Search results for: Resting State Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4690

Search results for: Resting State Network

70 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase

Authors: A. Lauvray, F. Poulhaon, P. Michaud, P. Joyot, E. Duc

Abstract:

Additive Friction Stir Manufacturing, or AFSM, is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. There is still a lack in understanding of the physical phenomena taking place during the process. This research aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system due to pure friction. An analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable, due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes through a numerical modeling followed by an experimental validation to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.

Keywords: numerical model, additive manufacturing, frictional heat generation, process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
69 Evaluation of Bone and Body Mineral Profile in Association with Protein Content, Fat, Fat-Free, Skeletal Muscle Tissues According to Obesity Classification among Adult Men

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Obesity is associated with increased fat mass as well as fat percentage. Minerals are the elements, which are of vital importance. In this study, the relationships between body as well as bone mineral profile and the percentage as well as mass values of fat, fat-free portion, protein, skeletal muscle were evaluated in adult men with normal body mass index (N-BMI), and those classified according to different stages of obesity. A total of 103 adult men classified into five groups participated in this study. Ages were within 19-79 years range. Groups were N-BMI (Group 1), overweight (OW) (Group 2), first level of obesity (FLO) (Group 3), second level of obesity (SLO) (Group 4) and third level of obesity (TLO) (Group 5). Anthropometric measurements were performed. BMI values were calculated. Obesity degree, total body fat mass, fat percentage, basal metabolic rate (BMR), visceral adiposity, body mineral mass, body mineral percentage, bone mineral mass, bone mineral percentage, fat-free mass, fat-free percentage, protein mass, protein percentage, skeletal muscle mass and skeletal muscle percentage were determined by TANITA body composition monitor using bioelectrical impedance analysis technology. Statistical package (SPSS) for Windows Version 16.0 was used for statistical evaluations. The values below 0.05 were accepted as statistically significant. All the groups were matched based upon age (p > 0.05). BMI values were calculated as 22.6 ± 1.7 kg/m2, 27.1 ± 1.4 kg/m2, 32.0 ± 1.2 kg/m2, 37.2 ± 1.8 kg/m2, and 47.1 ± 6.1 kg/m2 for groups 1, 2, 3, 4, and 5, respectively. Visceral adiposity and BMR values were also within an increasing trend. Percentage values of mineral, protein, fat-free portion and skeletal muscle masses were decreasing going from normal to TLO. Upon evaluation of the percentages of protein, fat-free portion and skeletal muscle, statistically significant differences were noted between NW and OW as well as OW and FLO (p < 0.05). However, such differences were not observed for body and bone mineral percentages. Correlation existed between visceral adiposity and BMI was stronger than that detected between visceral adiposity and obesity degree. Correlation between visceral adiposity and BMR was significant at the 0.05 level. Visceral adiposity was not correlated with body mineral mass but correlated with bone mineral mass whereas significant negative correlations were observed with percentages of these parameters (p < 0.001). BMR was not correlated with body mineral percentage whereas a negative correlation was found between BMR and bone mineral percentage (p < 0.01). It is interesting to note that mineral percentages of both body as well as bone are highly affected by the visceral adiposity. Bone mineral percentage was also associated with BMR. From these findings, it is plausible to state that minerals are highly associated with the critical stages of obesity as prominent parameters.

Keywords: Bone, men, minerals, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
68 Strengthening Adult Literacy Programs in Order to End Female Genital Mutilation to Achieve Sustainable Development Goals

Authors: Odenigbo Veronica Ngozi, Lorreta Chika Ukwuaba

Abstract:

This study focuses on how the strengthening adult literacy programs can help accelerate transformative strategies to end Female Genital Mutilation (FGM) in Nigeria, specifically in Nsukka Local Government Area of Enugu State. The research delved into the definition of FGM, adult literacy programs, and how to achieve ending FGM in order to attain Sustainable Development Goals (SDGs) in 2030. It further discussed the practice of FGM in Nigeria and emphasized the statement of the problem. Main purpose of the study was to investigate how strengthening adult literacy programs can help accelerate transformative strategies to end FGM in Nigeria and achieve SDGs in 2030. A survey research design was used to conduct the study in Nsukka L.G.A. The population was composed of 26 facilitators and adult learners in five adult learning centres in the area. The entire population was used as a sample. Structured questionnaires were employed to elicit information from the respondents. The items on the questionnaire were face-validated by three experts while the reliability of the instrument was verified using Cronbach Alpha Reliability Technique. The research questions were analysed using means and standard deviation while the hypothesis was tested at 0.05 level of degree of significance using a t-test statistics. The result of the findings shows that the practices of FGM can end through strengthening adult literacy programs. Strengthening adult literacy programs is a good channel to end or stop FGM through the knowledge and skill acquired from the learning centres. The theoretical importance of the study lies in the fact that it highlights the role of adult literacy programs in accelerating transformative strategies to combat harmful cultural practices such as FGM. It further supports the importance of education and knowledge in achieving SDGs by 2030. The study addressed the question of how strengthening adult literacy programs can help accelerate transformative strategies which can end FGM in Nigeria and achieve SDGs by 2030. In conclusion, the study revealed that adult literacy is a good tool to end FGM in Nigeria. The recommendation was that (NGOs), community-based organizations (CBOs), and individuals should support the funding and establishment of adult literacy centres in communities so as to reach all illiterate parents or individuals so that they can acquire the knowledge and skill needed to understand the negative effect of FGM in the life of a girl child.

Keywords: Adult literacy, female genital mutilation, learning centres, Sustainable Development Goals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63
67 Engineering Topology of Construction Ecology for Dynamic Integration of Sustainability Outcomes to Functions in Urban Environments: Spatial Modeling

Authors: Moustafa Osman Mohammed

Abstract:

Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). The construction ecology-based topology (i.e., as feedback energy system) flows from biotic and abiotic resources in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.

Keywords: Construction ecology, industrial ecology, urban topology, environmental planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
66 Deep Injection Wells for Flood Prevention and Groundwater Management

Authors: Mohammad R. Jafari, Francois G. Bernardeau

Abstract:

With its arid climate, Qatar experiences low annual rainfall, intense storms, and high evaporation rates. However, the fast-paced rate of infrastructure development in the capital city of Doha has led to recurring instances of surface water flooding as well as rising groundwater levels. Public Work Authority (PWA/ASHGHAL) has implemented an approach to collect and discharge the flood water into a) positive gravity systems; b) Emergency Flooding Area (EFA) – Evaporation, Infiltration or Storage off-site using tankers; and c) Discharge to deep injection wells. As part of the flood prevention scheme, 21 deep injection wells have been constructed to discharge the collected surface and groundwater table in Doha city. These injection wells function as an alternative in localities that do not possess either positive gravity systems or downstream networks that can accommodate additional loads. These injection wells are 400-m deep and are constructed in a complex karstic subsurface condition with large cavities. The injection well system will discharge collected groundwater and storm surface runoff into the permeable Umm Er Radhuma Formation, which is an aquifer present throughout the Persian Gulf Region. The Umm Er Radhuma formation contains saline water that is not being used for water supply. The injection zone is separated by an impervious gypsum formation which acts as a barrier between upper and lower aquifer. State of the art drilling, grouting, and geophysical techniques have been implemented in construction of the wells to assure that the shallow aquifer would not be contaminated and impacted by injected water. Injection and pumping tests were performed to evaluate injection well functionality (injectability). The results of these tests indicated that majority of the wells can accept injection rate of 200 to 300 m3 /h (56 to 83 l/s) under gravity with average value of 250 m3 /h (70 l/s) compared to design value of 50 l/s. This paper presents design and construction process and issues associated with these injection wells, performing injection/pumping tests to determine capacity and effectiveness of the injection wells, the detailed design of collection system and conveying system into the injection wells, and the operation and maintenance process. This system is completed now and is under operation, and therefore, construction of injection wells is an effective option for flood control.

Keywords: Deep injection well, wellhead assembly system, emergency flood area, flood prevention scheme, geophysical tests, pumping and injection tests, Qatar geology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
65 A Temporary Shelter Proposal for Displaced People

Authors: İ. Yetkin, F. Maden, S. Tosun, Y. Akgün, Ö. Kilit, K. Korkmaz, G. Kiper, M. Gündüzalp

Abstract:

Forced migration, whether caused by conflicts or other factors, frequently places individuals in vulnerable situations, necessitating immediate access to shelter. To promptly address the immediate needs of affected individuals, temporary shelters are often established. These shelters are characterized by their adaptable and functional nature, encompassing lightweight and sustainable structural systems, rapid assembly capabilities, modularity, and transportability. The shelter design is contingent upon demand, resulting in distinct phases for different structural forms. A multi-phased shelter approach covers emergency response, temporary shelter, and permanent reconstruction. Emergency shelters play a critical role in providing immediate life-saving aid. In contrast, temporary and transitional shelters, also called “T-shelters,” offer longer-term living environments during the recovery and rebuilding. Among these, temporary shelters are more extensively covered in the literature due to their diverse inhabiting functions. The roles of emergency shelters and temporary shelters are inherently separate, addressing distinct aspects of sheltering processes. Given their prolonged usage, temporary shelters are built for greater durability compared to emergency shelters. Nonetheless, inadequacies in temporary shelters can lead to challenges in ensuring habitability. Issues like non-expandable structures unsuitable for accommodating large families, short-term shelters that worsen conditions, non-waterproof materials providing insufficient protection against bad weather conditions, and complex installation systems contribute to these problems. Given the aforementioned problems, there arises a need to develop adaptive shelters featuring lightweight components for ease of transport, possess the ability for rapid assembly, and utilize durable materials to withstand adverse weather conditions. In this study, first, the state-of-the-art on temporary shelters is presented. Then, a temporary shelter composed of foldable plates is proposed, which can easily be assembled and transportable. The proposed shelter is deliberated upon its movement capacity, transportability, and flexibility. This study makes a valuable contribution to the literature since it not only offers a systematic analysis of temporary shelters utilizing kinetic systems but also presents a practical solution that meets the necessary design requirements.

Keywords: Deployable structures, disasters, foldable plates, temporary shelters, transformable structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120
64 Capital Accumulation and Unemployment in Namibia, Nigeria, and South Africa

Authors: Abubakar Dikko

Abstract:

The research investigates the causes of unemployment in Namibia, Nigeria and South Africa and the role of Capital Accumulation in reducing the unemployment profile of these economies as proposed by the post-Keynesian economics. This is conducted through extensive review of literature on the NAIRU models and focused on the post-Keynesian view of unemployment within the NAIRU framework. The NAIRU (non-accelerating inflation rate of unemployment) model has become a dominant framework used in macroeconomic analysis of unemployment. The study views the post-Keynesian economics arguments that capital accumulation is a major determinant of unemployment. Unemployment remains the fundamental socio-economic challenge facing African economies. It has been a burden to citizens of those economies. Namibia, Nigeria, and South Africa are great African nations battling with high unemployment rates. The high unemployment rate in the country led the citizens to chase away foreigners in the country claiming that they have taken away their jobs. The study proposes there is a strong relationship between capital accumulation and unemployment in Namibia, Nigeria, and South Africa, and capital accumulation is responsible for high unemployment rates in these countries. For the economies to achieve steady state level of employment and satisfactory level of economic growth and development, there is need for capital accumulation to take place. The countries in the study have been selected after a critical research and investigations. They are selected based on the following criteria; African economies with high unemployment rates above 15% and have about 40% of their workforce unemployed. This level of unemployment is the critical level of unemployment in Africa as expressed by International Labour Organization (ILO). And finally, the African countries experience a slow growth in their Gross fixed capital formation. Adequate statistical measures have been employed using a time-series analysis in the study and the results revealed that capital accumulation is the main driver of unemployment performance in the chosen African countries. An increase in the accumulation of capital causes unemployment to reduce significantly. The results of the research work will be useful and relevant to federal governments and ministries, departments and agencies (MDAs) of Namibia, Nigeria and South Africa to resolve the issue of high and persistent unemployment rates in their economies which are great burden that slows growth and development of developing economies. Also, the result can be useful to World Bank, African Development Bank and International Labour Organization (ILO) in their further research and studies on how to tackle unemployment in developing and emerging economies.

Keywords: Capital accumulation, NAIRU, post-Keynesian economics, unemployment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3267
63 Interactive Garments: Flexible Technologies for Textile Integration

Authors: Anupam Bhatia

Abstract:

Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.

Keywords: Ambient Intelligence, Proximity Sensors, Shape Memory Materials, Sound sensing garments, Wearable Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3278
62 Systematic Mapping Study of Digitization and Analysis of Manufacturing Data

Authors: R. Clancy, M. Ahern, D. O’Sullivan, K. Bruton

Abstract:

The manufacturing industry is currently undergoing a digital transformation as part of the mega-trend Industry 4.0. As part of this phase of the industrial revolution, traditional manufacturing processes are being combined with digital technologies to achieve smarter and more efficient production. To successfully digitally transform a manufacturing facility, the processes must first be digitized. This is the conversion of information from an analogue format to a digital format. The objective of this study was to explore the research area of digitizing manufacturing data as part of the worldwide paradigm, Industry 4.0. The formal methodology of a systematic mapping study was utilized to capture a representative sample of the research area and assess its current state. Specific research questions were defined to assess the key benefits and limitations associated with the digitization of manufacturing data. Research papers were classified according to the type of research and type of contribution to the research area. Upon analyzing 54 papers identified in this area, it was noted that 23 of the papers originated in Germany. This is an unsurprising finding as Industry 4.0 is originally a German strategy with supporting strong policy instruments being utilized in Germany to support its implementation. It was also found that the Fraunhofer Institute for Mechatronic Systems Design, in collaboration with the University of Paderborn in Germany, was the most frequent contributing Institution of the research papers with three papers published. The literature suggested future research directions and highlighted one specific gap in the area. There exists an unresolved gap between the data science experts and the manufacturing process experts in the industry. The data analytics expertise is not useful unless the manufacturing process information is utilized. A legitimate understanding of the data is crucial to perform accurate analytics and gain true, valuable insights into the manufacturing process. There lies a gap between the manufacturing operations and the information technology/data analytics departments within enterprises, which was borne out by the results of many of the case studies reviewed as part of this work. To test the concept of this gap existing, the researcher initiated an industrial case study in which they embedded themselves between the subject matter expert of the manufacturing process and the data scientist. Of the papers resulting from the systematic mapping study, 12 of the papers contributed a framework, another 12 of the papers were based on a case study, and 11 of the papers focused on theory. However, there were only three papers that contributed a methodology. This provides further evidence for the need for an industry-focused methodology for digitizing and analyzing manufacturing data, which will be developed in future research.

Keywords: Analytics, digitization, industry 4.0, manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
61 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach

Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik

Abstract:

Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.

Keywords: Center of pressure (CoP), a method of developed statokinesigram trajectory (MDST), a model of postural system behavior, retroreflective marker data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
60 Utilization of Rice Husk Ash with Clay to Produce Lightweight Coarse Aggregates for Concrete

Authors: Shegufta Zahan, Muhammad A. Zahin, Muhammad M. Hossain, Raquib Ahsan

Abstract:

Rice Husk Ash (RHA) is one of the agricultural waste byproducts available widely in the world and contains a large amount of silica. In Bangladesh, stones cannot be used as coarse aggregate in infrastructure works as they are not available and need to be imported from abroad. As a result, bricks are mostly used as coarse aggregates in concrete as they are cheaper and easily produced here. Clay is the raw material for producing brick. Due to rapid urban growth and the industrial revolution, demand for brick is increasing, which led to a decrease in the topsoil. This study aims to produce lightweight block aggregates with sufficient strength utilizing RHA at low cost and use them as an ingredient of concrete. RHA, because of its pozzolanic behavior, can be utilized to produce better quality block aggregates at lower cost, replacing clay content in the bricks. The whole study can be divided into three parts. In the first part, characterization tests on RHA and clay were performed to determine their properties. Six different types of RHA from different mills were characterized by XRD and SEM analysis. Their fineness was determined by conducting a fineness test. The result of XRD confirmed the amorphous state of RHA. The characterization test for clay identifies the sample as “silty clay” with a specific gravity of 2.59 and 14% optimum moisture content. In the second part, blocks were produced with six different types of RHA with different combinations by volume with clay. Then mixtures were manually compacted in molds before subjecting them to oven drying at 120 °C for 7 days. After that, dried blocks were placed in a furnace at 1200 °C to produce ultimate blocks. Loss on ignition test, apparent density test, crushing strength test, efflorescence test, and absorption test were conducted on the blocks to compare their performance with the bricks. For 40% of RHA, the crushing strength result was found 60 MPa, where crushing strength for brick was observed 48.1 MPa. In the third part, the crushed blocks were used as coarse aggregate in concrete cylinders and compared them with brick concrete cylinders. Specimens were cured for 7 days and 28 days. The highest compressive strength of block cylinders for 7 days curing was calculated as 26.1 MPa, whereas, for 28 days curing, it was found 34 MPa. On the other hand, for brick cylinders, the value of compressing strength of 7 days and 28 days curing was observed as 20 MPa and 30 MPa, respectively. These research findings can help with the increasing demand for topsoil of the earth, and also turn a waste product into a valuable one.

Keywords: Characterization, furnace, pozzolanic behavior, rice husk ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 471
59 A Sociolinguistic Study of the Outcomes of Arabic-French Contact in the Algerian Dialect Tlemcen Speech Community as a Case Study

Authors: R. Rahmoun-Mrabet

Abstract:

It is acknowledged that our style of speaking changes according to a wide range of variables such as gender, setting, the age of both the addresser and the addressee, the conversation topic, and the aim of the interaction. These differences in style are noticeable in monolingual and multilingual speech communities. Yet, they are more observable in speech communities where two or more codes coexist. The linguistic situation in Algeria reflects a state of bilingualism because of the coexistence of Arabic and French. Nevertheless, like all Arab countries, it is characterized by diglossia i.e. the concomitance of Modern Standard Arabic (MSA) and Algerian Arabic (AA), the former standing for the ‘high variety’ and the latter for the ‘low variety’. The two varieties are derived from the same source but are used to fulfil distinct functions that is, MSA is used in the domains of religion, literature, education and formal settings. AA, on the other hand, is used in informal settings, in everyday speech. French has strongly affected the Algerian language and culture because of the historical background of Algeria, thus, what can easily be noticed in Algeria is that everyday speech is characterized by code-switching from dialectal Arabic and French or by the use of borrowings. Tamazight is also very present in many regions of Algeria and is the mother tongue of many Algerians. Yet, it is not used in the west of Algeria, where the study has been conducted. The present work, which was directed in the speech community of Tlemcen-Algeria, aims at depicting some of the outcomes of the contact of Arabic with French such as code-switching, borrowing and interference. The question that has been asked is whether Algerians are aware of their use of borrowings or not. Three steps are followed in this research; the first one is to depict the sociolinguistic situation in Algeria and to describe the linguistic characteristics of the dialect of Tlemcen, which are specific to this city. The second one is concerned with data collection. Data have been collected from 57 informants who were given questionnaires and who have then been classified according to their age, gender and level of education. Information has also been collected through observation, and note taking. The third step is devoted to analysis. The results obtained reveal that most Algerians are aware of their use of borrowings. The present work clarifies how words are borrowed from French, and then adapted to Arabic. It also illustrates the way in which singular words inflect into plural. The results expose the main characteristics of borrowing as opposed to code-switching. The study also clarifies how interference occurs at the level of nouns, verbs and adjectives.

Keywords: Bilingualism, borrowing, code-switching, interference, language contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
58 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: Discrete Element Method, fluid flow, parametric study, sand production/bonds failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
57 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances

Authors: P. Mounnarath, U. Schmitz, Ch. Zhang

Abstract:

Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.

Keywords: Expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
56 Building Resilient Communities: The Traumatic Effect of Wildfire on Mati, Greece

Authors: K. Vallianou, T. Alexopoulos, V. Plaka, M. K. Seleventi, V. Skanavis, C. Skanavis

Abstract:

The present research addresses the role of place attachment and emotions in community resiliency and recovery within the context of a disaster. Natural disasters represent a disruption in the normal functioning of a community, leading to a general feeling of disorientation. This study draws on the trauma caused by a natural hazard such as a forest fire. The changes of the sense of togetherness are being assessed. Finally this research determines how the place attachment of the inhabitants was affected during the reorientation process of the community. The case study area is Mati, a small coastal town in eastern Attica, Greece. The fire broke out on July 23rd, 2018. A quantitative research was conducted through questionnaires via phone interviews, one year after the disaster, to address community resiliency in the long-run. The sample was composed of 159 participants from the rural community of Mati plus 120 coming from Skyros Island that was used as a control group. Inhabitants were prompted to answer items gauging their emotions related to the event, group identification and emotional significance of their community, and place attachment before and a year after the fire took place. Importantly, the community recovery and reorientation were examined within the context of a relative absence of government backing and official support. Emotions related to the event were aggregated into 4 clusters related to: activation/vigilance, distress/disorientation, indignation, and helplessness. The findings revealed a decrease in the level of place attachment in the impacted area of Mati as compared to the control group of Skyros Island. Importantly, initial distress caused by the fire prompted the residents to identify more with their community and to report more positive feelings toward their community. Moreover, a mediation analysis indicated that the positive effect of community cohesion on place attachment one year after the disaster was mediated by the positive feelings toward the community. Finally, place attachment contributes to enhanced optimism and a more positive perspective concerning Mati’s future prospects. Despite an insufficient state support to this affected area, the findings suggest an important role of emotions and place attachment during the process of recovery. Implications concerning the role of emotions and social dynamics in meshing place attachment during the disaster recovery process as well as community resiliency are discussed.

Keywords: Community resilience, natural disasters, place attachment, wildfire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803
55 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling

Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci

Abstract:

Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.

Keywords: Land cover, tropospheric ozone, WRF-Chem, air quality assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
54 A Geographical Spatial Analysis on the Benefits of Using Wind Energy in Kuwait

Authors: Obaid AlOtaibi, Salman Hussain

Abstract:

Wind energy is associated with many geographical factors including wind speed, climate change, surface topography, environmental impacts, and several economic factors, most notably the advancement of wind technology and energy prices. It is the fastest-growing and least economically expensive method for generating electricity. Wind energy generation is directly related to the characteristics of spatial wind. Therefore, the feasibility study for the wind energy conversion system is based on the value of the energy obtained relative to the initial investment and the cost of operation and maintenance. In Kuwait, wind energy is an appropriate choice as a source of energy generation. It can be used in groundwater extraction in agricultural areas such as Al-Abdali in the north and Al-Wafra in the south, or in fresh and brackish groundwater fields or remote and isolated locations such as border areas and projects away from conventional power electricity services, to take advantage of alternative energy, reduce pollutants, and reduce energy production costs. The study covers the State of Kuwait with an exception of metropolitan area. Climatic data were attained through the readings of eight distributed monitoring stations affiliated with Kuwait Institute for Scientific Research (KISR). The data were used to assess the daily, monthly, quarterly, and annual available wind energy accessible for utilization. The researchers applied the Suitability Model to analyze the study by using the ArcGIS program. It is a model of spatial analysis that compares more than one location based on grading weights to choose the most suitable one. The study criteria are: the average annual wind speed, land use, topography of land, distance from the main road networks, urban areas. According to the previous criteria, the four proposed locations to establish wind farm projects are selected based on the weights of the degree of suitability (excellent, good, average, and poor). The percentage of areas that represents the most suitable locations with an excellent rank (4) is 8% of Kuwait’s area. It is relatively distributed as follows: Al-Shqaya, Al-Dabdeba, Al-Salmi (5.22%), Al-Abdali (1.22%), Umm al-Hayman (0.70%), North Wafra and Al-Shaqeeq (0.86%). The study recommends to decision-makers to consider the proposed location (No.1), (Al-Shqaya, Al-Dabdaba, and Al-Salmi) as the most suitable location for future development of wind farms in Kuwait, this location is economically feasible.

Keywords: Kuwait, renewable energy, spatial analysis, wind energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
53 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g., phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g., from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
52 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth

Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias

Abstract:

Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.

Keywords: CNT, CO hydro-deoxygenation, DFT, liquid fuels, XPS, XTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
51 Bed Evolution under One-Episode Flushing in a Truck Sewer in Paris, France

Authors: Gashin Shahsavari, Gilles Arnaud-Fassetta, Roberto Bertilotti, Alberto Campisano, Fabien Riou

Abstract:

Sewer deposits have been identified as a major cause of dysfunctions in combined sewer systems regarding sewer management, which induces different negative consequents resulting in poor hydraulic conveyance, environmental damages as well as worker’s health. In order to overcome the problematics of sedimentation, flushing has been considered as the most operative and cost-effective way to minimize the sediments impacts and prevent such challenges. Flushing, by prompting turbulent wave effects, can modify the bed form depending on the hydraulic properties and geometrical characteristics of the conduit. So far, the dynamics of the bed-load during high-flow events in combined sewer systems as a complex environment is not well understood, mostly due to lack of measuring devices capable to work in the “hostile” in combined sewer system correctly. In this regards, a one-episode flushing issue from an opening gate valve with weir function was carried out in a trunk sewer in Paris to understand its cleansing efficiency on the sediments (thickness: 0-30 cm). During more than 1h of flushing within 5 m distance in downstream of this flushing device, a maximum flowrate and a maximum level of water have been recorded at 5 m in downstream of the gate as 4.1 m3/s and 2.1 m respectively. This paper is aimed to evaluate the efficiency of this type of gate for around 1.1 km (from the point -50 m to +1050 m in downstream from the gate) by (i) determining bed grain-size distribution and sediments evolution through the sewer channel, as well as their organic matter content, and (ii) identifying sections that exhibit more changes in their texture after the flush. For the first one, two series of sampling were taken from the sewer length and then analyzed in laboratory, one before flushing and second after, at same points among the sewer channel. Hence, a non-intrusive sampling instrument has undertaken to extract the sediments smaller than the fine gravels. The comparison between sediments texture after the flush operation and the initial state, revealed the most modified zones by the flush effect, regarding the sewer invert slope and hydraulic parameters in the zone up to 400 m from the gate. At this distance, despite the increase of sediment grain-size rages, D50 (median grainsize) varies between 0.6 mm and 1.1 mm compared to 0.8 mm and 10 mm before and after flushing, respectively. Overall, regarding the sewer channel invert slope, results indicate that grains smaller than sands (< 2 mm) are more transported to downstream along about 400 m from the gate: in average 69% before against 38% after the flush with more dispersion of grain-sizes distributions. Furthermore, high effect of the channel bed irregularities on the bed material evolution has been observed after the flush.

Keywords: Bed-material load evolution, combined sewer systems, flushing efficiency, sediment transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
50 Reducing Pressure Drop in Microscale Channel Using Constructal Theory

Authors: K. X. Cheng, A. L. Goh, K. T. Ooi

Abstract:

The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.

Keywords: Constructal theory, enhanced heat transfer, microchannel, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
49 Islam, Gender and Education in Contemporary Georgia: The Example of Kvemo Kartli

Authors: N. Gelovani, D. Ismailov, S. Bochorishvili

Abstract:

Religious minorities of Georgia include Muslims. Their composition is sufficiently miscellaneous, enclosing both ethnical viewpoint and belonging to the inner Islamic denomination. A majority of Muslims represent Azerbaijanis, who chiefly live in Kvemo Kartli (Bolnisi, Gardabani, Dmanisi, Tetri Tskaro, Marneuli and Tsalka). The catalyst for researchers of Islamic History is the geopolitical interests of Georgia, centuries-old contacts with the Islamic world, the not entirely trivial portion of Islam confessor population, the increasing influence of the Islamic factor in current religious-political processes in the world, the elevating procedure of Muslim religious self-consciousness in the Post-Soviet states, significant challenges of international terrorism, and perspectives of rapid globalization. The rise in the level of religious identity of Muslim citizens of Georgia (first of all of those who are not ethnic Georgians) is noticeable. New mosques have been constructed and, sometimes, even young people are being sent to the religious educational institutions of Muslim countries to gain a higher Islamic education. At a time when gender studies are substantive, the goal of which is to eliminate gender-based discrimination and violence in societies, it is essential in Georgia to conduct researches around the concrete problem – Islamic tradition, woman and education in Georgia. A woman’s right to education is an important indicator of women’s general status in a society. The appropriate resources, innovative analysis of Georgian ethnological materials, and surveying of the population (quantitative and qualitative research reports, working papers), condition the success of these researches. In the presented work, interrelation matters of Islam, gender and education in contemporary Georgia by the example of the Azerbaijani population in Kvemo Kartli during period 1992-2016 are studied. We researched the history of Muslim religious education centers in Tbilisi and Kvemo Kartli (Bolnisi, Gardabani, Dmanisi, Tetri Tskaro, Marneuli and Tsalka) in 1992-2016, on the one hand, and the results of sociological interrogation, on the other. As a result of our investigation, we found that Azeri women in the Kvemo Kartli (Georgia) region mostly receive their education in Georgia and Azerbaijan. Educational and Cultural Institutions are inaccessible for most Azeri women. The main reasons are the absence of educational and religious institutions at their places of residence and state policies towards Georgia’s Muslims. 

Keywords: Islam, gender, Georgia, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
48 Analytical, Numerical, and Experimental Research Approaches to Influence of Vibrations on Hydroelastic Processes in Centrifugal Pumps

Authors: Dinara F. Gaynutdinova, Vladimir Ya Modorsky, Nikolay A. Shevelev

Abstract:

The problem under research is that of unpredictable modes occurring in two-stage centrifugal hydraulic pump as a result of hydraulic processes caused by vibrations of structural components. Numerical, analytical and experimental approaches are considered. A hypothesis was developed that the problem of unpredictable pressure decrease at the second stage of centrifugal pumps is caused by cavitation effects occurring upon vibration. The problem has been studied experimentally and theoretically as of today. The theoretical study was conducted numerically and analytically. Hydroelastic processes in dynamic “liquid – deformed structure” system were numerically modelled and analysed. Using ANSYS CFX program engineering analysis complex and computing capacity of a supercomputer the cavitation parameters were established to depend on vibration parameters. An influence domain of amplitudes and vibration frequencies on concentration of cavitation bubbles was formulated. The obtained numerical solution was verified using CFM program package developed in PNRPU. The package is based on a differential equation system in hyperbolic and elliptic partial derivatives. The system is solved by using one of finite-difference method options – the particle-in-cell method. The method defines the problem solution algorithm. The obtained numerical solution was verified analytically by model problem calculations with the use of known analytical solutions of in-pipe piston movement and cantilever rod end face impact. An infrastructure consisting of an experimental fast hydro-dynamic processes research installation and a supercomputer connected by a high-speed network, was created to verify the obtained numerical solutions. Physical experiments included measurement, record, processing and analysis of data for fast processes research by using National Instrument signals measurement system and Lab View software. The model chamber end face oscillated during physical experiments and, thus, loaded the hydraulic volume. The loading frequency varied from 0 to 5 kHz. The length of the operating chamber varied from 0.4 to 1.0 m. Additional loads weighed from 2 to 10 kg. The liquid column varied from 0.4 to 1 m high. Liquid pressure history was registered. The experiment showed dependence of forced system oscillation amplitude on loading frequency at various values: operating chamber geometrical dimensions, liquid column height and structure weight. Maximum pressure oscillation (in the basic variant) amplitudes were discovered at loading frequencies of approximately 1,5 kHz. These results match the analytical and numerical solutions in ANSYS and CFM.

Keywords: Computing experiment, hydroelasticity, physical experiment, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
47 Modeling Aerosol Formation in an Electrically Heated Tobacco Product

Authors: Markus Nordlund, Arkadiusz K. Kuczaj

Abstract:

Philip Morris International (PMI) is developing a range of novel tobacco products with the potential to reduce individual risk and population harm in comparison to smoking cigarettes. One of these products is the Tobacco Heating System 2.2 (THS 2.2), (named as the Electrically Heated Tobacco System (EHTS) in this paper), already commercialized in a number of countries (e.g., Japan, Italy, Switzerland, Russia, Portugal and Romania). During use, the patented EHTS heats a specifically designed tobacco product (Electrically Heated Tobacco Product (EHTP)) when inserted into a Holder (heating device). The EHTP contains tobacco material in the form of a porous plug that undergoes a controlled heating process to release chemical compounds into vapors, from which an aerosol is formed during cooling. The aim of this work was to investigate the aerosol formation characteristics for realistic operating conditions of the EHTS as well as for relevant gas mixture compositions measured in the EHTP aerosol consisting mostly of water, glycerol and nicotine, but also other compounds at much lower concentrations. The nucleation process taking place in the EHTP during use when operated in the Holder has therefore been modeled numerically using an extended Classical Nucleation Theory (CNT) for multicomponent gas mixtures. Results from the performed simulations demonstrate that aerosol droplets are formed only in the presence of an aerosol former being mainly glycerol. Minor compounds in the gas mixture were not able to reach a supersaturated state alone and therefore could not generate aerosol droplets from the multicomponent gas mixture at the operating conditions simulated. For the analytically characterized aerosol composition and estimated operating conditions of the EHTS and EHTP, glycerol was shown to be the main aerosol former triggering the nucleation process in the EHTP. This implies that according to the CNT, an aerosol former, such as glycerol needs to be present in the gas mixture for an aerosol to form under the tested operating conditions. To assess if these conclusions are sensitive to the initial amount of the minor compounds and to include and represent the total mass of the aerosol collected during the analytical aerosol characterization, simulations were carried out with initial masses of the minor compounds increased by as much as a factor of 500. Despite this extreme condition, no aerosol droplets were generated when glycerol, nicotine and water were treated as inert species and therefore not actively contributing to the nucleation process. This implies that according to the CNT, an aerosol cannot be generated without the help of an aerosol former, from the multicomponent gas mixtures at the compositions and operating conditions estimated for the EHTP, even if all minor compounds are released or generated in a single puff.

Keywords: Aerosol, Classical Nucleation Theory (CNT), Electrically Heated Tobacco Product (EHTP), Electrically Heated Tobacco System (EHTS), modeling, multicomponent, nucleation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
46 Spexin and Fetuin A in Morbid Obese Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Spexin, expressed in the central nervous system, has attracted much interest in feeding behavior, obesity, diabetes, energy metabolism and cardiovascular functions. Fetuin A is known as the negative acute phase reactant synthesized in the liver. Eosinophils are early indicators of cardiometabolic complications. Patients with elevated platelet count, associated with hypercoagulable state in the body, are also more liable to cardiovascular diseases (CVDs). In this study, the aim is to examine the profiles of spexin and fetuin A concomitant with the course of variations detected in eosinophil as well as platelet counts in morbid obese children. 34 children with normal-body mass index (N-BMI) and 51 morbid obese (MO) children participated in the study. Written-informed consent forms were obtained prior to the study. Institutional ethics committee approved the study protocol. Age- and sex-adjusted BMI percentile tables prepared by World Health Organization were used to classify healthy and obese children. Mean age ± SEM of the children were 9.3 ± 0.6 years and 10.7 ± 0.5 years in N-BMI and MO groups, respectively. Anthropometric measurements of the children were taken. BMI values were calculated from weight and height values. Blood samples were obtained after an overnight fasting. Routine hematologic and biochemical tests were performed. Within this context, fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) concentrations were measured. Homeostatic model assessment for insulin resistance (HOMA-IR) values were calculated. Spexin and fetuin A levels were determined by enzyme-linked immunosorbent assay. Data were evaluated from the statistical point of view. Statistically significant differences were found between groups in terms of BMI, fat mass index, INS, HOMA-IR and HDL-C. In MO group, all parameters increased as HDL-C decreased. Elevated concentrations in MO group were detected in eosinophils (p < 0.05) and platelets (p > 0.05). Fetuin A levels decreased in MO group (p > 0.05). However, decrease was statistically significant in spexin levels for this group (p < 0.05). In conclusion, these results have suggested that increases in eosinophils and platelets exhibit behavior as cardiovascular risk factors. Decreased fetuin A behaved as a risk factor suitable to increased risk for cardiovascular problems associated with the severity of obesity. Along with increased eosinophils, increased platelets and decreased fetuin A, decreased spexin was the parameter, which reflects best its possible participation in the early development of CVD risk in MO children.

Keywords: Cardiovascular diseases, eosinophils, fetuin A, pediatric morbid obesity, platelets, spexin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682
45 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements

Authors: Alexander Buhr, Klaus Ehrenfried

Abstract:

Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.

Keywords: Boundary layer, high-speed PIV, ICE3, moving train model, roughness elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
44 New Suspension Mechanism Using Camber Thrust for a Formula Car

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle are vital in automotive engineering. The stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswinds and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since the fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced, thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle, especially with the worrying increase of vehicle collision every day. With better safety performance of a vehicle, every driver will be more confident driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved, thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in a four-wheel vehicle, especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff, and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on the performance of both suspension systems.

Keywords: Automobile, Camber Thrust, Cornering force, Suspension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3600
43 Role of Community Youths in Conservation of Forests and Protected Areas of Bangladesh

Authors: Obaidul Fattah Tanvir, Zinat Ara Afroze

Abstract:

Community living adjacent to forests and Protected Areas, especially in South Asian countries, have a common practice in extracting resources for their living and livelihoods. This extraction of resources, because the way it is done, destroys the biophysical features of the area. Deforestation, wildlife poaching, illegal logging, unauthorized hill cutting etc. are some of the serious issues of concern for the sustainability of the natural resources that has a direct impact on environment and climate as a whole. To ensure community involvement in conservation initiatives of the state, community based forest management, commonly known as Comanagement, has been in practice in 6 South Asian countries. These are -India, Nepal, Sri Lanka, Pakistan, Bhutan and Bangladesh. Involving community in forestry management was initiated first in Bangladesh in 1979 and reached as an effective co-management approach through a several paradigm shifts. This idea of Comanagement has been institutionalized through a Government Order (GO) by the Ministry of Environment and Forests, Government of Bangladesh on November 23, 2009. This GO clearly defines the structure and functions of Co-management and its different bodies. Bangladesh Forest Department has been working in association with community to conserve and manage the Forests and Protected areas of Bangladesh following this legal document. Demographically young people constitute the largest segment of population in Bangladesh. This group, if properly sensitized, can produce valuable impacts on the conservation initiatives, both by community and government. This study traced the major factors that motivate community youths to work effectively with different tiers of comanagement organizations in conservation of forests and Protected Areas of Bangladesh. For the purpose of this study, 3 FGDs were conducted with 30 youths from the community living around the Protected Areas of Cox’s bazar, South East corner of Bangladesh, who are actively involved in Co-management organizations. KII were conducted with 5 key officials of Forest Department stationed at Cox’s Bazar. 2 FGDs were conducted with the representatives of 7 Co-management organizations working in Cox’s Bazar region and approaches of different community outreach activities conducted for forest conservation by 3 private organizations and Projects have been reviewed. Also secondary literatures were reviewed for the history and evolution of Co-management in Bangladesh and six South Asian countries. This study found that innovative community outreach activities that are financed by public and private sectors involving youths and community as a whole have played a pivotal role in conservation of forests and Protected Areas of the region. This approach can be replicated in other regions of Bangladesh as well as other countries of South Asia where Co-Management exists in practice.

Keywords: Community, co-management, conservation, forests, protected areas, youth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3760
42 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: Carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3458
41 Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance

Authors: M. H. Arslan, U. K. Sahin, H. Acikgoz-Tufan, I. Gocek, I. Erdem

Abstract:

Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.

Keywords: Behavior against washing machine parameters, performance evaluation of textiles, statistical analysis, commercial and test textiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380