Parallel Double Splicing on Iso-Arrays

V. Masilamani, D.K. Sheena Christy, and D.G. Thomas

Abstract

Image synthesis is an important area in image processing. To synthesize images various systems are proposed in the literature. In this paper, we propose a bio-inspired system to synthesize image and to study the generating power of the system, we define the class of languages generated by our system. We call image as array in this paper. We use a primitive called iso-array to synthesize image/array. The operation is double splicing on iso-arrays. The double splicing operation is used in DNA computing and we use this to synthesize image. A comparison of the family of languages generated by the proposed self restricted double splicing systems on iso-arrays with the existing family of local iso-picture languages is made. Certain closure properties such as union, concatenation and rotation are studied for the family of languages generated by the proposed model.

Keywords-DNA computing, splicing system, iso-picture languages, iso-array double splicing system, iso-array self splicing.

I. InTRODUCTION

Bio-inspired computing is a field devoted to tackling complex problems using computational methods modeled after design principles encountered in nature. Many of these Bioinspired computing techniques have been used successfully to find good solutions to difficult problems in a wide range of areas such as combinatorial optimization, classification and decision making, pattern recognition, machine learning, nonlinear dynamics (modeling), computer security; biometrics, time series prediction, data mining, image processing and many more. Some of the topics covered in bio-inspired computing are evolutionary computing; neural computing, DNA computing and membrane computing.
In DNA computing [9] splicing systems were introduced by Head [2], [3] on biological considerations to model the behaviour of DNA molecules. He also introduced 1-splicing, 2-splicing, iterative splicing and double splicing and showed that double splicing is more powerful than normal splicing on strings. Laterly, Krithivasan et al. [7] extended the concept of splicing to arrays and defined array splicing systems. Parallel splicing on iso-arrays has been introduced by Masilamani et al. [8]. In parallel splicing, we use rules in parallel, to cut an image at a specific site. Fore more details about array languages and iso-picture languages we refer to [1], [5], [6], [10], [11].
In this paper, we define parallel double splicing on isoarrays based on 1 -splicing and we introduce parallel iso-array
V. Masilamani is with the Department of Computer Science and Engineering, IIITD\&M Kanchipuram, Chennai - 600 048, India e-mail: masila@iiitdm.ac.in
D.K. Sheena Christy is with the Department of Mathematics, SRM University, Kattankulathur, Chennai - 603 203, India e-mail: sheena.lesley@gmail.com
D.G. Thomas is with the Department of Mathematics, Madras Christian College, Tambaram, Chennai - 600 059, India e-mail: dgthomasmcc@yahoo.com
Manuscript received April 19, 2005; revised January 11, 2007.
self double splicing, parallel iso-array self restricted double splicing. As in parallel splicing on images [4] we also do splicing by applying the set of rules parallely. In the second section, we give the basic definitions which are necessary to introduce the new model.
In the third section, we define the double splicing on isoarrays and compare the family of languages generated by isoarray double splicing systems with the family of languages generated by iso-array self splicing systems. In the fourth section, we introduce a variant of iso-array double splicing called iso-array restricted double splicing. We compare the family of languages generated by iso-array self restricted double splicing systems with existing family of local iso-picture languages and with the family of H -iso-array splicing systems. We give some closure properties of family of languages generated by iso-array self restricted double splicing system.

II. Basic Definitions

In this section we recall some of the basic definitions of isopicture languages and iso-array splicing systems to generate the language L discussed in [8], [6].
 The sides S_{1}, S_{2} and S_{3} of each tile in Σ are of length $\frac{1}{\sqrt{2}}, 1, \frac{1}{\sqrt{2}}$ respectively.
An iso-array is an arrangement of isosceles right angled triangles of tiles from the set Σ.

Fig. 1. Iso-arrays of size 3

Fig. 2. Corresponding color image
An U-iso-array of size m is formed exclusively by m A tiles on side S_{2} and it is denoted by U_{m}. It will have m^{2} tiles
in total (including the $m A$ tiles on S_{2}). Similarly D-iso-array, L-iso-array and R-iso-array are formed exclusively by B-tile, C-tile and D-tile on side S_{2} respectively. The following are the iso-arrays of size 3 (or) size $(1,3)$.

Iso-arrays of same-size can be catenated using the following catenation operations. There are four types of catenations of iso-arrays.
(i) Horizontal catenation $(\ominus): U \ominus D$
(ii) Vertical catenation ($(\mathbb{)}): L \bigcirc R$
(iii) Right catenation $(\varnothing): D \varnothing U, R \varnothing U, D \varnothing L, R \varnothing L$
(iv) Left catenation ($($) : $U \emptyset D, U \emptyset L, L \emptyset R, R \circlearrowleft D$.

The iso-array primitives used in Definition 1 uses letters A, B, C, D where each letter denotes a color.
Definition 2. An iso-picture of size (n, m) over Σ is a picture formed by catenation of n iso-arrays of size m.

The number of tiles in any iso-picture of size (n, m) is $n m^{2}$.
Definition 3. Two iso-pictures of sizes $\left(n_{1}, m\right)$ and $\left(n_{2}, m\right)$, $n_{1}, n_{2}, m \geq 1$ respectively can be catenated using catenation of iso-arrays, if the sides are gluable.

The set of all iso-pictures over Σ is denoted by $\Sigma_{I}^{* *}$. An iso-picture language L over Σ is a subset of $\Sigma_{I}^{* *}$.

Definition 4. Let L be an iso-picture language over $\Sigma=\{\widehat{\mathrm{A}}, \overline{\mathrm{B}},\langle\mathrm{C}, \mathrm{D}\rangle\} . L$ is said to be local if there exists a finite set Θ, which is a subset of the set of $(1,2)$ iso-pictures over $\Sigma \cup\{\widehat{\text { \#A }}$,

such that $L=L(\Theta)$ where $L(\Theta)=\left\{p \in \Sigma_{I}^{* *} / B(\hat{p}) \subseteq \Theta\right\}$ and $B(\hat{p})$ is the set of all $(1,2)$ sub-pictures of \hat{p}, where \hat{p} is a iso-picture obtained by surrounding p with special symbols

The family of local iso-picture languages will be denoted by ILOC.

Definition 5. Let Σ be an alphabet, \# and $\$$ are two special symbols not in Σ. An iso-array over Σ is an isosceles triangular arrangement of tiles $\langle\mathrm{A}, \boxed{\mathrm{B}},<\mathrm{C}$ and D\rangle.
A horizontal splicing rule over Σ is of the form $\alpha_{1} \# \alpha_{2} \$ \ominus \alpha_{3} \# \alpha_{4}$ where $\alpha_{1}=U_{m}$ or $\lambda, \alpha_{2}=D_{m}$ or $\lambda, \alpha_{3}=U_{m}$ or λ and $\alpha_{4}=D_{m}$ or λ. The set of all horizontal splicing rules is denoted by R_{\ominus}.
A vertical splicing rule over Σ is of the form $\alpha_{1} \# \alpha_{2} \$ \oplus \alpha_{3} \# \alpha_{4}$ where $\alpha_{1}=L_{m}$ or $\lambda, \alpha_{2}=R_{m}$ or $\lambda, \alpha_{3}=L_{m}$ or λ and $\alpha_{4}=R_{m}$ or λ. No other possibility can occur. The set of all vertical splicing rules is denoted by R_{\oplus}.
A right splicing rule over Σ is of the form $\alpha_{1} \# \alpha_{2} \$ \varnothing \alpha_{3} \# \alpha_{4}$ where
i) $\alpha_{1}=D_{m}$ or $\lambda, \alpha_{2}=U_{m}$ or $\lambda, \alpha_{3}=D_{m}$ or λ and $\alpha_{4}=U_{m}$ or λ (or)
ii) $\alpha_{1}=R_{m}$ or $\lambda, \alpha_{2}=U_{m}$ or $\lambda, \alpha_{3}=R_{m}$ or λ and $\alpha_{4}=U_{m}$ or λ (or)
iii) $\alpha_{1}=D_{m}$ or $\lambda, \alpha_{2}=L_{m}$ or $\lambda, \alpha_{3}=D_{m}$ or λ and $\alpha_{4}=L_{m}$ or λ (or)
iv) $\alpha_{1}=R_{m}$ or $\lambda, \alpha_{2}=L_{m}$ or $\lambda, \alpha_{3}=R_{m}$ or λ and $\alpha_{4}=L_{m}$ or λ.
The set of all right splicing rules is denoted by R_{\varnothing}.
A left splicing rule over Σ is of the form $\alpha_{1} \# \alpha_{2} \$ \varnothing \alpha_{3} \# \alpha_{4}$ where
i) $\alpha_{1}=U_{m}$ or $\lambda, \alpha_{2}=D_{m}$ or $\lambda, \alpha_{3}=U_{m}$ or λ and $\alpha_{4}=D_{m}$ or λ (or)
ii) $\alpha_{1}=U_{m}$ or $\lambda, \alpha_{2}=L_{m}$ or $\lambda, \alpha_{3}=U_{m}$ or λ and $\alpha_{4}=L_{m}$ or λ (or)
iii) $\alpha_{1}=L_{m}$ or $\lambda, \alpha_{2}=R_{m}$ or $\lambda, \alpha_{3}=L_{m}$ or λ and $\alpha_{4}=R_{m}$ or λ (or)
iv) $\alpha_{1}=R_{m}$ or $\lambda, \alpha_{2}=D_{m}$ or $\lambda, \alpha_{3}=R_{m}$ or λ and $\alpha_{4}=D_{m}$ or λ.
The set of all left splicing rules is denoted by R_{\varnothing}.
Definition 6. An H-iso-array splicing scheme is a 5-tuple $\sigma=\left(\Sigma, R_{\ominus}, R_{\Phi}, R_{\varnothing}, R_{\varnothing}\right)$ where Σ is an alphabet, R_{\ominus}, $R_{\odot}, R_{\varnothing}$ and R_{\varnothing} are the finite set of horizontal, vertical, right and left splicing rules respectively. The iso-array splicing of L with σ is defined as

$$
\sigma(L)=\left\{\begin{array}{ll}
p \in \Sigma_{I}^{* *} / \begin{array}{l}
\left(p_{1}, p_{2}\right) \vdash_{\ominus} p(\text { or }) \\
\left(p_{1}, p_{2}\right) \vdash_{\varnothing} p(\text { or }) \\
\left(p_{1}, p_{2}\right) \vdash_{\varnothing} p(\text { or }) \\
\left(p_{1}, p_{2}\right) \vdash_{\varnothing} p
\end{array}
\end{array}\right\}
$$

for some $p_{1}, p_{2} \in L$. The language generated by H-iso-array splicing system is $\sigma^{*}(A)$.
$\sigma^{*}(L)$ is defined iteratively as follows:
$\sigma^{0}(L)=L, \sigma^{i+1}(L)=\sigma^{i}(L) \cup \sigma\left(\sigma^{i}(L)\right)$, for $i \geq 0, \sigma^{*}(L)=$ $\cup_{i=0}^{\infty} \sigma^{i}(L)$.

The family of iso-picture languages generated by H -isoarray splicing systems is denoted by FHIA.

Definition 7. The iso-array self splicing of L with $\sigma=$ $\left(\Sigma, R_{\ominus}, R_{\oplus}, R_{\varnothing}, R_{\varnothing}\right)$ is defined as $\sigma(L)=\{V \in$ $\Sigma^{* *} /(u, u) \vdash_{\alpha} v$, for some $\left.u \in \Sigma^{* *}, \alpha \in\{\emptyset, \oslash, \varnothing, \ominus\}\right\}$.

The iso-array self splicing system is defined by $S=(\sigma, A)$ and the family of picture languages generated by the iso-array self splicing systems is denoted by ISHA.

III. Iso-Array Double Splicing

In this section we give the definitions of iso-array double splicing and iso-array restricted double splicing of a picture language and compare the family of picture languages generated by iso-array restricted double splicing system with isoarray self splicing system.

Definition 8.

Let $\sigma=\left(\Sigma, R_{\ominus}, R_{\oplus}, R_{\varnothing}, R_{\varnothing}\right)$. The iso-array double splicing of a picture language L with σ is defined as $\sigma(L)=\left\{U \in \Sigma^{* *} /(X, Y) \vdash_{\alpha} Z\right.$ and $(Z, Z) \vdash_{\beta} U$ where $X, Y \in L$, for some $Z \in \Sigma^{* *}, \alpha, \beta \in D$, where $D \in\{\emptyset, ~ \varnothing$, $\oplus(\ominus\}\}$ and iso-array double splicing system is $S=(\sigma, A)$ where A is a finite subset of images over $\Sigma_{I}^{* *}$, called axioms, and the language generated by the system is $\sigma^{*}(A)$ where σ is the iso-array double splicing scheme.

Definition 9. The iso-array restricted double splicing of a picture language L with σ is defined as $\sigma(L)=\{U \in$ $\Sigma^{* *} /(X, Y) \vdash_{\alpha} Z$, and $(Z, Z) \vdash_{\beta} U$ for some $X, Y \in L$, $Z \in \Sigma^{* *}, \alpha, \beta \in D=\{\emptyset, \varnothing, \varnothing, \ominus\}$ and $\left.\alpha \neq \beta\right\}$.

The iso-array restricted double splicing system is $S=$ (σ, A) where $A \subset \Sigma_{I}^{* *}$, called axioms and the language generated by the iso-array restricted double splicing system is given by $\sigma^{*}(A)$.

The family of picture languages generated by iso-array restricted double splicing systems is denoted by IRDS.

Theorem 1. IRDS is not a subclass of ISHA.
Proof: Let

Let $L=\left\{p \in \Sigma^{* *} / p=s_{m}^{i} t_{m}^{j} s_{m}^{k} t_{m}^{l}\right.$ where $m \geq 2$, $i, j, k, l \geq 0, s_{m}^{i}$ and t_{m}^{i} are $m \times i$ arrays in which each entry (square) carries either of the tile
 respectively\}.
For instance the following pictures are the members of L

Let $S=(\sigma, A)$ where $\sigma=\left(\Sigma, R_{\Phi}, R_{\ominus}, R_{\varnothing}, R_{\varnothing}\right)$ and $A=\left\{s_{2}^{i} t_{2}^{j} s_{2}^{k} t_{2}^{l} / i, j, k, l=0\right.$ or 1$\}, R_{\varnothing}=R_{\varnothing}=\phi$.
The splicing rules to generate the iso-pictures of L are given by
$R_{\Phi}:(1) C^{\prime} \# \lambda \$ C \# D^{\prime}$;
(2) $C \# \lambda \$ \lambda \# D$
$R_{\Theta}:(1) A \# \lambda \$ \lambda \# B \quad$ (2) $A^{\prime} \# \lambda \# \lambda \# B^{\prime}$

Clearly these iso-array splicing rules will generate the language L. Hence $L \in I R D S$. We now prove that $L \notin I S H A$.
Since the iso-array self splicing involves two copies of the same form, the splicing rule $C \# \lambda \$ \lambda \# D$ attempts to produce an image $I: s_{m}^{i} t_{m}^{j} s_{m}^{k+i} t_{m}^{l} s_{m}^{k} t_{m}^{l}$ and $I \notin L$. Hence the proof.

IV. Iso-Array Self Restricted Double Splicing

Definition 10. The iso-array self restricted double splicing of L is defined as $\sigma(L)=\left\{p \in \Sigma^{* *} /(X, X) \vdash_{\alpha} Y\right.$ and $(Y, Y) \vdash_{\beta}$ p for some $X \in L, \alpha, \beta \in D=\{\emptyset, \ominus, \varnothing, \emptyset\}$ and $\alpha \neq \beta\}$.
An iterative iso-array self restricted double splicing $\sigma^{*}(L)$
is defined by

$$
\begin{aligned}
\sigma^{0}(L) & =L \\
\sigma^{i+1}(L) & =\sigma^{i}(L) \cup \sigma\left(\sigma^{i}(L)\right) \text { for } i \geq 0 \\
\sigma^{*}(L) & =\bigcup_{i=0}^{\infty} \sigma^{i}(L) .
\end{aligned}
$$

The H-iso-array self restricted double splicing system is defined as a pair $S=(\sigma, A)$ where $\sigma=$ $\left(\Sigma, R_{\Phi}, R_{\ominus}, R_{\varnothing}, R_{\Phi}\right)$ and A is finite subset of $\Sigma_{I}^{* *}$, called axioms.

The family of iso-picture languages generated by iso-array self restricted double splicing systems is denoted by FISRD.
Theorem 2. FISRD is not closed under union and concatenation.

Proof: Let

$$
\Sigma=\left\{\left\langle\widehat{\mathrm{A}}, \overline{\mathrm{~B}},\langle\mathrm{C}, \mathrm{D}\rangle,\left\langle A_{i}\right\rangle, \overline{B_{i}},\left\langle C_{i}, \widehat{D_{i}}\right\rangle / i=1,2,3\right\} .\right.
$$

Let L_{1} be the set of all isopictures of rectangles over Σ with 3 rows and at least 3 columns, where all the entries (squares) is in the $1^{\text {st }}$ column should have $\begin{gathered}B_{1} \\ D_{1} \\ A_{1} \\ A_{1}\end{gathered}$, the last column should have $\stackrel{D_{2}}{B_{2} / C_{2}}$
A

For example the iso-picture $I=$

is a member of L_{1}. Let L_{2} be the set of all iso-pictures of rectangles over Σ with 3 rows and at least 4 columns where all the squares in the $1^{\text {st }}$ column should have $\begin{gathered}B_{1} / C_{1} \\ A_{1} \\ A_{1}\end{gathered}$, last column should have
 the second column should have For example the iso-picture $J=1$ is a member of L_{2}. The iso-array self restricted double splicing system that generates L_{1} is given by $\sigma=$ $\left(\Sigma, R_{\oplus}, R_{\ominus}, R_{\varnothing}, R_{\varnothing}\right)$ where $R_{\varnothing}=R_{\varnothing}=R_{\ominus}=\phi$ and $A=\{I\}$.
$R_{\Phi}=\left\{C \# D_{2} \$ C_{1} \# D\right\}$
It can be easily seen that $\sigma^{*}(A)=L_{1}$. The iso-array self restricted double splicing system that generates the language L_{2} is given by
$\sigma=\left(\Sigma, R_{\oplus}, R_{\ominus}, R_{\varnothing}, R_{\varnothing}\right)$ where $R_{\varnothing}=R_{\varnothing}=R_{\ominus}=\phi$ and
$A=\{J\}$.
$R_{\Phi}=\left\{C_{2} \# D_{3} \$ C \# D_{2}\right\}$
It can be easily seen that $\sigma^{*}(A)=L_{2}$.
Now we are going to prove that $L_{1} \cup L_{2} \notin F I S R D$.
Since any splicing rule that attempts to produce members of
L_{1} and L_{2} will also produce an iso-picture p given below, which is not in $L_{1} \cup L_{2}$.
In other words, the splicing rule $C \# D_{2} \$ C_{1} \# D$ produces an image

and $p \notin L_{1} \cup L_{2}$.
Hence FISRD is not closed under union.
$L_{1} \circ L_{2} \notin F I S R D$ where \circ represents vertical concatenation. One of the member of $L_{1} \circ L_{2}$ is

$=$	

The splicing rule $C \# D_{2} \$ C_{1} \# D$ that attempts to generate members of L_{1} and L_{2} will also produce an image

which is not a member of $L_{1} \circ L_{2}$. Hence $L_{1} \circ L_{2} \notin F I S R D$ even though L_{1} and L_{2} are members of FISRD.

Theorem 3. FISRD is not a sub class of FHIA.
Proof: Let

Let L be the set of all $m \times m$ iso-pictures over Σ having \sim on the boundary where m is a power of 2 . For instance the following iso-picture X is the member of language L.

Let $S=(\sigma, A)$ be the iso-array self restricted double splicing system, where $\sigma=\left(\Sigma, R_{\Phi}, R_{\ominus}, R_{\varnothing}, R_{\varnothing}\right), R_{\varnothing}=R_{\varnothing}=$ ϕ, and $A=\{X\}$.
R_{\odot} consists of
(1) $C^{\prime} \# \sim \$ \sim \# D$
(2) $C \# \sim \$ \sim \# D^{\prime}$
R_{\ominus} consists of
(1) $A^{\prime} \# \sim \$ \sim \# B$
(2) $A \# \sim \$ \sim \# B^{\prime}$

Let $(X, X) \vdash_{\oplus} Y$. We see that

If $(Y, Y) \vdash_{\ominus} Z$, then

The above system generates the language L. But this language L cannot be generated by any H-iso-array splicing system.

Theorem 4. The class ILOC of local iso-array languages and the class of FISRD are incomparbale but not disjoint.

Proof: Let K be a language consisting of iso-pictures of rhombuses of size $m \times n$ with $m, n \geq 2$, where each tile in the rhombus is either of the form
 (or) $A^{\prime} B^{\prime}$ and all the tiles on the \angle shape should have the tile $A A^{\prime}$ and the remaining places in the rhombus should have the tile $A>B$.

For example the iso-picture
 member of K.
The language K can be proved to be in $I L O C$. To prove that $K \in F I S R D$, consider $\sigma=\left(\Sigma, R_{\Phi}, R_{\ominus}, R_{\varnothing}, R_{\varnothing}\right)$ where $\Sigma=\left\{\left\langle\widehat{A^{\prime}}, \widehat{B^{\prime}}, \widehat{\mathrm{A}}, \widehat{\mathrm{B}}\right\}\right.$ and $R_{\odot}=R_{\varnothing}=\phi$ and $A=\{X\}$.
R_{\varnothing} consists of the following rules:
(1) $B \# \lambda \$ B^{\prime} \# A \quad$ (2) $B^{\prime} \# \lambda \$ B^{\prime} \# A^{\prime}$
$R_{\ominus}=\left\{A^{\prime} \# B^{\prime} \$ \lambda \# B^{\prime} ; A \# B^{\prime} \$ \lambda \# B\right\}$.

Clearly $(X, X) \vdash_{\varnothing} Y$ and $(Y, Y) \vdash_{\ominus} Z$. In a similar way we can generate all iso-pictures of rhombuses of K.

Hence the iso-array self restricted double splicing system $S=(\sigma, A)$, which is defined above generates the language K.
Hence $F I S R D \cap I L O C \neq \phi$.
Now we exhibit that there exists a language in $I L O C$ but not in FISRD.

Let $\Sigma=\left\{\widehat{A_{0}}, \widehat{B_{0}}, B^{\prime}, \widehat{A^{\prime}}\right\}$. Let $L=\left\{p \in \Sigma^{* *} /\right.$ The diagonal positions of p should have the tile
 and other positions should have the tile
 , and the size of p is $m \times m, m \geq 2\}$.
For instance the following iso-picture is a member of L.

It can be clearly seen that the language L is proved to be in ILOC.
But the language $L \notin F I S R D$.
If $L \in F I S R D$, then there exists a FISRD system $S=(\sigma, A)$ to generte L. Any splicing rules that attempts to generate the required language L will produce an image which is not in L. i.e., it will produce an image having a tile $A B_{0}$ in non-diagonal positions also. Hence $L \notin F I S R D$.
We finally show that there exists a language in FISRD which is not in ILOC.

Let $\Sigma=\left\{\left\langle\widehat{\mathrm{A}}, \widehat{\mathrm{B}}, \widehat{B^{\prime}}, \widehat{A^{\prime}}\right\rangle\right\}$ and L be the language of iso-pictures of parallelogram of size $m \times n$, where $m=2+2^{i}$ for $i \geq 0$ and $n=4$ having a tile on the boundary and other positions are having a tile B / A
The following picture

is member of L. We prove that $L \in F I S R D$.
The axiom set A is $\{p\}$ where

Let $R_{\ominus}=\left\{A^{\prime} \# B^{\prime} \$ A^{\prime} \# B^{\prime} ; A \# B^{\prime} \$ A^{\prime} \# B\right\}$.
and $R_{\varnothing}=\left\{A^{\prime} \# B^{\prime} \$ A^{\prime} \# B^{\prime} ; A \# B^{\prime} \$ A \# B^{\prime}\right\}$.
Now it can be easily verified that the system $S=(\sigma, A)$ generates the language L.
But $L \notin I L O C$.
Suppose $L \in I L O C$. Then there exists a set Θ of $(1,2)$ tiles over $\Sigma \cup\{\#$, which generates $L=L(\Theta)$.
By using the same Θ set we can generate the following iso-picture of size $m \times 5$ which does not belongs to L. i.e., $X \in L(\Theta)$ but $X \notin L$ where

Theorem 5. FISRD is closed under rotation by $90^{\circ}, 180^{\circ}$ and 270°.

Proof: It is known that the class of FHIA is closed under rotations by $90^{\circ}, 180^{\circ}$ and 270° [8]. Similar proof can be given to FISRD also.

V. Conclusion

In this paper, we have introduced a new model called double splicing on iso-arrays and its variants to generate isopictures. We compared the family of languages generated by self restricted double splicing systems on iso-arrays with the family of local iso-picture languages. Closure properties such as union, concatenation and rotation of iso-array self restricted double splicing are studied.

References

[1] Giammarresi, D., and Restivo, A.: Two-dimensional languages. in Handbook of Formal Languages. eds. A. Salomaa and Rozenberg, G., Vol. 3 (Springer-Verlag, 1997) 215-267.
[2] Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviours. Bull. Math. Biol., 49 (1987) 735-759.
[3] Head, T., Paun, Gh., and Pixton, D.: Language theory and molecular genetics: generative mechanisms suggested by DNA recombination. in Handbook of Formal Languages. eds. Rozenberg, G., and Salomaa, A. Vol. 2, Ch. 7 (Springer-Verlag, 1997) 296-358.
[4] Helen Chandra, P., Subramanian, K.G., Thomas, D.G., and Van, D.L.: A note on parallel splicing on images. Electronic Notes in Theoretical Computer Science. 46 (2001) 255-268.
[5] Kalyani, T.: A study on iso-picture languages. Ph.D. Thesis. University of Madras. (2006).
[6] Kalyani, T., Dare, V.R., and Thomas, D.G.: Local and recognizable isopicture languages. Lecture Notes in Computer Science. 3316 (2004) 738-743.
[7] Krithivasan, K., Chakaravarthy, V.T., and Rama, R.: Array splicing systems. in Computing with Bio-molecules: Theory and Experiments. ed. Paun, Gh. (Springer-Verlag, 1998).
[8] Masilamani, V., Sheena Christy, D.K., Thomas, D.G., and Kalyani, T.: Parallel Splicing on Iso-arrays. The IEEE $5^{t h}$ International Conference on Bio-Inspired Computing : Theories and Applications. (2010) 15351542.
[9] Paun, G., Rozenberg, G. and Salomaa, A.: DNA Computing: New Computing Paradigms. (Springer-Verlag, 1998).
[10] Rosenfeld, A., and Siromoney, R.: Picture languages - A survey, Languages of Design. 1 (1993) 229-245.
[11] Siromoney, R., and Siromomey, G., Extended controlled table L-arrays. Information and Control. 35 (1977) 119-138.

V. Masilamani is an Assistant Professor in the Department of Computer Science and Engineering, IIITD\&M, Kanchipuram, Chennai - 48, India. He has received his Ph.D., in Computer Science and Engineering from Indian Institute of Technology Madras. Previously he received his M.Tech., in Computer Science from Indian Institute of Technology Kharagpur. He is working in theoretical and application aspects of image processing.

D.K. Sheena Christy is an Assistant Professor in the Department of Mathematics, SRM University, Chennai - 603 203, India. She is pursuing her Ph.D. in Computer Mathematics.
D.G. Thomas is a Professor since 1984 in the Department of Mathematics, Madras Christian College, Chennai - 59, India. He completed his M.Phil. and Ph.D. in Mathematics during 1984 and 1996. His area of research includes formal languages and automata theory and their applications in image analysis, learning theory, cryptography, DNA computing and membrane computing.

