Search results for: mathematical programming model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8110

Search results for: mathematical programming model

7690 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach

Authors: Abdallah Al-Shammari

Abstract:

This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solution

Keywords: Linear programming, Petrochemicals, stability analysis, uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
7689 Hybrid Association Control Scheme and Load Balancing in Wireless LANs

Authors: Chutima Prommak, Airisa Jantaweetip

Abstract:

This paper presents a hybrid association control scheme that can maintain load balancing among access points in the wireless LANs and can satisfy the quality of service requirements of the multimedia traffic applications. The proposed model is mathematically described as a linear programming model. Simulation study and analysis were conducted in order to demonstrate the performance of the proposed hybrid load balancing and association control scheme. Simulation results shows that the proposed scheme outperforms the other schemes in term of the percentage of blocking and the quality of the data transfer rate providing to the multimedia and real-time applications.

Keywords: Association control, Load balancing, Wireless LANs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
7688 Application of Hermite-Rodriguez Functions to Pulse Shaping Analog Filter Design

Authors: Mohd Amaluddin Yusoff

Abstract:

In this paper, we consider the design of pulse shaping filter using orthogonal Hermite-Rodriguez basis functions. The pulse shaping filter design problem has been formulated and solved as a quadratic programming problem with linear inequality constraints. Compared with the existing approaches reported in the literature, the use of Hermite-Rodriguez functions offers an effective alternative to solve the constrained filter synthesis problem. This is demonstrated through a numerical example which is concerned with the design of an equalization filter for a digital transmission channel.

Keywords: channel equalization filter, Hermite-Rodriguez, pulseshaping filter, quadratic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
7687 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: Black box modeling, fixed wing aircraft, least square error, longitudinal dynamics, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106
7686 A New Categorization of Image Quality Metrics Based On a Model of Human Quality Perception

Authors: Maria Grazia Albanesi, Riccardo Amadeo

Abstract:

This study presents a new model of the human image quality assessment process: the aim is to highlightthe foundations of the image quality metrics proposed in literature, by identifyingthe cognitive/physiological or mathematical principles of their development and the relation with the actual human quality assessment process. The model allows to createa novel categorization of objective and subjective image quality metrics. Our work includes an overview of the most used or effectiveobjective metrics in literature, and, for each of them, we underline its main characteristics, with reference to the rationale of the proposed model and categorization. From the results of this operation, we underline a problem that affects all the presented metrics: the fact that many aspects of human biasesare not taken in account at all. We then propose a possible methodology to address this issue.

Keywords: Eye-Tracking, image quality assessment metric, MOS, quality of user experience, visual perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429
7685 Fuzzy Mathematical Morphology approach in Image Processing

Authors: Yee Yee Htun, Dr. Khaing Khaing Aye

Abstract:

Morphological operators transform the original image into another image through the interaction with the other image of certain shape and size which is known as the structure element. Mathematical morphology provides a systematic approach to analyze the geometric characteristics of signals or images, and has been applied widely too many applications such as edge detection, objection segmentation, noise suppression and so on. Fuzzy Mathematical Morphology aims to extend the binary morphological operators to grey-level images. In order to define the basic morphological operations such as fuzzy erosion, dilation, opening and closing, a general method based upon fuzzy implication and inclusion grade operators is introduced. The fuzzy morphological operations extend the ordinary morphological operations by using fuzzy sets where for fuzzy sets, the union operation is replaced by a maximum operation, and the intersection operation is replaced by a minimum operation. In this work, it consists of two articles. In the first one, fuzzy set theory, fuzzy Mathematical morphology which is based on fuzzy logic and fuzzy set theory; fuzzy Mathematical operations and their properties will be studied in details. As a second part, the application of fuzziness in Mathematical morphology in practical work such as image processing will be discussed with the illustration problems.

Keywords: Binary Morphological, Fuzzy sets, Grayscalemorphology, Image processing, Mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3226
7684 Network-Constrained AC Unit Commitment under Uncertainty Using a Bender’s Decomposition Approach

Authors: B. Janani, S. Thiruvenkadam

Abstract:

In this work, the system evaluates the impact of considering a stochastic approach on the day ahead basis Unit Commitment. Comparisons between stochastic and deterministic Unit Commitment solutions are provided. The Unit Commitment model consists in the minimization of the total operation costs considering unit’s technical constraints like ramping rates, minimum up and down time. Load shedding and wind power spilling is acceptable, but at inflated operational costs. The evaluation process consists in the calculation of the optimal unit commitment and in verifying the fulfillment of the considered constraints. For the calculation of the optimal unit commitment, an algorithm based on the Benders Decomposition, namely on the Dual Dynamic Programming, was developed. Two approaches were considered on the construction of stochastic solutions. Data related to wind power outputs from two different operational days are considered on the analysis. Stochastic and deterministic solutions are compared based on the actual measured wind power output at the operational day. Through a technique capability of finding representative wind power scenarios and its probabilities, the system can analyze a more detailed process about the expected final operational cost.

Keywords: Benders’ decomposition, network constrained AC unit commitment, stochastic programming, wind power uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
7683 Design of a MSF Desalination Plant to be Supplied by a New Specific 42 MW Power Plant Located in Iran

Authors: Rouzbeh Shafaghat, Hoda Shafaghat, Fatemeh Ghanbari, Pouya Sirous Rezaei, Rohollah Espanani

Abstract:

Nowadays, desalination of salt water is considered an important industrial process. In many parts of the world, particularly in the gulf countries, the multi-stage flash (MSF) water desalination has an essential contribution in the production of fresh water. In this study, a simple mathematical model is defined to design a MSF desalination system and the feasibility of using the MSF desalination process in proximity of a 42 MW power plant is investigated. This power plant can just provide 10 ton/h superheated steam from low pressure (LP) section of heat recovery steam generator (HRSG) for thermal desalting system. The designed MSF system with gained output ratio (GOR) of 10.3 has 24 flashing stages and can produce 2480 ton/d of fresh water. The expected performance characteristics of the designed MSF desalination plant are determined. In addition, the effect of motive water pressure on the amount of non-condensable gases removed by water jet vacuum pumps is investigated.

Keywords: Design, dual-purpose power plant, mathematical model, MSF desalination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3957
7682 Highly Accurate Tennis Ball Throwing Machine with Intelligent Control

Authors: Ferenc Kovács, Gábor Hosszú

Abstract:

The paper presents an advanced control system for tennis ball throwing machines to improve their accuracy according to the ball impact points. A further advantage of the system is the much easier calibration process involving the intelligent solution of the automatic adjustment of the stroking parameters according to the ball elasticity, the self-calibration, the use of the safety margin at very flat strokes and the possibility to placing the machine to any position of the half court. The system applies mathematical methods to determine the exact ball trajectories and special approximating processes to access all points on the aimed half court.

Keywords: Control system, robot programming, robot control, sports equipment, throwing machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4151
7681 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
7680 Predicting Residence Time of Pollutants in Transient Storage Zones of Rivers by Genetic Programming

Authors: Rajeev R. Sahay

Abstract:

Rivers have transient storage or dead zones where injected pollutants or solutes are entrapped for considerable period of time, known as residence time, before being released into the main flowing zones of rivers. In this study, a new empirical expression for residence time, implementing genetic programming on published dispersion data, has been derived. The proposed expression uses few hydraulic and geometric characteristics of rivers which are normally known to the authorities. When compared with some reported expressions, based on various statistical indices, it can be concluded that the proposed expression predicts the residence time of pollutants in natural rivers more accurately.

Keywords: Parameter estimation, pollutant transport, residence time, rivers, transient storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
7679 Bifurcation and Chaos of the Memristor Circuit

Authors: Wang Zhulin, Min Fuhong, Peng Guangya, Wang Yaoda, Cao Yi

Abstract:

In this paper, a magnetron memristor model based on hyperbolic sine function is presented and the correctness proved by studying the trajectory of its voltage and current phase, and then a memristor chaotic system with the memristor model is presented. The phase trajectories and the bifurcation diagrams and Lyapunov exponent spectrum of the magnetron memristor system are plotted by numerical simulation, and the chaotic evolution with changing the parameters of the system is also given. The paper includes numerical simulations and mathematical model, which confirming that the system, has a wealth of dynamic behavior.

Keywords: Memristor, chaotic circuit, dynamical behavior, chaotic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
7678 Estimation of Shock Velocity and Pressure of Detonations and Finding Their Flow Parameters

Authors: Mahmoud Zarrini, R. N. Pralhad

Abstract:

In this paper, mathematical modeling of detonation in the ground is studied. Estimation of flow parameters such as velocity, maximum velocity, acceleration, maximum acceleration, shock pressure as a result of an explosion in the ground have been computed in an appropriate dynamic model approach. The variation of these parameters with the diameter of detonation place (L), density of earth or stone (¤ü), time decay of detonation (T), peak pressure (Pm), and time (t) have been analyzed. The model has been developed from the concept of underwater explosions [Refs. [1]-[3]] with appropriate changes to the present model requirements.

Keywords: Shock velocity, detonation, shock acceleration, shock pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
7677 A Method for 3D Mesh Adaptation in FEA

Authors: S. Sfarni, E. Bellenger, J. Fortin, M. Guessasma

Abstract:

The use of the mechanical simulation (in particular the finite element analysis) requires the management of assumptions in order to analyse a real complex system. In finite element analysis (FEA), two modeling steps require assumptions to be able to carry out the computations and to obtain some results: the building of the physical model and the building of the simulation model. The simplification assumptions made on the analysed system in these two steps can generate two kinds of errors: the physical modeling errors (mathematical model, domain simplifications, materials properties, boundary conditions and loads) and the mesh discretization errors. This paper proposes a mesh adaptive method based on the use of an h-adaptive scheme in combination with an error estimator in order to choose the mesh of the simulation model. This method allows us to choose the mesh of the simulation model in order to control the cost and the quality of the finite element analysis.

Keywords: Finite element, discretization errors, adaptivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
7676 Estimating the Runoff Using the Simple Tank Model and Comparing it with the SCS-CN Model - A Case Study of the Dez River Basin

Authors: H. Alaleh, N. Hedayat, A. Alaleh, H. Ayazi, A. Ruhani

Abstract:

Run-offs are considered as important hydrological factors in feasibility studies of river engineering and irrigation-related projects under arid and semi-arid condition. Flood control is one of the crucial factor, the management of which while mitigates its destructive consequences, abstracts considerable volume of renewable water resources. The methodology applied here was based on Mizumura, which applied a mathematical model for simple tank to simulate the rainfall-run-off process in a particular water basin using the data from the observational hydrograph. The model was applied in the Dez River water basin adjacent to Greater Dezful region, Iran in order to simulate and estimate the floods. Results indicated that the calculated hydrographs using the simple tank method, SCS-CN model and the observation hydrographs had a close proximity. It was also found that on average the flood time and discharge peaks in the simple tank were closer to the observational data than the CN method. On the other hand, the calculated flood volume in the CN model was significantly closer to the observational data than the simple tank model.

Keywords: Simple tank, Dez River, run-off, lag time, excess rainfall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2572
7675 Fighter Aircraft Selection Using Fuzzy Preference Optimization Programming (POP)

Authors: C. Ardil

Abstract:

The Turkish Air Force needs to acquire a sixth- generation fighter aircraft in order to maintain its air superiority and dominance against its rivals under the risks posed by global geopolitical opportunities and threats. Accordingly, five evaluation criteria were determined to evaluate the sixth-generation fighter aircraft alternatives and to select the best one. Systematically, a new fuzzy preference optimization programming (POP) method is proposed to select the best sixth generation fighter aircraft in an uncertain environment. The POP technique considers both quantitative and qualitative evaluation criteria. To demonstrate the applicability and effectiveness of the proposed approach, it is applied to a multiple criteria decision-making problem to evaluate and select sixth-generation fighter aircraft. The results of the fuzzy POP method are compared with the results of the fuzzy TOPSIS approach to validate it. According to the comparative analysis, fuzzy POP and fuzzy TOPSIS methods get the same results. This demonstrates the applicability of the fuzzy POP technique to address the sixth-generation fighter selection problem.

Keywords: Fighter aircraft selection, sixth-generation fighter aircraft, fuzzy decision process, multiple criteria decision making, preference optimization programming, POP, TOPSIS, Kizilelma, MIUS, fuzzy set theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
7674 Virtual Prototyping and Operational Monitoring of PLC-Based Control System

Authors: Kwan Hee Han, Jun Woo Park, Seock Kyu Yoo, Geon Lee

Abstract:

As business environments are rapidly changing, the manufacturing system must be reconfigured to adapt to various customer needs. In order to cope with this challenge, it is quintessential to test industrial control logic rapidly and easily in the design time, and monitor operational behavior in the run time of automated manufacturing system. Proposed integrated model for virtual prototyping and operational monitoring of industrial control logic is to improve limitations of current ladder programming practices and general discrete event simulation method. Each plant layout model using HMI package and object-oriented control logic model is designed independently and is executed simultaneously in integrated manner to reflect design practices of automation system in the design time. Control logic is designed and executed using UML activity diagram without considering complicated control behavior to deal with current trend of reconfigurable manufacturing. After the physical installation, layout model of virtual prototype constructed in the design time is reused for operational monitoring of system behavior during run time.

Keywords: automated manufacturing system, HMI, monitoring, object-oriented, PLC, virtual prototyping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
7673 Architecture Performance-Related Design Based on Graphic Parameterization

Authors: Wenzhe Li, Xiaoyu Ying, Grace Ding

Abstract:

Architecture plane form is an important consideration in the design of green buildings due to its significant impact on energy performance. The most effective method to consider energy performance in the early design stages is parametric modelling. This paper presents a methodology to program plane forms using MATLAB language, generating 16 kinds of plane forms by changing four designed parameters. DesignBuilder (an energy consumption simulation software) was proposed to simulate the energy consumption of the generated planes. A regression mathematical model was established to study the relationship between the plane forms and their energy consumption. The main finding of the study suggested that there was a cubic function relationship between the depth-ratio of U-shaped buildings and energy consumption, and there is also a cubic function relationship between the width-ratio and energy consumption. In the design, the depth-ratio of U-shaped buildings should not be less than 2.5, and the width-ratio should not be less than 2.

Keywords: Graphic parameterization, green building design, mathematical model, U-shaped buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
7672 User-Friendly Task Creation Using a CAD Integrated Robotic System on a Real Workcell

Authors: Alireza Changizi, Arash Rezaei, Jamal Muhammad, Jyrki Latokartano, Minna Lanz

Abstract:

Offline programming (OLP) is a new method in robot programming which is used widely in the industry nowadays which is a simulation base method that can produce the robot codes for motion according to virtual world in the simulation software. In this project Delmia v5 is used as simulation software. First the work cell component was modelled by Catia v5 and all of them was imported to a process file in Delmia and placed roughly to form the virtual work cell. Then robot was added to the work cell from the Delmia library. Work cell was calibrated corresponding to real world work cell to have accurate code. Tool calibration is the first step of calibration scheme and then work cell equipment can be calibrated using 6 point calibration method. Finally generated code needs to be reformed to match related controller code instruction. At the last stage IO were set to accomplish robots cooperation and make their motion synchronized. The pros and cons also will be discussed to clarify the presented results show the feasibility of the method and its effect on production line efficiency. Finally the positive and negative points of the implementation will be discussed.

Keywords: Component, robotic, automated, production, offline programming, CAD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
7671 Transmission Expansion Planning with Economic Dispatch and N-1Constraints

Authors: A. Charlangsut, M. Boonthienthong, N. Rugthaicharoencheep

Abstract:

This paper proposes a mathematical model for transmission expansion employing optimization method with scenario analysis approach. Economic transmission planning, on the other hand, seeks investment opportunities so that network expansions can generate more economic benefits than the costs. This approach can be used as a decision model for building new transmission lines added to the existing transmission system minimizing costs of the entire system subject to various system’s constraints and consider of loss value of transmission system and N-1 checking. The results show that the proposed model is efficient to be applied for the larger scale of power system topology.

Keywords: Transmission Expansion Planning, Economic Dispatch, Scenario Analysis, Contingency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
7670 Mathematical Modeling of Current Harmonics Caused by Personal Computers

Authors: Rana Abdul Jabbar Khan, Muhammad Akmal

Abstract:

Personal computers draw non-sinusoidal current with odd harmonics more significantly. Power Quality of distribution networks is severely affected due to the flow of these generated harmonics during the operation of electronic loads. In this paper, mathematical modeling of odd harmonics in current like 3rd, 5th, 7th and 9th influencing the power quality has been presented. Live signals have been captured with the help of power quality analyzer for analysis purpose. The interesting feature is that Total Harmonic Distortion (THD) in current decreases with the increase of nonlinear loads has been verified theoretically. The results obtained using mathematical expressions have been compared with the practical results and exciting results have been found.

Keywords: Harmonic Distortion, Mathematical Modeling, Power Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
7669 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the point specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: Milling process, rotational speed, Artificial Neural Networks, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
7668 Correlational Analysis between Brain Dominances and Multiple Intelligences

Authors: Lakshmi Dhandabani, Rajeev Sukumaran

Abstract:

Aim of this research study is to investigate and establish the characteristics of brain dominances (BD) and multiple intelligences (MI). This experimentation has been conducted for the sample size of 552 undergraduate computer-engineering students. In addition, mathematical formulation has been established to exhibit the relation between thinking and intelligence, and its correlation has been analyzed. Correlation analysis has been statistically measured using Pearson’s coefficient. Analysis of the results proves that there is a strong relational existence between thinking and intelligence. This research is carried to improve the didactic methods in engineering learning and also to improve e-learning strategies.

Keywords: Thinking style assessment, correlational analysis, mathematical model, data analysis, dynamic equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
7667 Representing Shared Join Points with State Charts: A High Level Design Approach

Authors: Muhammad Naveed, Muhammad Khalid Abdullah, Khalid Rashid, Hafiz Farooq Ahmad

Abstract:

Aspect Oriented Programming promises many advantages at programming level by incorporating the cross cutting concerns into separate units, called aspects. Join Points are distinguishing features of Aspect Oriented Programming as they define the points where core requirements and crosscutting concerns are (inter)connected. Currently, there is a problem of multiple aspects- composition at the same join point, which introduces the issues like ordering and controlling of these superimposed aspects. Dynamic strategies are required to handle these issues as early as possible. State chart is an effective modeling tool to capture dynamic behavior at high level design. This paper provides methodology to formulate the strategies for multiple aspect composition at high level, which helps to better implement these strategies at coding level. It also highlights the need of designing shared join point at high level, by providing the solutions of these issues using state chart diagrams in UML 2.0. High level design representation of shared join points also helps to implement the designed strategy in systematic way.

Keywords: Aspect Oriented Software Development, Shared Join Points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
7666 Possibilistic Aggregations in the Investment Decision Making

Authors: I. Khutsishvili, G. Sirbiladze, B. Ghvaberidze

Abstract:

This work proposes a fuzzy methodology to support the investment decisions. While choosing among competitive investment projects, the methodology makes ranking of projects using the new aggregation OWA operator – AsPOWA, presented in the environment of possibility uncertainty. For numerical evaluation of the weighting vector associated with the AsPOWA operator the mathematical programming problem is constructed. On the basis of the AsPOWA operator the projects’ group ranking maximum criteria is constructed. The methodology also allows making the most profitable investments into several of the project using the method developed by the authors for discrete possibilistic bicriteria problems. The article provides an example of the investment decision-making that explains the work of the proposed methodology.

Keywords: Expert evaluations, investment decision making, OWA operator, possibility uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
7665 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-Car Model

Authors: Quy Dang Nguyen, Reza Nakhaie Jazar

Abstract:

The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.

Keywords: Quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151
7664 Advances on the Understanding of Sequence Convergence Seen from the Perspective of Mathematical Working Spaces

Authors: Paula Verdugo-Hernández, Patricio Cumsille

Abstract:

We analyze a first-class on the convergence of real number sequences, named hereafter sequences, to foster exploration and discovery of concepts through graphical representations before engaging students in proving. The main goal was to differentiate between sequences and continuous functions-of-a-real-variable and better understand concepts at an initial stage. We applied the analytic frame of Mathematical Working Spaces, which we expect to contribute to extending to sequences since, as far as we know, it has only developed for other objects, and which is relevant to analyze how mathematical work is built systematically by connecting the epistemological and cognitive perspectives, and involving the semiotic, instrumental, and discursive dimensions.

Keywords: Convergence, graphical representations, Mathematical Working Spaces, paradigms of real analysis, real number sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477
7663 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.

Keywords: Corrugated absorber, double flow, solar air heater, thermohydraulic efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
7662 Mathematical Model of Smoking Time Temperature Effect on Ribbed Smoked Sheets Quality

Authors: Rifah Ediati, Jajang

Abstract:

The quality of Ribbed Smoked Sheets (RSS) primarily based on color, dryness, and the presence or absence of fungus and bubbles. This quality is strongly influenced by the drying and fumigation process namely smoking process. Smoking that is held in high temperature long time will result scorched dark brown sheets, whereas if the temperature is too low or slow drying rate would resulted in less mature sheets and growth of fungus. Therefore need to find the time and temperature for optimum quality of sheets. Enhance, unmonitored heat and mass transfer during smoking process lead to high losses of energy balance. This research aims to generate simple empirical mathematical model describing the effect of smoking time and temperature to RSS quality of color, water content, fungus and bubbles. The second goal of study was to analyze energy balance during smoking process. Experimental study was conducted by measuring temperature, residence time and quality parameters of 16 sheets sample in smoking rooms. Data for energy consumption balance such as mass of fuel wood, mass of sheets being smoked, construction temperature, ambient temperature and relative humidity were taken directly along the smoking process. It was found that mathematical model correlating smoking temperature and time with color is Color = -169 - 0.184 T4 - 0.193 T3 - 0.160 0.405 T1 + T2 + 0.388 t1 +3.11 t2 + 3.92t3 + 0.215 t4 with R square 50.8% and with moisture is Moisture = -1.40-0.00123 T4 + 0.00032 T3 + 0.00260 T2 - 0.00292 T1 - 0.0105 t1 + 0.0290 t2 + 0.0452 t3 + 0.00061 t4 with R square of 49.9%. Smoking room energy analysis found useful energy was 27.8%. The energy stored in the material construction 7.3%. Lost of energy in conversion of wood combustion, ventilation and others were 16.6%. The energy flowed out through the contact of material construction with the ambient air was found to be the highest contribution to energy losses, it reached 48.3%.

Keywords: RSS quality, temperature, time, smoking room, energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
7661 A Physical Theory of Information vs. a Mathematical Theory of Communication

Authors: Manouchehr Amiri

Abstract:

This article presents a general notion of physical bit information that is compatible with the basics of quantum mechanics and incorporates the Shannon entropy as a special case. This notion of physical information leads to the Binary Data Matrix model (BDM), which predicts the basic results of quantum mechanics, general relativity, and black hole thermodynamics. The compatibility of the model with holographic, information conservation, and Landauer’s principle is investigated. After deriving the “Bit Information principle” as a consequence of BDM, the fundamental equations of Planck, De Broglie, Bekenstein, and mass-energy equivalence are derived.

Keywords: Physical theory of information, binary data matrix model, Shannon information theory, bit information principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95