Search results for: signal denoise
783 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs
Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong
Abstract:
The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.
Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901782 Optimized Data Fusion in an Intelligent Integrated GPS/INS System Using Genetic Algorithm
Authors: Ali Asadian, Behzad Moshiri, Ali Khaki Sedigh, Caro Lucas
Abstract:
Most integrated inertial navigation systems (INS) and global positioning systems (GPS) have been implemented using the Kalman filtering technique with its drawbacks related to the need for predefined INS error model and observability of at least four satellites. Most recently, a method using a hybrid-adaptive network based fuzzy inference system (ANFIS) has been proposed which is trained during the availability of GPS signal to map the error between the GPS and the INS. Then it will be used to predict the error of the INS position components during GPS signal blockage. This paper introduces a genetic optimization algorithm that is used to update the ANFIS parameters with respect to the INS/GPS error function used as the objective function to be minimized. The results demonstrate the advantages of the genetically optimized ANFIS for INS/GPS integration in comparison with conventional ANFIS specially in the cases of satellites- outages. Coping with this problem plays an important role in assessment of the fusion approach in land navigation.Keywords: Adaptive Network based Fuzzy Inference System (ANFIS), Genetic optimization, Global Positioning System (GPS), Inertial Navigation System (INS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909781 Pre-Deflection Routing with Control Packet Signal Scheme in Optical Burst Switch Networks
Authors: Jaipal Bisht, Aditya Goel
Abstract:
Optical Burst Switching (OBS) is a promising technology for the future generation Internet. Control architecture and Contention resolution are the main issues faced by the Optical Burst Switching networks. In this paper we are only taking care of the Contention problem and to overcome this issue we propose Pre-Deflection Routing with Control Packet Signal Scheme for Contention Resolution in Optical Burst Switch Networks. In this paper Pre-deflection routing approach has been proposed in which routing is carried out in two ways, Shortest Path First (SPF) and Least Hop First (LHF) Routing to forward the clusters and canoes respectively. Hereafter Burst Offset Time Control Algorithm has been proposed where a forward control packet (FCP) collects the congestion price and contention price along its paths. Thereafter a reverse-direction control packet (RCP) sent by destination node which delivers the information of FCP to the source node, and source node uses this information to revise its offset time and burst length.
Keywords: Contention Resolution, FCP, OBS, Offset Time, PST, RCP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900780 Classification of Discharges Initiated by Liquid Droplet on Insulation Material under AC Voltages Adopting UHF Technique
Authors: R. Sarathi, G. Nagesh, K. Vasudevan
Abstract:
In the present work, an attempt has been made to understand the feasibility of using UHF technique for identification of any corona discharges/ arcing in insulating material due to water droplets. The sensors of broadband type are useful for identification of such discharges. It is realised that arcing initiated by liquid droplet radiates UHF signals in the entire bandwidth up to 2 GHz. The frequency content of the UHF signal generated due to corona/arcing is not much varied in epoxy nanocomposites with different weight percentage of clay content. The exfoliated/intercalated properties were analysed through TEM studies. It is realized that corona initiated discharges are of intermittent process. The hydrophobicity of the material characterized through contact angle measurement. It is realized that low Wt % of nanoclay content in epoxy resin reduces the surface carbonization due to arcing/corona discharges. The results of the study with gamma irradiated specimen indicates that contact angle, discharge inception time and evaporation time of the liquid are much lower than the virgin epoxy nanocomposite material.Keywords: Arcing, Corona, epoxy resin, insulation, nanocomposites, UHF signal, water droplet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917779 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement
Authors: Pogula Rakesh, T. Kishore Kumar
Abstract:
Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR) and SNR Loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.
Keywords: Adaptive filter, Adaptive Noise Canceller, Mean Squared Error, Noise reduction, NLMS, RLS, SNR, SNR Loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3183778 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.
Keywords: Sound Detection, Impulsive Signal, Background Noise, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335777 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718
Authors: Pushpendra S. Bharti, S. Maheshwari
Abstract:
Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.
Keywords: EDM, material removal rate, multi-response signal-to-noise ratio, optimization, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197776 Field Programmable Gate Array Based Infinite Impulse Response Filter Using Multipliers
Authors: Rajesh Mehra, Bharti Thakur
Abstract:
In this paper, an Infinite Impulse Response (IIR) filter has been designed and simulated on an Field Programmable Gate Arrays (FPGA). The implementation is based on Multiply Add and Accumulate (MAC) algorithm which uses multiply operations for design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of target device. The designed filter has been synthesized on Digital Signal Processor (DSP) slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The proposed design is simulated with Matlab, synthesized with Xilinx Synthesis Tool, and implemented on FPGA devices. The Virtex 5 FPGA based design can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP based design. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.Keywords: Butterworth, DSP, IIR, MAC, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871775 Stability Analysis and Controller Design of Further Development of MIMOS II for Space Applications with Focus on the Extended Lyapunov Method: Part I
Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz
Abstract:
In the context of planetary exploration, the MIMOS II (miniaturized M¨ossbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the M¨ossbauer spectroscopy is further developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, an additional method for analysing the stability of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.
Keywords: Controller design for MIMOS II, stability analysis, M¨ossbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, transimpedance amplifier, extended Lyapunov method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52774 Coded Transmission in Synthetic Transmit Aperture Ultrasound Imaging Method
Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski
Abstract:
The paper presents the study of synthetic transmit aperture method applying the Golay coded transmission for medical ultrasound imaging. Longer coded excitation allows to increase the total energy of the transmitted signal without increasing the peak pressure. Signal-to-noise ratio and penetration depth are improved maintaining high ultrasound image resolution. In the work the 128-element linear transducer array with 0.3 mm inter-element spacing excited by one cycle and the 8 and 16-bit Golay coded sequences at nominal frequencies 4 MHz was used. Single element transmission aperture was used to generate a spherical wave covering the full image region and all the elements received the echo signals. The comparison of 2D ultrasound images of the wire phantom as well as of the tissue mimicking phantom is presented to demonstrate the benefits of the coded transmission. The results were obtained using the synthetic aperture algorithm with transmit and receive signals correction based on a single element directivity function.Keywords: Golay coded sequences, radiation pattern, synthetic aperture, ultrasound imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132773 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method
Authors: M. M. Qasaymeh, M. A. Khodeir
Abstract:
Subspace channel estimation methods have been studied widely, where the subspace of the covariance matrix is decomposed to separate the signal subspace from noise subspace. The decomposition is normally done by using either the eigenvalue decomposition (EVD) or the singular value decomposition (SVD) of the auto-correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. This paper considers the estimation of the multipath slow frequency hopping (FH) channel using noise space based method. In particular, an efficient method is proposed to estimate the multipath time delays by applying multiple signal classification (MUSIC) algorithm which is based on the null space extracted by the rank revealing LU (RRLU) factorization. As a result, precise information is provided by the RRLU about the numerical null space and the rank, (i.e., important tool in linear algebra). The simulation results demonstrate the effectiveness of the proposed novel method by approximately decreasing the computational complexity to the half as compared with RRQR methods keeping the same performance.
Keywords: Time Delay Estimation, RRLU, RRQR, MUSIC, LS-ESPRIT, LS-ESPRIT, Frequency Hopping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045772 Performance Evaluation of a ‘Priority-Controlled’ Intersection Converted to Signal-Controlled Intersection
Authors: Ezenwa Chinenye Amanamba
Abstract:
There is a call to ensure that the issues of safety and efficient throughput are considered during design; the solutions to these issues can also be retrofitted at locations where they were not captured during design, but have become problems to road users over time. This paper adopts several methods to analyze the performance of an intersection which was formerly a ‘priority-controlled’ intersection, but has now been converted to a ‘signal-controlled’ intersection. Extensive review of literature helped form the basis for result analysis and discussion. The Ikot-Ekpene/Anagha-Ezikpe intersection, located at the heart of Umuahia was adopted as case study; considering the high traffic volume on the route. Anecdotal evidence revealed that traffic signals imposed enormous delays at the intersection, especially for traffic on the major road. The major road has arrival flow which surpasses the saturation flow obtained from modelling of the isolated signalized intersection. Similarly, there were several geometric elements that did not agree with the specific function of the road. A roundabout, particularly flower roundabout was recommended as a better traffic control measure.Keywords: Highway function, level of service, roundabout, traffic delays, Umuahia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108771 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation
Authors: S. J. Arif
Abstract:
In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.
Keywords: Digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430770 End-to-End Pyramid Based Method for MRI Reconstruction
Authors: Omer Cahana, Maya Herman, Ofer Levi
Abstract:
Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.
Keywords: Accelerate MRI scans, image reconstruction, pyramid network, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 336769 Person Identification by Using AR Model for EEG Signals
Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi
Abstract:
A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.Keywords: Person Identification, Autoregressive Model, EEG, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741768 Method of Intelligent Fault Diagnosis of Preload Loss for Single Nut Ball Screws through the Sensed Vibration Signals
Authors: Yi-Cheng Huang, Yan-Chen Shin
Abstract:
This paper proposes method of diagnosing ball screw preload loss through the Hilbert-Huang Transform (HHT) and Multiscale entropy (MSE) process. The proposed method can diagnose ball screw preload loss through vibration signals when the machine tool is in operation. Maximum dynamic preload of 2 %, 4 %, and 6 % ball screws were predesigned, manufactured, and tested experimentally. Signal patterns are discussed and revealed using Empirical Mode Decomposition(EMD)with the Hilbert Spectrum. Different preload features are extracted and discriminated using HHT. The irregularity development of a ball screw with preload loss is determined and abstracted using MSE based on complexity perception. Experiment results show that the proposed method can predict the status of ball screw preload loss. Smart sensing for the health of the ball screw is also possible based on a comparative evaluation of MSE by the signal processing and pattern matching of EMD/HHT. This diagnosis method realizes the purposes of prognostic effectiveness on knowing the preload loss and utilizing convenience.Keywords: Empirical Mode Decomposition, Hilbert-Huang Transform, Multi-scale Entropy, Preload Loss, Single-nut Ball Screw
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843767 Adaptive Non-linear Filtering Technique for Image Restoration
Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, S. K. Nayak, C. Ardil
Abstract:
Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.
Keywords: Filtering, Decision Based Algorithm, noise, imagerestoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158766 Variable Input Range Continuous-time Switched Current Delta-sigma Analog Digital Converter for RFID CMOS Biosensor Applications
Authors: Boram Kim, Shigeyasu Uno, Kazuo Nakazato
Abstract:
Continuous-time delta-sigma analog digital converter (ADC) for radio frequency identification (RFID) complementary metal oxide semiconductor (CMOS) biosensor has been reported. This delta-sigma ADC is suitable for digital conversion of biosensor signal because of small process variation, and variable input range. As the input range of continuous-time switched current delta-sigma ADC (Dynamic range : 50 dB) can be limited by using current reference, amplification of biosensor signal is unnecessary. The input range is switched to wide input range mode or narrow input range mode by command of current reference. When the narrow input range mode, the input range becomes ± 0.8 V. The measured power consumption is 5 mW and chip area is 0.31 mm^2 using 1.2 um standard CMOS process. Additionally, automatic input range detecting system is proposed because of RFID biosensor applications.
Keywords: continuous time, delta sigma, A/D converter, RFID, biosensor, CMOS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563765 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition
Authors: Fawaz S. Al-Anzi, Dia AbuZeina
Abstract:
Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.
Keywords: Speech recognition, acoustic features, Mel Frequency Cepstral Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973764 RADAR Imaging to Develop an Enhanced Fog Vision System for Collision Avoidance
Authors: Saswata Chakraborty, R.P.Chatterjee, S. Majumder, Anup Kr. Bhattacharjee
Abstract:
The scattering effect of light in fog improves the difficulty in visibility thus introducing disturbances in transport facilities in urban or industrial areas causing fatal accidents or public harassments, therefore, developing an enhanced fog vision system with radio wave to improvise the way outs of these severe problems is really a big challenge for researchers. Series of experimental studies already been done and more are in progress to know the weather effect on radio frequencies for different ranges. According to Rayleigh scattering Law, the propagating wavelength should be greater than the diameter of the particle present in the penetrating medium. Direct wave RF signal thus have high chance of failure to work in such weather for detection of any object. Therefore an extensive study was required to find suitable region in the RF band that can help us in detecting objects with proper shape. This paper produces some results on object detection using 912 MHz band with successful detection of the persistence of any object coming under the trajectory of a vehicle navigating in indoor and outdoor environment. The developed images are finally transformed to video signal to enable continuous monitoring.Keywords: RADAR Imaging, Fog vision system, Objectdetection, Jpeg to Mpeg conversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880763 Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram
Authors: V Krishnaveni, S Jayaraman, K Ramadoss
Abstract:
The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.
Keywords: Electroencephalogram, Ocular Artifacts (OA), Independent Component Analysis (ICA), Mutual Information (MI), Mutual Information based Least dependent Component Analysis(MILCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193762 Carbon-Based Electrodes for Parabens Detection
Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea
Abstract:
Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.
Keywords: Carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115761 Design of Regular Communication Area for Infrared Electronic-Toll-Collection Systems
Authors: Wern-Yarng Shieh, Chao Qian, Bingnan Pei
Abstract:
A design of communication area for infrared electronic-toll-collection systems to provide an extended communication interval in the vehicle traveling direction and regular boundary between contiguous traffic lanes is proposed. By utilizing two typical low-cost commercial infrared LEDs with different half-intensity angles Φ1/2 = 22◦ and 10◦, the radiation pattern of the emitter is designed to properly adjust the spatial distribution of the signal power. The aforementioned purpose can be achieved with an LED array in a three-piece structure with appropriate mounting angles. With this emitter, the influence of the mounting parameters, including the mounting height and mounting angles of the on-board unit and road-side unit, on the system performance in terms of the received signal strength and communication area are investigated. The results reveal that, for our emitter proposed in this paper, the ideal ”long-and-narrow” characteristic of the communication area is very little affected by these mounting parameters. An optimum mounting configuration is also suggested.
Keywords: Dedicated short-range communication (DSRC), electronic toll collection (ETC), infrared communication, intelligent transportation system (ITS), multilane free flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805760 Motor Imagery Signal Classification for a Four State Brain Machine Interface
Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan
Abstract:
Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification
Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456759 A Novel Approach to Asynchronous State Machine Modeling on Multisim for Avoiding Function Hazards
Authors: L. Parisi, D. Hamili, N. Azlan
Abstract:
The aim of this study was to design and simulate a particular type of Asynchronous State Machine (ASM), namely a ‘traffic light controller’ (TLC), operated at a frequency of 0.5 Hz. The design task involved two main stages: firstly, designing a 4-bit binary counter using J-K flip flops as the timing signal and, subsequently, attaining the digital logic by deploying ASM design process. The TLC was designed such that it showed a sequence of three different colours, i.e. red, yellow and green, corresponding to set thresholds by deploying the least number of AND, OR and NOT gates possible. The software Multisim was deployed to design such circuit and simulate it for circuit troubleshooting in order for it to display the output sequence of the three different colours on the traffic light in the correct order. A clock signal, an asynchronous 4- bit binary counter that was designed through the use of J-K flip flops along with an ASM were used to complete this sequence, which was programmed to be repeated indefinitely. Eventually, the circuit was debugged and optimized, thus displaying the correct waveforms of the three outputs through the logic analyser. However, hazards occurred when the frequency was increased to 10 MHz. This was attributed to delays in the feedback being too high.
Keywords: Asynchronous State Machine, Traffic Light Controller, Circuit Design, Digital Electronics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3242758 Orchestra/Percussion Classification Algorithm for United Speech Audio Coding System
Authors: Yueming Wang, Rendong Ying, Sumxin Jiang, Peilin Liu
Abstract:
Unified Speech Audio Coding (USAC), the latest MPEG standardization for unified speech and audio coding, uses a speech/audio classification algorithm to distinguish speech and audio segments of the input signal. The quality of the recovered audio can be increased by well-designed orchestra/percussion classification and subsequent processing. However, owing to the shortcoming of the system, introducing an orchestra/percussion classification and modifying subsequent processing can enormously increase the quality of the recovered audio. This paper proposes an orchestra/percussion classification algorithm for the USAC system which only extracts 3 scales of Mel-Frequency Cepstral Coefficients (MFCCs) rather than traditional 13 scales of MFCCs and use Iterative Dichotomiser 3 (ID3) Decision Tree rather than other complex learning method, thus the proposed algorithm has lower computing complexity than most existing algorithms. Considering that frequent changing of attributes may lead to quality loss of the recovered audio signal, this paper also design a modified subsequent process to help the whole classification system reach an accurate rate as high as 97% which is comparable to classical 99%.
Keywords: ID3 Decision Tree, MFCC, Orchestra/Percussion Classification, USAC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673757 Automatic Distance Compensation for Robust Voice-based Human-Computer Interaction
Authors: Randy Gomez, Keisuke Nakamura, Kazuhiro Nakadai
Abstract:
Distant-talking voice-based HCI system suffers from performance degradation due to mismatch between the acoustic speech (runtime) and the acoustic model (training). Mismatch is caused by the change in the power of the speech signal as observed at the microphones. This change is greatly influenced by the change in distance, affecting speech dynamics inside the room before reaching the microphones. Moreover, as the speech signal is reflected, its acoustical characteristic is also altered by the room properties. In general, power mismatch due to distance is a complex problem. This paper presents a novel approach in dealing with distance-induced mismatch by intelligently sensing instantaneous voice power variation and compensating model parameters. First, the distant-talking speech signal is processed through microphone array processing, and the corresponding distance information is extracted. Distance-sensitive Gaussian Mixture Models (GMMs), pre-trained to capture both speech power and room property are used to predict the optimal distance of the speech source. Consequently, pre-computed statistic priors corresponding to the optimal distance is selected to correct the statistics of the generic model which was frozen during training. Thus, model combinatorics are post-conditioned to match the power of instantaneous speech acoustics at runtime. This results to an improved likelihood in predicting the correct speech command at farther distances. We experiment using real data recorded inside two rooms. Experimental evaluation shows voice recognition performance using our method is more robust to the change in distance compared to the conventional approach. In our experiment, under the most acoustically challenging environment (i.e., Room 2: 2.5 meters), our method achieved 24.2% improvement in recognition performance against the best-performing conventional method.
Keywords: Human Machine Interaction, Human Computer Interaction, Voice Recognition, Acoustic Model Compensation, Acoustic Speech Enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885756 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks
Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev
Abstract:
One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.
Keywords: Channel estimation, inter-cell interference, pilot contamination attacks, wireless communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677755 Direction of Arrival Estimation Based on a Single Port Smart Antenna Using MUSIC Algorithm with Periodic Signals
Authors: Chen Sun, Nemai Chandra Karmakar
Abstract:
A novel direction-of-arrival (DOA) estimation technique, which uses a conventional multiple signal classification (MUSIC) algorithm with periodic signals, is applied to a single RF-port parasitic array antenna for direction finding. Simulation results show that the proposed method gives high resolution (1 degree) DOA estimation in an uncorrelated signal environment. The novelty lies in that the MUSIC algorithm is applied to a simplified antenna configuration. Only one RF port and one analogue-to-digital converter (ADC) are used in this antenna, which features low DC power consumption, low cost, and ease of fabrication. Modifications to the conventional MUSIC algorithm do not bring much additional complexity. The proposed technique is also free from the negative influence by the mutual coupling between elements. Therefore, the technique has great potential to be implemented into the existing wireless mobile communications systems, especially at the power consumption limited mobile terminals, to provide additional position location (PL) services.
Keywords: Direction-of-arrival (DOA) estimation, electronically steerable parasitic array radiator (ESPAR), multiple single classifications (MUSIC), position location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995754 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
Paper presents an comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in speaker dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signal to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients gives best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfy the real-time requirements and is suitable for applications in embedded systems.
Keywords: Isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3540