Image Reconstruction, Super Resolution with Non-Linear Signal Processing, Subjective Assessment, Image Quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169512715 Weld Defect Detection in Industrial Radiography Based Digital Image Processing
Authors: N. Nacereddine, M. Zelmat, S. S. Belaïfa, M. Tridi
Abstract:
Industrial radiography is a famous technique for the identification and evaluation of discontinuities, or defects, such as cracks, porosity and foreign inclusions found in welded joints. Although this technique has been well developed, improving both the inspection process and operating time, it does suffer from several drawbacks. The poor quality of radiographic images is due to the physical nature of radiography as well as small size of the defects and their poor orientation relatively to the size and thickness of the evaluated parts. Digital image processing techniques allow the interpretation of the image to be automated, avoiding the presence of human operators making the inspection system more reliable, reproducible and faster. This paper describes our attempt to develop and implement digital image processing algorithms for the purpose of automatic defect detection in radiographic images. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of global and local preprocessing and segmentation methods must be appropriated.
Keywords: Digital image processing, global and localapproaches, radiographic film, weld defect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407212714 Nature Inspired Metaheuristic Algorithms for Multilevel Thresholding Image Segmentation - A Survey
Authors: C. Deepika, J. Nithya
Abstract:
Segmentation is one of the essential tasks in image processing. Thresholding is one of the simplest techniques for performing image segmentation. Multilevel thresholding is a simple and effective technique. The primary objective of bi-level or multilevel thresholding for image segmentation is to determine a best thresholding value. To achieve multilevel thresholding various techniques has been proposed. A study of some nature inspired metaheuristic algorithms for multilevel thresholding for image segmentation is conducted. Here, we study about Particle swarm optimization (PSO) algorithm, artificial bee colony optimization (ABC), Ant colony optimization (ACO) algorithm and Cuckoo search (CS) algorithm.
Keywords: Ant colony optimization, Artificial bee colony optimization, Cuckoo search algorithm, Image segmentation, Multilevel thresholding, Particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352312713 Tree Based Decomposition of Sunspot Images
Authors: Hossein Mirzaee, Farhad Besharati
Abstract:
Solar sunspot rotation, latitudinal bands are studied based on intelligent computation methods. A combination of image fusion method with together tree decomposition is used to obtain quantitative values about the latitudes of trajectories on sun surface that sunspots rotate around them. Daily solar images taken with SOlar and Heliospheric (SOHO) satellite are fused for each month separately .The result of fused image is decomposed with Quad Tree decomposition method in order to achieve the precise information about latitudes of sunspot trajectories. Such analysis is useful for gathering information about the regions on sun surface and coordinates in space that is more expose to solar geomagnetic storms, tremendous flares and hot plasma gases permeate interplanetary space and help human to serve their technical systems. Here sunspot images in September, November and October in 2001 are used for studying the magnetic behavior of sun.Keywords: Quad tree decomposition, sunspot image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125012712 Robust Minutiae Watermarking in Wavelet Domain for Fingerprint Security
Authors: Rajlaxmi Chouhan, Pritee Khanna
Abstract:
In this manuscript, a wavelet-based blind watermarking scheme has been proposed as a means to provide security to authenticity of a fingerprint. The information used for identification or verification of a fingerprint mainly lies in its minutiae. By robust watermarking of the minutiae in the fingerprint image itself, the useful information can be extracted accurately even if the fingerprint is severely degraded. The minutiae are converted in a binary watermark and embedding these watermarks in the detail regions increases the robustness of watermarking, at little to no additional impact on image quality. It has been experimentally shown that when the minutiae is embedded into wavelet detail coefficients of a fingerprint image in spread spectrum fashion using a pseudorandom sequence, the robustness is observed to have a proportional response while perceptual invisibility has an inversely proportional response to amplification factor “K". The DWT-based technique has been found to be very robust against noises, geometrical distortions filtering and JPEG compression attacks and is also found to give remarkably better performance than DCT-based technique in terms of correlation coefficient and number of erroneous minutiae.Keywords: Fingerprint watermarking, minutiae, discrete wavelet transform, PN sequence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201912711 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.
Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58312710 Parallel Double Splicing on Iso-Arrays
Authors: V. Masilamani, D.K. Sheena Christy, D.G. Thomas
Abstract:
Image synthesis is an important area in image processing. To synthesize images various systems are proposed in the literature. In this paper, we propose a bio-inspired system to synthesize image and to study the generating power of the system, we define the class of languages generated by our system. We call image as array in this paper. We use a primitive called iso-array to synthesize image/array. The operation is double splicing on iso-arrays. The double splicing operation is used in DNA computing and we use this to synthesize image. A comparison of the family of languages generated by the proposed self restricted double splicing systems on iso-arrays with the existing family of local iso-picture languages is made. Certain closure properties such as union, concatenation and rotation are studied for the family of languages generated by the proposed model.Keywords: DNA computing, splicing system, iso-picture languages, iso-array double splicing system, iso-array self splicing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154412709 Face Recognition with Image Rotation Detection, Correction and Reinforced Decision using ANN
Authors: Hemashree Bordoloi, Kandarpa Kumar Sarma
Abstract:
Rotation or tilt present in an image capture by digital means can be detected and corrected using Artificial Neural Network (ANN) for application with a Face Recognition System (FRS). Principal Component Analysis (PCA) features of faces at different angles are used to train an ANN which detects the rotation for an input image and corrected using a set of operations implemented using another system based on ANN. The work also deals with the recognition of human faces with features from the foreheads, eyes, nose and mouths as decision support entities of the system configured using a Generalized Feed Forward Artificial Neural Network (GFFANN). These features are combined to provide a reinforced decision for verification of a person-s identity despite illumination variations. The complete system performing facial image rotation detection, correction and recognition using re-enforced decision support provides a success rate in the higher 90s.Keywords: Rotation, Face, Recognition, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206212708 Using Automatic Ontology Learning Methods in Human Plausible Reasoning Based Systems
Authors: A. R. Vazifedoost, M. Rahgozar, F. Oroumchian
Abstract:
Knowledge discovery from text and ontology learning are relatively new fields. However their usage is extended in many fields like Information Retrieval (IR) and its related domains. Human Plausible Reasoning based (HPR) IR systems for example need a knowledge base as their underlying system which is currently made by hand. In this paper we propose an architecture based on ontology learning methods to automatically generate the needed HPR knowledge base.Keywords: Ontology Learning, Human Plausible Reasoning, knowledge extraction, knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160112707 A Differential Calculus Based Image Steganography with Crossover
Authors: Srilekha Mukherjee, Subha Ash, Goutam Sanyal
Abstract:
Information security plays a major role in uplifting the standard of secured communications via global media. In this paper, we have suggested a technique of encryption followed by insertion before transmission. Here, we have implemented two different concepts to carry out the above-specified tasks. We have used a two-point crossover technique of the genetic algorithm to facilitate the encryption process. For each of the uniquely identified rows of pixels, different mathematical methodologies are applied for several conditions checking, in order to figure out all the parent pixels on which we perform the crossover operation. This is done by selecting two crossover points within the pixels thereby producing the newly encrypted child pixels, and hence the encrypted cover image. In the next lap, the first and second order derivative operators are evaluated to increase the security and robustness. The last lap further ensures reapplication of the crossover procedure to form the final stego-image. The complexity of this system as a whole is huge, thereby dissuading the third party interferences. Also, the embedding capacity is very high. Therefore, a larger amount of secret image information can be hidden. The imperceptible vision of the obtained stego-image clearly proves the proficiency of this approach.Keywords: Steganography, Crossover, Differential Calculus, Peak Signal to Noise Ratio, Cross-correlation Coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139412706 A Review on Image Segmentation Techniques and Performance Measures
Authors: David Libouga Li Gwet, Marius Otesteanu, Ideal Oscar Libouga, Laurent Bitjoka, Gheorghe D. Popa
Abstract:
Image segmentation is a method to extract regions of interest from an image. It remains a fundamental problem in computer vision. The increasing diversity and the complexity of segmentation algorithms have led us firstly, to make a review and classify segmentation techniques, secondly to identify the most used measures of segmentation performance and thirdly, discuss deeply on segmentation philosophy in order to help the choice of adequate segmentation techniques for some applications. To justify the relevance of our analysis, recent algorithms of segmentation are presented through the proposed classification.Keywords: Classification, image segmentation, measures of performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205112705 Branding Urban Spaces as an Approach for City Branding -Case study: Cairo City, Egypt
Authors: Mohammad R. M. Abdelaal, Reeman M. R. Hussein
Abstract:
With the beginning of the new century, man still faces many challenges in how to form and develop his urban environment. To meet these challenges, many cities have tried to develop its visual image. This is by transforming their urban environment into a branded visual image; this is at the level of squares, the main roads, the borders, and the landmarks. In this realm, the paper aims at activating the role of branded urban spaces as an approach for the development of visual image of cities, especially in Egypt. It concludes the need to recognize the importance of developing the visual image in Egypt, through directing the urban planners to the important role of such spaces in achieving sustainability.Keywords: Urban branded spaces, brand image, sustainable development, Cairo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 309312704 Localization of Anatomical Landmarks in Head CT Images for Image to Patient Registration
Authors: M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs
Abstract:
The use of anatomical landmarks as a basis for image to patient registration is appealing because the registration may be performed retrospectively. We have previously proposed the use of two anatomical soft tissue landmarks of the head, the canthus (corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), as a registration basis for an automated CT image to patient registration system, and described their localization in patient space using close range photogrammetry. In this paper, the automatic localization of these landmarks in CT images, based on their curvature saliency and using a rule based system that incorporates prior knowledge of their characteristics, is described. Existing approaches to landmark localization in CT images are predominantly semi-automatic and primarily for localizing internal landmarks. To validate our approach, the positions of the landmarks localized automatically and manually in near isotropic CT images of 102 patients were compared. The average difference was 1.2mm (std = 0.9mm, max = 4.5mm) for the medial canthus and 0.8mm (std = 0.6mm, max = 2.6mm) for the tragus. The medial canthus and tragus can be automatically localized in CT images, with performance comparable to manual localization, based on the approach presented.
Keywords: Anatomical Landmarks, CT, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332512703 Development of EPID-based Real time Dose Verification for Dynamic IMRT
Authors: Todsaporn Fuangrod, Daryl J. O'Connor, Boyd MC McCurdy, Peter B. Greer
Abstract:
An electronic portal image device (EPID) has become a method of patient-specific IMRT dose verification for radiotherapy. Research studies have focused on pre and post-treatment verification, however, there are currently no interventional procedures using EPID dosimetry that measure the dose in real time as a mechanism to ensure that overdoses do not occur and underdoses are detected as soon as is practically possible. As a result, an EPID-based real time dose verification system for dynamic IMRT was developed and was implemented with MATLAB/Simulink. The EPID image acquisition was set to continuous acquisition mode at 1.4 images per second. The system defined the time constraint gap, or execution gap at the image acquisition time, so that every calculation must be completed before the next image capture is completed. In addition, the <=-evaluation method was used for dose comparison, with two types of comparison processes; individual image and cumulative dose comparison monitored. The outputs of the system are the <=-map, the percent of <=<1, and mean-<= versus time, all in real time. Two strategies were used to test the system, including an error detection test and a clinical data test. The system can monitor the actual dose delivery compared with the treatment plan data or previous treatment dose delivery that means a radiation therapist is able to switch off the machine when the error is detected.Keywords: real-time dose verification, EPID dosimetry, simulation, dynamic IMRT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218812702 A Novel VLSI Architecture for Image Compression Model Using Low power Discrete Cosine Transform
Authors: Vijaya Prakash.A.M, K.S.Gurumurthy
Abstract:
In Image processing the Image compression can improve the performance of the digital systems by reducing the cost and time in image storage and transmission without significant reduction of the Image quality. This paper describes hardware architecture of low complexity Discrete Cosine Transform (DCT) architecture for image compression[6]. In this DCT architecture, common computations are identified and shared to remove redundant computations in DCT matrix operation. Vector processing is a method used for implementation of DCT. This reduction in computational complexity of 2D DCT reduces power consumption. The 2D DCT is performed on 8x8 matrix using two 1-Dimensional Discrete cosine transform blocks and a transposition memory [7]. Inverse discrete cosine transform (IDCT) is performed to obtain the image matrix and reconstruct the original image. The proposed image compression algorithm is comprehended using MATLAB code. The VLSI design of the architecture is implemented Using Verilog HDL. The proposed hardware architecture for image compression employing DCT was synthesized using RTL complier and it was mapped using 180nm standard cells. . The Simulation is done using Modelsim. The simulation results from MATLAB and Verilog HDL are compared. Detailed analysis for power and area was done using RTL compiler from CADENCE. Power consumption of DCT core is reduced to 1.027mW with minimum area[1].Keywords: Discrete Cosine Transform (DCT), Inverse DiscreteCosine Transform (IDCT), Joint Photographic Expert Group (JPEG), Low Power Design, Very Large Scale Integration (VLSI) .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 313912701 Shot Boundary Detection Using Octagon Square Search Pattern
Authors: J. Kavitha, S. Sowmyayani, P. Arockia Jansi Rani
Abstract:
In this paper, a shot boundary detection method is presented using octagon square search pattern. The color, edge, motion and texture features of each frame are extracted and used in shot boundary detection. The motion feature is extracted using octagon square search pattern. Then, the transition detection method is capable of detecting the shot or non-shot boundaries in the video using the feature weight values. Experimental results are evaluated in TRECVID video test set containing various types of shot transition with lighting effects, object and camera movement within the shots. Further, this paper compares the experimental results of the proposed method with existing methods. It shows that the proposed method outperforms the state-of-art methods for shot boundary detection.
Keywords: Content-based indexing and retrieval, cut transition detection, discrete wavelet transform, shot boundary detection, video source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100112700 Edge Detection Algorithm Based on Wavelet De-nosing Applied tothe X-ray Image Enhancement of the Electric Equipment
Authors: Fei Xue, Hong Yu, Da-da Wang, Wei Zhang, Rong-min Zou, Xiao-lanCai
Abstract:
The X-ray technology has been used in non-destructive evaluation in the Power System, in which a visual non-destructive inspection method for the electrical equipment is provided. However, lots of noise is existed in the images that are got from the X-ray digital images equipment. Therefore, the auto defect detection which based on these images will be very difficult to proceed. A theory on X-ray image de-noising algorithm based on wavelet transform is proposed in this paper. Then the edge detection algorithm is used so that the defect can be pushed out. The result of experiment shows that the method which utilized by this paper is very useful for de-noising on the X-ray images.
Keywords: de-noising, edge detection, wavelet transform, X-ray
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155112699 Semi-Automatic Analyzer to Detect Authorial Intentions in Scientific Documents
Authors: Kanso Hassan, Elhore Ali, Soule-dupuy Chantal, Tazi Said
Abstract:
Information Retrieval has the objective of studying models and the realization of systems allowing a user to find the relevant documents adapted to his need of information. The information search is a problem which remains difficult because the difficulty in the representing and to treat the natural languages such as polysemia. Intentional Structures promise to be a new paradigm to extend the existing documents structures and to enhance the different phases of documents process such as creation, editing, search and retrieval. The intention recognition of the author-s of texts can reduce the largeness of this problem. In this article, we present intentions recognition system is based on a semi-automatic method of extraction the intentional information starting from a corpus of text. This system is also able to update the ontology of intentions for the enrichment of the knowledge base containing all possible intentions of a domain. This approach uses the construction of a semi-formal ontology which considered as the conceptualization of the intentional information contained in a text. An experiments on scientific publications in the field of computer science was considered to validate this approach.Keywords: Information research, text analyzes, intentionalstructure, segmentation, ontology, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163812698 A Review on Light Shafts Rendering for Indoor Scenes
Authors: Hatam H. Ali, Mohd Shahrizal Sunar, Hoshang Kolivand, Mohd Azhar Bin M. Arsad
Abstract:
Rendering light shafts is one of the important topics in computer gaming and interactive applications. The methods and models that are used to generate light shafts play crucial role to make a scene more realistic in computer graphics. This article discusses the image-based shadows and geometric-based shadows that contribute in generating volumetric shadows and light shafts, depending on ray tracing, radiosity, and ray marching technique. The main aim of this study is to provide researchers with background on a progress of light scattering methods so as to make it available for them to determine the technique best suited to their goals. It is also hoped that our classification helps researchers find solutions to the shortcomings of each method.
Keywords: Shaft of lights, realistic images, image-based, and geometric-based.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161212697 A Data Hiding Model with High Security Features Combining Finite State Machines and PMM method
Authors: Souvik Bhattacharyya, Gautam Sanyal
Abstract:
Recent years have witnessed the rapid development of the Internet and telecommunication techniques. Information security is becoming more and more important. Applications such as covert communication, copyright protection, etc, stimulate the research of information hiding techniques. Traditionally, encryption is used to realize the communication security. However, important information is not protected once decoded. Steganography is the art and science of communicating in a way which hides the existence of the communication. Important information is firstly hidden in a host data, such as digital image, video or audio, etc, and then transmitted secretly to the receiver.In this paper a data hiding model with high security features combining both cryptography using finite state sequential machine and image based steganography technique for communicating information more securely between two locations is proposed. The authors incorporated the idea of secret key for authentication at both ends in order to achieve high level of security. Before the embedding operation the secret information has been encrypted with the help of finite-state sequential machine and segmented in different parts. The cover image is also segmented in different objects through normalized cut.Each part of the encoded secret information has been embedded with the help of a novel image steganographic method (PMM) on different cuts of the cover image to form different stego objects. Finally stego image is formed by combining different stego objects and transmit to the receiver side. At the receiving end different opposite processes should run to get the back the original secret message.Keywords: Cover Image, Finite state sequential machine, Melaymachine, Pixel Mapping Method (PMM), Stego Image, NCUT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226112696 Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Noise
Authors: M. B. Meenavathi, K. Rajesh
Abstract:
In this paper, we propose a new class of Volterra series based filters for image enhancement and restoration. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median operator or rank operator deal with only impulse noise and fail to cancel the most common Gaussian distributed noise. A class of second order Volterra filters is proposed to optimize the trade-off between noise removal and edge preservation. In this paper, we consider both the Gaussian and mixed Gaussian-impulse noise to test the robustness of the filter. Image enhancement and restoration results using the proposed Volterra filter are found to be superior to those obtained with standard linear and nonlinear filters.
Keywords: Gaussian noise, Image enhancement, Imagerestoration, Linear filters, Nonlinear filters, Volterra series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 273212695 A Novel Digital Watermarking Technique Basedon ISB (Intermediate Significant Bit)
Authors: Akram M. Zeki, Azizah A. Manaf
Abstract:
Least Significant Bit (LSB) technique is the earliest developed technique in watermarking and it is also the most simple, direct and common technique. It essentially involves embedding the watermark by replacing the least significant bit of the image data with a bit of the watermark data. The disadvantage of LSB is that it is not robust against attacks. In this study intermediate significant bit (ISB) has been used in order to improve the robustness of the watermarking system. The aim of this model is to replace the watermarked image pixels by new pixels that can protect the watermark data against attacks and at the same time keeping the new pixels very close to the original pixels in order to protect the quality of watermarked image. The technique is based on testing the value of the watermark pixel according to the range of each bit-plane.Keywords: Watermarking, LSB, ISB, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170812694 A Novel Non-Uniformity Correction Algorithm Based On Non-Linear Fit
Authors: Yang Weiping, Zhang Zhilong, Zhang Yan, Chen Zengping
Abstract:
Infrared focal plane arrays (IRFPA) sensors, due to their high sensitivity, high frame frequency and simple structure, have become the most prominently used detectors in military applications. However, they suffer from a common problem called the fixed pattern noise (FPN), which severely degrades image quality and limits the infrared imaging applications. Therefore, it is necessary to perform non-uniformity correction (NUC) on IR image. The algorithms of non-uniformity correction are classified into two main categories, the calibration-based and scene-based algorithms. There exist some shortcomings in both algorithms, hence a novel non-uniformity correction algorithm based on non-linear fit is proposed, which combines the advantages of the two algorithms. Experimental results show that the proposed algorithm acquires a good effect of NUC with a lower non-uniformity ratio.Keywords: Non-uniformity correction, non-linear fit, two-point correction, temporal Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231612693 Artificial Visual Percepts for Image Understanding
Authors: Jeewanee Bamunusinghe, Damminda Alahakoon
Abstract:
Visual inputs are one of the key sources from which humans perceive the environment and 'understand' what is happening. Artificial systems perceive the visual inputs as digital images. The images need to be processed and analysed. Within the human brain, processing of visual inputs and subsequent development of perception is one of its major functionalities. In this paper we present part of our research project, which aims at the development of an artificial model for visual perception (or 'understanding') based on the human perceptive and cognitive systems. We propose a new model for perception from visual inputs and a way of understaning or interpreting images using the model. We demonstrate the implementation and use of the model with a real image data set.Keywords: Image understanding, percept, visual perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171812692 FPGA Hardware Implementation and Evaluation of a Micro-Network Architecture for Multi-Core Systems
Authors: Yahia Salah, Med Lassaad Kaddachi, Rached Tourki
Abstract:
This paper presents the design, implementation and evaluation of a micro-network, or Network-on-Chip (NoC), based on a generic pipeline router architecture. The router is designed to efficiently support traffic generated by multimedia applications on embedded multi-core systems. It employs a simplest routing mechanism and implements the round-robin scheduling strategy to resolve output port contentions and minimize latency. A virtual channel flow control is applied to avoid the head-of-line blocking problem and enhance performance in the NoC. The hardware design of the router architecture has been implemented at the register transfer level; its functionality is evaluated in the case of the two dimensional Mesh/Torus topology, and performance results are derived from ModelSim simulator and Xilinx ISE 9.2i synthesis tool. An example of a multi-core image processing system utilizing the NoC structure has been implemented and validated to demonstrate the capability of the proposed micro-network architecture. To reduce complexity of the image compression and decompression architecture, the system use image processing algorithm based on classical discrete cosine transform with an efficient zonal processing approach. The experimental results have confirmed that both the proposed image compression scheme and NoC architecture can achieve a reasonable image quality with lower processing time.
Keywords: Generic Pipeline Network-on-Chip Router Architecture, JPEG Image Compression, FPGA Hardware Implementation, Performance Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 309712691 A Modified Cross Correlation in the Frequency Domain for Fast Pattern Detection Using Neural Networks
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
Recently, neural networks have shown good results for detection of a certain pattern in a given image. In our previous papers [1-5], a fast algorithm for pattern detection using neural networks was presented. Such algorithm was designed based on cross correlation in the frequency domain between the input image and the weights of neural networks. Image conversion into symmetric shape was established so that fast neural networks can give the same results as conventional neural networks. Another configuration of symmetry was suggested in [3,4] to improve the speed up ratio. In this paper, our previous algorithm for fast neural networks is developed. The frequency domain cross correlation is modified in order to compensate for the symmetric condition which is required by the input image. Two new ideas are introduced to modify the cross correlation algorithm. Both methods accelerate the speed of the fast neural networks as there is no need for converting the input image into symmetric one as previous. Theoretical and practical results show that both approaches provide faster speed up ratio than the previous algorithm.Keywords: Fast Pattern Detection, Neural Networks, Modified Cross Correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745