Search results for: offshore wind power
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3288

Search results for: offshore wind power

2868 Design Modelling Control and Simulation of DC/DC Power Buck Converter

Authors: H. Abaali

Abstract:

The power buck converter is the most widely used DC/DC converter topology. They have a very large application area such as DC motor drives, photovoltaic power system which require fast transient responses and high efficiency over a wide range of load current. This work proposes, the modelling of DC/DC power buck converter using state-space averaging method and the current-mode control using a proportional-integral controller. The efficiency of the proposed model and control loop are evaluated with operating point changes. The simulation results proved the effectiveness of the linear model of DC/DC power buck converter.

Keywords: DC/DC power buck converter, Linear current control, State-space averaging method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3479
2867 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation

Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood

Abstract:

This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.

Keywords: VCSELs, optical power generation, power consumption, square wave modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 567
2866 An Adaptive Setting of Frequency Relay with Consideration on Load and Power System Dynamics

Authors: J. Mirzaei, H. Kazemi Kargar

Abstract:

This paper presents a new approach for setting frequency relays based on the dynamic of power system. A simplified model of the power system based on the load-frequency control loop will be developed to be used instead of the complete model of the power system. The effects of the equipments and their responses on the frequency variations of the power plant will be investigated and then a method for adaptive settings of frequency relays will be explained. The proposed method will be investigated by analyzing a simplified model of a power plant by MATLAB software.

Keywords: Adaptive Settings, Frequency Relay (FR), PowerSystem Dynamics, SFR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
2865 Design of Power System Stabilizer with Neuro-Fuzzy UPFC Controller

Authors: U. Ramesh Babu, V. Vijay Kumar Reddy, S. Tara Kalyani

Abstract:

The growth in the demand of electrical energy is leading to load on the Power system which increases the occurrence of frequent oscillations in the system. The reason for the oscillations is due to the lack of damping torque which is required to dominate the disturbances of Power system. By using FACT devices, such as Unified Power Flow Controller (UPFC) can control power flow, reduce sub-synchronous resonances and increase transient stability. Hence, UPFC is used to damp the oscillations occurred in Power system. This research focuses on adapting the neuro fuzzy controller for the UPFC design by connecting the infinite bus (SMIB - Single machine Infinite Bus) to a linearized model of synchronous machine (Heffron-Phillips) in the power system. This model gains the capability to improve the transient stability and to damp the oscillations of the system.

Keywords: Power System, UPFC, (ANFIS) Adaptive Neuro Fuzzy Inference System, transient, Low frequency oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
2864 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
2863 Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems

Authors: Dae-Hee Son, Soon-Ryul Nam

Abstract:

The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control.

Keywords: PSS/E user defined model, power deviation, frequency droop control, ROCOF, rate of change of frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
2862 Performance Comparison between ĆUK and SEPIC Converters for Maximum Power Point Tracking Using Incremental Conductance Technique in Solar Power Applications

Authors: James Dunia, Bakari M. M. Mwinyiwiwa

Abstract:

Photovoltaic (PV) energy is one of the most important energy resources since it is clean, pollution free, and endless. Maximum Power Point Tracking (MPPT) is used in photovoltaic (PV) systems to maximize the photovoltaic output power, irrespective the variations of temperature and radiation conditions. This paper presents a comparison between Ćuk and SEPIC converter in maximum power point tracking (MPPT) of photovoltaic (PV) system. In the paper, advantages and disadvantages of both converters are described. Incremental conductance control method has been used as maximum power point tracking (MPPT) algorithm. The two converters and MPPT algorithm were modelled using MATLAB/Simulink software for simulation. Simulation results show that both Ćuk and SEPIC converters can track the maximum power point with some minor variations. 

Keywords: Ćuk Converter, Incremental Conductance, Maximum Power Point Tracking, PV Module, SEPIC Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10228
2861 Cloud Effect on Power Generation of Grid Connected Small PV Systems

Authors: Yehya Abdellatif, Ahmed Alsalaymeh, Iyad Muslih, Ali Alshduifat

Abstract:

Photovoltaic (PV) power generation systems, mainly small scale, are rapidly being deployed in Jordan. The impact of these systems on the grid has not been studied or analyzed. These systems can cause many technical problems such as reverse power flows and voltage rises in distribution feeders, and real and reactive power transients that affect the operation of the transmission system. To fully understand and address these problems, extensive research, simulation, and case studies are required. To this end, this paper studies the cloud shadow effect on the power generation of a ground mounted PV system installed at the test field of the Renewable Energy Center at the Applied Science University.

Keywords: Photovoltaic, cloud effect, MPPT, power transients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011
2860 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube

Authors: Abolfazl Hosseinkhani, Sepehr Sanaye

Abstract:

Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.

Keywords: Vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586
2859 The Comparison Study of Harmonic Detection Methods for Shunt Active Power Filters

Authors: K-L. Areerak, K-N. Areerak

Abstract:

The paper deals with the comparison study of harmonic detection methods for a shunt active power filter. The %THD and the power factor value at the PCC point after compensation are considered for the comparison. There are three harmonic detection methods used in the paper that are synchronous reference frame method, synchronous detection method, and DQ axis with Fourier method. In addition, the ideal current source is used to represent the active power filter by assuming an infinitely fast controller action of the active power filter. The simulation results show that the DQ axis with Fourier method provides the minimum %THD after compensation compared with other methods. However, the power factor value at the PCC point after compensation is slightly lower than that of synchronous detection method.

Keywords: Harmonic detection, shunt active power filter, DQaxis with Fourier, power factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3293
2858 Counterpropagation Neural Network for Solving Power Flow Problem

Authors: Jayendra Krishna, Laxmi Srivastava

Abstract:

Power flow (PF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a counterpropagation neural network (CPNN) is proposed to solve power flow problem under different loading/contingency conditions for computing bus voltage magnitudes and angles of the power system. The counterpropagation network uses a different mapping strategy namely counterpropagation and provides a practical approach for implementing a pattern mapping task, since learning is fast in this network. The composition of the input variables for the proposed neural network has been selected to emulate the solution process of a conventional power flow program. The effectiveness of the proposed CPNN based approach for solving power flow is demonstrated by computation of bus voltage magnitudes and voltage angles for different loading conditions and single line-outage contingencies in IEEE 14-bus system.

Keywords: Admittance matrix, counterpropagation neural network, line outage contingency, power flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430
2857 A Simple Method for Tracing PV Curve of a Radial Transmission Line

Authors: Asfar Ali Khan

Abstract:

Analytical expression for maximum power transfer through a transmission line limited by voltage stability has been formulated using exact representation of transmission line with ABCD parameters. The expression has been used for plotting PV curve at different power factors of a radial transmission line. Limiting values of reactive power have been obtained.

Keywords: Power Transfer, PV Curve, Voltage Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3317
2856 Management of Air Pollutants from Point Sources

Authors: N. Lokeshwari, G. Srinikethan, V. S. Hegde

Abstract:

Monitoring is essential to assessing the effectiveness of air pollution control actions. The goal of the air quality information system is through monitoring, to keep authorities, major polluters and the public informed on the short and long-term changes in air quality, thereby helping to raise awareness. Mathematical models are the best tools available for the prediction of the air quality management. The main objective of the work was to apply a Model that predicts the concentration levels of different pollutants at any instant of time. In this study, distribution of air pollutants concentration such as nitrogen dioxides (NO2), sulphur dioxides (SO2) and total suspended particulates (TSP) of industries are determined by using Gaussian model. Besides that, the effect of wind speed and its direction on the pollutant concentration within the affected area were evaluated. In order to determine the efficiency and percentage of error in the modeling, validation process of data was done. Sampling of air quality was conducted in getting existing air quality around a factory and the concentrations of pollutants in a plume were inversely proportional to wind velocity. The resultant ground level concentrations were then compared to the quality standards to determine if there could be a negative impact on health. This study concludes that concentration of pollutants can be significantly predicted using Gaussian Model. The data base management is developed for the air data of Hubli-Dharwad region.

Keywords: DBMS, NO2, SO2, Wind rose plots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
2855 The Effects of Rain and Overland Flow Powers on Agricultural Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

The purpose of this investigation is to relate the rain power and the overland flow power to soil erodibility to assess the effects of both parameters on soil erosion using variable rainfall intensity on remoulded agricultural soil. Six rainfall intensities were used to simulate the natural rainfall and are as follows: 12.4mm/h, 20.3mm/h, 28.6mm/h, 52mm/h, 73.5mm/h and 103mm/h. The results have shown that the relationship between overland flow power and rain power is best represented by a linear function (R2=0.99). As regards the relationships between soil erodibility factor and rain and overland flow powers, the evolution of both parameters with the erodibility factor follow a polynomial function with high coefficient of determination. From their coefficients of determination (R2=0.95) for rain power and (R2=0.96) for overland flow power, we can conclude that the flow has more power to detach particles than rain. This could be explained by the fact that the presence of particles, already detached by rain and transported by the flow, give the flow more weight and then contribute to the detachment of particles by collision.

Keywords: Laboratory experiments, soil erosion, flow power, erodibility, rainfall intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
2854 Design of 900 MHz High Gain SiGe Power Amplifier with Linearity Improved Bias Circuit

Authors: Guiheng Zhang, Wei Zhang, Jun Fu, Yudong Wang

Abstract:

A 900 MHz three-stage SiGe power amplifier (PA) with high power gain is presented in this paper. Volterra Series is applied to analyze nonlinearity sources of SiGe HBT device model clearly. Meanwhile, the influence of operating current to IMD3 is discussed. Then a β-helper current mirror bias circuit is applied to improve linearity, since the β-helper current mirror bias circuit can offer stable base biasing voltage. Meanwhile, it can also work as predistortion circuit when biasing voltages of three bias circuits are fine-tuned, by this way, the power gain and operating current of PA are optimized for best linearity. The three power stages which fabricated by 0.18 μm SiGe technology are bonded to the printed circuit board (PCB) to obtain impedances by Load-Pull system, then matching networks are done for best linearity with discrete passive components on PCB. The final measured three-stage PA exhibits 21.1 dBm of output power at 1 dB compression point (OP1dB) with power added efficiency (PAE) of 20.6% and 33 dB power gain under 3.3 V power supply voltage.

Keywords: High gain power amplifier, linearization bias circuit, SiGe HBT model, Volterra Series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
2853 Power Transformer Noise, Noise Tests, and Example Test Results

Authors: E. Doğan, B. Kekezoğlu

Abstract:

Voltage level must be raised in order to deliver the produced energy to the consumption zones with less loss and less cost. Power transformers used to raise or lower voltage are important parts of the energy transmission system. Power transformers used in switchgear and power generation plants stay in human's intensive habitat zones as a result of expanding cities. Accordingly, noise levels produced by power transformers have begun more and more important and they have established itself as one of the research field. In this research, the noise cause on transformers has been investigated, it's causes has been examined and noise measurement techniques have been introduced. Examples of transformer noise test results are submitted and precautions to be taken were discussed for the purpose of decreasing of the noise which will occurred by transformers.

Keywords: Power transformer, noise measurement, core noise, load noise, fan-pump noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5690
2852 Implementing a Prototype System for Power Facility Management using RFID/WSN

Authors: Young-Il Kim, Bong-Jae Yi, Jae-Ju Song, Jin-Ho Shin, Jung-Il Lee

Abstract:

Firstly, research and development on RFID focuses on manufacturing and retail sectors, because it can improve supply chain efficiency. But, now a variety of field is considered the next research area for Radio Frequency Identification (RFID). Although RFID is infancy, RFID technology has great potential in power industry to significantly reduce cost, and improve quality of power supply. To complement the limitation of RFID, we adopt the WSN (Wireless Sensor Network) technology. However, relevant experience is limited, the challenge will be to derive requirement from business practice and to determine whether it is possible or not. To explore this issue, we conduct a case study on implementing power facility management system using RFID/WSN in Korea Electric Power Corporation (KEPCO). In this paper we describe requirement from power industry. And we introduce design and implementation of the test bed.

Keywords: Power Facility Management, RFID/WSN, Transmission Tower, Underground Tunnel, ZigBee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
2851 Climatic Factors Affecting on Influenza Casesin Nakhon Si Thammarat

Authors: S. Chumkiew, W. Srisang, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

This study investigated the climatic factors associated with Influenza incidence in Nakhon Si Thammarat, Southern Thailand. Climatic factors comprised of the amount of rainfall, percent of rainy days, relative humidity, wind speed, maximum, minimum temperatures and temperature difference. A multiple stepwise regression technique was used to fit the statistical model. The result showed that the temperature difference and percent of rainy days were positively associated with Influenza incidence in Nakhon Si Thammarat.

Keywords: Influenza, Climatic Factor, Relative Humidity, Rainy day, Wind Speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
2850 Multiple Power Flow Solutions Using Particle Swarm Optimization with Embedded Local Search Technique

Authors: P. Acharjee, S. K. Goswami

Abstract:

Particle Swarm Optimization (PSO) with elite PSO parameters has been developed for power flow analysis under practical constrained situations. Multiple solutions of the power flow problem are useful in voltage stability assessment of power system. A method of determination of multiple power flow solutions is presented using a hybrid of Particle Swarm Optimization (PSO) and local search technique. The unique and innovative learning factors of the PSO algorithm are formulated depending upon the node power mismatch values to be highly adaptive with the power flow problems. The local search is applied on the pbest solution obtained by the PSO algorithm in each iteration. The proposed algorithm performs reliably and provides multiple solutions when applied on standard and illconditioned systems. The test results show that the performances of the proposed algorithm under critical conditions are better than the conventional methods.

Keywords: critical conditions, ill-conditioned systems, localsearch technique, multiple power flow solutions, particle swarmoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
2849 Validation of Solar PV Inverter Harmonics Behaviour at Different Power Levels in a Test Network

Authors: Wilfred Fritz

Abstract:

Grid connected solar PV inverters need to be compliant to standard regulations regarding unwanted harmonic generation. This paper gives an introduction to harmonics, solar PV inverter voltage regulation and balancing through compensation and investigates the behaviour of harmonic generation at different power levels. Practical measurements of harmonics and power levels with a power quality data logger were made, on a test network at a university in Germany. The test setup and test results are discussed. The major finding was that between the morning and afternoon load peak windows when the PV inverters operate under low solar insolation and low power levels, more unwanted harmonics are generated. This has a huge impact on the power quality of the grid as well as capital and maintenance costs. The design of a single-tuned harmonic filter towards harmonic mitigation is presented.

Keywords: Harmonics, power quality, pulse width modulation, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
2848 Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan

Abstract:

This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analyzed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).

Keywords: Power spectral density, 3D EEG model, brain balancing, mean relative power, different mean relative power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
2847 A Two-Way Wilkinson Power Divider Realized Using One Eighth Wave Transmission Line for GSM Application

Authors: G. Kalpanadevi, S. Ravimaran, M. Shanmugapriya

Abstract:

In this paper, a modified Wilkinson power divider for GSM application is presented. The quarter–wavelength microstrip lines in the conventional Wilkinson power divider (WPD) are replaced by one-eighth wavelength transmission line. Wilkinson power divider is designed using λ/4 and λ/8 transmission line. It has the operating frequency of 915 MHz which is used in the GSM standard. The proposed Wilkinson Power Divider is designed using the simulation tool Advanced Design System. The results of λ/8 transmission line are very close to the results of λ/4 transmission line. The isolation loss of λ/8 transmission line is improved by introducing a capacitor between the output ports. The proposed Wilkinson power divider has the best return loss of greater than -10 dB and isolation loss of -15.25 dB. The λ/8 transmission line Wilkinson power divider has the reduced size of 53.9 percentages than λ/4 transmission line WPD. The proposed design has simple structure, better isolation loss and good insertion loss.

Keywords: Wilkinson Power Divider, Quarter wave line, one eighth wave transmission line, microstrip line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
2846 Maximum Power Point Tracking by ANN Controller for a Standalone Photovoltaic System

Authors: K. Ranjani, M. Raja, B. Anitha

Abstract:

In this paper, ANN controller for maximum power point tracking of photovoltaic (PV) systems is proposed and PV modeling is discussed. Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. ANN controller with hill-climbing algorithm offers fast and accurate converging to the maximum operating point during steady-state and varying weather conditions compared to conventional hill-climbing. The proposed algorithm gives a good maximum power operation of the PV system. Simulation results obtained are presented and compared with the conventional hill-climbing algorithm. Simulation results show the effectiveness of the proposed technique.

Keywords: Artificial neural network (ANN), hill-climbing, maximum power-point tracking (MPPT), photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3155
2845 Photonic Crystal Waveguide 1x3 Flexible Power Splitter for Optical Network

Authors: Jyothi Digge, B. U. Rindhe, S. K. Narayankhedkar

Abstract:

A compact 1x3 power splitter based on Photonic Crystal Waveguides (PCW) with flexible power splitting ratio is presented in this paper. Multimode interference coupler (MMI) is integrated with PCW. The device size reduction compared with the conventional MMI power splitter is attributed to the large dispersion of the PCW. Band Solve tool is used to calculate the band structure of PCW. Finite Difference Time Domain (FDTD) method is adopted to simulate the relevant structure at 1550nm wavelength. The device is polarization insensitive and allows the control of output (o/p) powers within certain percentage points for both polarizations.

Keywords: Dispersion, MMI Coupler, Photonic Bandgap, Power Splitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
2844 The Effect of the Thermal Temperature and Injected Current on Laser Diode 808 nm Output Power

Authors: Hassan H. Abuelhassan, M. Ali Badawi, Abdelrahman A. Elbadawi, Adam A. Elbashir

Abstract:

In this paper, the effect of the injected current and temperature into the output power of the laser diode module operating at 808nm were applied, studied and discussed. Low power diode laser was employed as a source. The experimental results were demonstrated and then the output power of laser diode module operating at 808nm was clearly changed by the thermal temperature and injected current. The output power increases by the increasing the injected current and temperature. We also showed that the increasing of the injected current results rising in heat, which also, results into decreasing of the laser diode output power during the highest temperature as well. The best ranges of characteristics made by diode module operating at 808nm were carefully handled and determined.

Keywords: Laser diode, light amplification, injected current, output power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
2843 Power Flow Control with UPFC in Power Transmission System

Authors: Samina Elyas Mubeen, R. K. Nema, Gayatri Agnihotri

Abstract:

In this paper the performance of unified power flow controller is investigated in controlling the flow of po wer over the transmission line. Voltage sources model is utilized to study the behaviour of the UPFC in regulating the active, reactive power and voltage profile. This model is incorporated in Newton Raphson algorithm for load flow studies. Simultaneous method is employed in which equations of UPFC and the power balance equations of network are combined in to one set of non-linear algebraic equations. It is solved according to the Newton raphson algorithm. Case studies are carried on standard 5 bus network. Simulation is done in Matlab. The result of network with and without using UPFC are compared in terms of active and reactive power flows in the line and active and reactive power flows at the bus to analyze the performance of UPFC.

Keywords: Newton-Raphson algorithm, Load flow, Unified power flow controller, Voltage source model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4290
2842 New Strategy Agents to Improve Power System Transient Stability

Authors: Mansour A. Mohamed, George G. Karady, Ali M. Yousef

Abstract:

This paper proposes transient angle stability agents to enhance power system stability. The proposed transient angle stability agents divided into two strategy agents. The first strategy agent is a prediction agent that will predict power system instability. According to the prediction agent-s output, the second strategy agent, which is a control agent, is automatically calculating the amount of active power reduction that can stabilize the system and initiating a control action. The control action considered is turbine fast valving. The proposed strategies are applied to a realistic power system, the IEEE 50- generator system. Results show that the proposed technique can be used on-line for power system instability prediction and control.

Keywords: Multi-agents, Fast Valving, Power System Transient Stability, Prediction methods,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
2841 Techno-Economic Prospects of High Wind Energy Share in Remote vs. Interconnected Island Grids

Authors: Marina Kapsali, John S. Anagnostopoulos

Abstract:

On the basis of comparative analysis of alternative “development scenarios” for electricity generation, the main objective of the present study is to investigate the techno-economic viability of high wind energy (WE) use at the local (island) level. An integrated theoretical model is developed based on first principles assuming two main possible scenarios for covering future electrification needs of a medium–sized Greek island, i.e. Lesbos. The first scenario (S1), assumes that the island will keep using oil products as the main source for electricity generation. The second scenario (S2) involves the interconnection of the island with the mainland grid to satisfy part of the electricity demand, while remarkable WE penetration is also achieved. The economic feasibility of the above solutions is investigated in terms of determining their Levelized Cost of Energy (LCOE) for the time-period 2020-2045, including also a sensitivity analysis on the worst/reference/best Cases. According to the results obtained, interconnection of Lesbos Island with the mainland grid (S2) presents considerable economic interest in comparison to autonomous development (S1) with WE having a prominent role to this effect.

Keywords: Electricity generation cost, levelized cost of energy, mainland, wind energy surplus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
2840 Fuzzy Logic Based Maximum Power Point Tracking Designed for 10kW Solar Photovoltaic System with Different Membership Functions

Authors: S. Karthika, K. Velayutham, P. Rathika, D. Devaraj

Abstract:

The electric power supplied by a photovoltaic power generation systems depends on the solar irradiation and temperature. The PV system can supply the maximum power to the load at a particular operating point which is generally called as maximum power point (MPP), at which the entire PV system operates with maximum efficiency and produces its maximum power. Hence, a Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. The proposed MPPT controller is designed for 10kW solar PV system installed at Cape Institute of Technology. This paper presents the fuzzy logic based MPPT algorithm. However, instead of one type of membership function, different structures of fuzzy membership functions are used in the FLC design. The proposed controller is combined with the system and the results are obtained for each membership functions in Matlab/Simulink environment. Simulation results are decided that which membership function is more suitable for this system.

Keywords: MPPT, DC-DC Converter, Fuzzy logic controller, Photovoltaic (PV) system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4258
2839 Study on Planning of Smart GRID using Landscape Ecology

Authors: Sunglim Lee, Susumu Fujii, Koji Okamura

Abstract:

Smart grid is a new approach for electric power grid that uses information and communications technology to control the electric power grid. Smart grid provides real-time control of the electric power grid, controlling the direction of power flow or time of the flow. Control devices are installed on the power lines of the electric power grid to implement smart grid. The number of the control devices should be determined, in relation with the area one control device covers and the cost associated with the control devices. One approach to determine the number of the control devices is to use the data on the surplus power generated by home solar generators. In current implementations, the surplus power is sent all the way to the power plant, which may cause power loss. To reduce the power loss, the surplus power may be sent to a control device and sent to where the power is needed from the control device. Under assumption that the control devices are installed on a lattice of equal size squares, our goal is to figure out the optimal spacing between the control devices, where the power sharing area (the area covered by one control device) is kept small to avoid power loss, and at the same time the power sharing area is big enough to have no surplus power wasted. To achieve this goal, a simulation using landscape ecology method is conducted on a sample area. First an aerial photograph of the land of interest is turned into a mosaic map where each area is colored according to the ratio of the amount of power production to the amount of power consumption in the area. The amount of power consumption is estimated according to the characteristics of the buildings in the area. The power production is calculated by the sum of the area of the roofs shown in the aerial photograph and assuming that solar panels are installed on all the roofs. The mosaic map is colored in three colors, each color representing producer, consumer, and neither. We started with a mosaic map with 100 m grid size, and the grid size is grown until there is no red grid. One control device is installed on each grid, so that the grid is the area which the control device covers. As the result of this simulation we got 350m as the optimal spacing between the control devices that makes effective use of the surplus power for the sample area.

Keywords: Landscape ecology, IT, smart grid, aerial photograph, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967