
 

 

  
Abstract—This paper examines many mathematical methods for 

molding the hourly price forward curve (HPFC); the model will be 
constructed by numerous regression methods, like polynomial 
regression, radial basic function neural networks & a furrier series.  
Examination the models goodness of fit will be done by means of 
statistical & graphical tools. The criteria for choosing the model will 
depend on minimize the Root Mean Squared Error (RMSE), using the 
correlation analysis approach for the regression analysis the optimal 
model will be distinct, which are robust against model 
misspecification. Learning & supervision technique employed to 
determine the form of the optimal parameters corresponding to each 
measure of overall loss. By using all the numerical methods that 
mentioned previously; the explicit expressions for the optimal model 
derived and the optimal designs will be implemented. 

 
Keywords—Forward curve, furrier series, regression, radial basic 

function neural networks.  

I. INTRODUCTION 
HIS paper to illustrate a model for the valuation in any 
energy market, the quantitative analysis will be  deeply 

emphasized to creates  a model that reflect the market 
behavior, this model will be the hourly price forward curve 
(HPFC), which is the goal of this paper. The model provided 
will be constructed basically from the spot prices of any 
arbitrary energy market; the optimum model will be soughted 
out for the valuation in the markets. Special attention will paid 
to Alberta electricity prices. Alberta's electricity market 
structure will reviewed followed with a description of the 
fundamental economic drivers of the spot prices just to 
understand the behavior of the prices in this market, then, the 
quantitative analysis is applied to create & implement the 
model (HPFC), but before that, a hint of the forward price 
curve is given. 

II. HOURLY PRICE FORWARD CURVE  
A. Definition of the "Hourly Forward Price Curve”? 
An Hourly Price Forward Curve can be defined as (HPFC) 
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as a list of prices as of today for the delivery of electricity for 
example at a series of different points of time in the future as 
shown in Fig. 1. These prices may be average prices for each 
hour period for a specific over a given period (e.g. day / week 
etc) as shown in Fig. 1, it represents the term-structure of 
forward prices in hourly resolution. The specific curve 
required depends on the purpose of the curve. For example, 
the looking to price a swap based on the average of prices 
over a week this is the forward curve would required [1].  

 
 

 
 

 
Fig. 1 A visionary plot of Hourly Price Forward Curve 

 
B. Distinction between a Forward Curve and a Forecast 
The forward price curve is used to mark trades to market. In 

liquid and deep markets such as interest rate, foreign currency, 
and widely traded physical commodities, forward curves are 
easily available and derived. But in young electricity markets, 
it is less clear what is meant by a forward curve [2]. Often this 
is derived from a schedule of spot price forecasts, so that the 
curve is used to predict the likely spot price of electricity 
several years in the future.  

There are some traditional models [3,5,7,8] for practitioner 
to choose for modeling spot prices curve. Fischer Black and 
Myron Scholes published in 1973 their seminal paper on 
options pricing. The Black-Scholes option pricing model 
which was based on the extension of Brownian motion 
contributed to the explosive growth in trading of derivatives. 
The original Black-Scholes model allowed only for pricing 
options on a non-dividend paying stock [6]. Extensions to the 
Black-Scholes model, such as the Garman-Kohl Hagen and 
Black (1976) model, allowed for pricing comprehensive 
commodity options, and options on futures respectively.  

Regardless of the strong assumptions that underlay this 
model, the simplicity of the Black's formula directly made it 
an accepted choice among practitioners. Unfortunately, 
Black's model makes several restrictive assumptions. In 
particular, it assumes that the evolution of futures prices can 
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be modeled using Geometric Brownian Motion (GBM). The 
use of Black's model may be inappropriate in cases where this 
assumption cannot be made. The Alberta Electricity market is 
a clear example of a market where the assumption of 
Geometric Brownian Motion to model spot pries curve in 
terms of hourly prices is unreasonable. The occurrence of 
plant outages at random intervals tends to generate 
discontinuous spikes in spot prices. Such spikes are 
inconsistent with a continuous time random walk, and must be 
explicitly accounted for in a model. 

III. ANALYSIS OF ALBERTA ELECTRICITY MARKET PRICES 
DRIVERS 

     Today Alberta Power Pool Market organizes and operates 
the physical delivery of electricity in the province (Alberta, 
Canada) and the entire electricity purchased in the province 
[9] must pass through this market. All the generators offer to 
the pool to supply a specific amount of power for a particular 
duration at a specific price. At the same time, consumers put 
forward bids to buy electricity at or below an exacting price. 
The power pool after that uses these bids and offers to create a 
merit order. This merit order allows units to be dispatched 
from lowest price to highest price to serve load. Using the 
merit order, the system marginal price (“SMP”) is determined, 
and the average of this price for each hour becomes the 
official pool price. The price for a given hour may range from 
$0 to $1000, the current price cap in Alberta. 
 

A. Alberta Power Pool Price Equilibration 
If the demand in Alberta Pool as shown in Fig. 2, it’s 

tremendously insensitive even to large changes in price. This 
is because, the average consumer of electricity, the household, 
individuals give no thought to the current pool price when 
they turn on their appliances or cook dinner. The result that 
can be assumed at any point in time, demand is relatively 
inelastic, assuming the shape of a vertical line. Demand is 
served mostly by coal-fired, gas-fired, and hydro generation 
facilities. The order in which these units are dispatched 
depends on their variable cost of production and bidding 
behavior, while supply is currently a kinked curve, becoming 
very steep at high quantities. 

From a purely physical point of view, supply and demand 
must always be in equilibrium. This is because electricity 
cannot easily be stored for later consumption. This 
characteristic of electricity markets makes it considerably 
different from other commodity markets like natural gas and 
crude oil, both of which can be stored and resold later when 
prices are higher, the primary consequence of not being able 
to store electricity in the Alberta electricity market is extreme 
price volatility when supply is constrained. 

 

 
Fig. 2 Pool Price &Pool Demand Forecast vs. Actual 

 

B. The changing in Alberta Electricity Prices (Volatility) 
Fig. 3 illustrates an example of hourly prices, which are 

measured in dollars per megawatt hour ($/MWH, Canadian 
dollars being the monetary unit here and in the remainder of 
this thesis), during the period Jan 1, 2000 to Oct 31, 2001. [6], 
a high changing in the prices during the seasonally seen. Here, 
electricity prices exhibits the most complicated cyclical 
patterns of all energy commodities, there are peaks reacting to 
heating and cooling needs. 

 
Fig. 3 A plot of hourly Alberta electricity prices from Jan 2000 to 

Oct 31, 2001 
 
The spikiness of the dataset could be worth clearing in 

numeral values as follow: while the mean of the dataset is 
only $56.472 ($/Mwh), the dataset is characterized by 
occasional excursions to the $500.00 and $1000.00 level. 
These periods of high prices are usually followed by a return 
to a price of under $100.00.  

IV. MATHEMATICAL METHODS FOR MODELING HPFC 
Modeling the HPFC in any Energy Market is necessary for 

knowing the prices behavior in the future. Regression 
Technique will be used for this to construct the optimum 
model. There are many Regression methods for modeling and 
each method can produce prediction with different accuracy. 
In the following sections, these methods will be discussed:  

A.  Polynomial Regression 
The general equation of the Polynomial Regression [11] has 

the following form:         
  n

n tptptptpptY ..........)( 3
3

2
210 ++++=                 (1) 

Where 0p  an optional constant is term and  1p  through  
np  

are coefficients of increasing powers of t . The order of the 
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polynomial wished which fit the data must be specified.      
 
• A linear equation in the form  xpptY 10)( +=                

(2) 
• A quadratic polynomial equation in the form  

2
210)( tptpptY ++=                                                    (3) 

• A cubic polynomial equation in the form 
3

3
2

210)( tptptpptY +++=                                          (4) 

• Higher ( thth or 54 ) order polynomials are useful for 
attempts to describe data points as fully as possible, but 
the terms generally cannot be meaningfully interpreted 
in any physical sense. Higher order terms can lead to 
odd and unreasonable results, especially beyond the 
range of the t  values [12].  

 
General polynomial model (Polynomial Models in One 

Variable) is        ∑
=

+=
n

j

j
j tpptY

1
0)(                            (5)                                                                                                          

Assumed that it is possible that the data can be modeled by 
a quadratic polynomial function given in equation (4); p= t \ y 
and the unknown coefficients  10 , pp  and 2p can be computed 
by doing a least squares fit, which minimizes the sum of the 
squares of the deviations of the data from the model. If there 
are six equations in three unknowns, then there are six data 
recorded assumed. 
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The solution is found with the backslash operator ( tp = \Y ). 

 
Appling this to the data of Alberta Market Prices, the 

simulation of the hourly forward price curve by means of liner 
polynomial regression founded as shown in Fig. 4. 

 
Fig. 4 Simulation of HPFC by using quadratic polynomial regression 

 

B. Radial Basis Functions Neural Networks 
Let's suppose that the approximation of a real valued 

function )(xy  by )(xY  is given by the set of values  

),........,( 1 pyyY =   at the distinct points   
d

n RxxX ⊂= )...,.........( 1
. 

This could be done by applying the second proposed 
method which is "RBF" 

 
1) What is an RBF?    
Let   y(x) to be a Radial Basis Function in the form: 

          

)()(

)()()(
1

xaxp

xpxxGwxY

k

ij
jj

i

p

i
i

∑

∑

=

=

=

+−=

γ

                         (7) 

Where, p(x) is a polynomial of degree at most k, iw    is a 
real-valued weight, .  denotes the Euclidean norm, G is a 

basic Gaussian function, RRG →+:  , and ixx −  is simply a 

distance -- how far  x  is from the point ix  .p(x) is a basis in 
the space of polynomials of degree m, and m depends on G. 
Note that the most popular Gaussian RBF does not need p(x), 
i.e., p(x) = 0. Thus, the approximating function is a weighted 

sum of RBF's  )( ixxG −   . 
 

2) Computation of the Coefficients (Weights  iw  ) 
The coefficients are found by solving the linear system: 

           
0

)(
=Γ

=Γ++
w

dawIG Tλ                                  (8) 

Where I   is the identity matrix, and G is a so-called design 
matrix and [ ]Tpyyyyd .........21== .When, there is no 

polynomial term the solution follows the from 
dwIG =+ )( λ      

Look at this simple example for forming a Gaussian G 
matrix   for clarifying and avoiding ambiguities.                          

 

         
  

 
 

                            (6) 
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3) Neural Networks’ Interpretation of the RBF 
Approximation Scheme 

A strict interpolating regularization network [4] for a one 
dimensional input x. The training data set comprises 5 
examples as shown in Fig. 5. Centers   correspond to the 
inputs, and all variances are equal. Bias shown is not 
mandatory and does not follow from the equations below: 

 

 
Fig. 5 Interpolating regularization network for a one dimensional 

input x 
 

Thus, our model will be in terms of weighted and centered 
Gaussian in the form         

∑
=

−=
p

i
ii xxGwxy

1
)()(   

Here x express the time. 

(9) 
This can be represented graphically as follows:  
 

 
The solution is given by 

        

yGwy
yGw

wGy

a ==
=

=
−1                                        (10) 

This will be computationally expensive for P >>, problem!  

So, instead of:  ∑
=

−=
p

i
ii xxGwxy

1

)()(                               (11) 

substitute by an approximation   : 

                          ∑
=

−=
p

i
ii cxGwxY

1
)()(                             (12) 

Where p << P; the vectors ic  are called centers (n ≅ 10% N). 
 

This can be represented again graphically after the 
APPROXIMATION as follows: 

 

 
Appling this to the data of Alberta Market Prices with 

sigma equals 900 and number of neurons equals 9, the 
simulation of the hourly forward price curve by means of RBF 
is shown in the Fig. 6 below. 

 
Fig. 6 Simulation of HPFC by the Radial Basis Functions Neural 

Networks 
 
 
From Fig. 6, it seems that using Radial Basis Functions 

Neural Networks to simulate the HPFC is much better than the 
other model simulated by quadratic polynomial regression.  
Latter, the validation of all of these models and the model by 
means of Fourier series which will introduce in the next 
section will be checked.  

C. A Fourier series (Trigonometric Polynomials) 
Fourier series is a mathematical tool used for analyzing an 

arbitrary function by decomposing it into a weighted sum of 
much simpler sinusoidal component functions sometimes 
referred to as normal Fourier modes. The Fourier series 
expansion of   is: 

[ ]∑
∞

=

++=
1

0 )sin()cos(
2

)(
n

nnnn twbtwa
a

tY                       (13) 
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Where, for any non-negative integer n; 
T

nwn
π2

=  

Appling this to the data of Alberta Market Prices, the 
simulation of the hourly forward price curve by means of A 
Fourier series is shown in Fig. 7. 

 

 
Fig. 7 Simulation of HPFC by the  Fourier series  

V. EVALUATING THE GOODNESS OF FIT OF THE MODELS 
Once the data prices model implemented, the evaluation to 

test the goodness of fit should be done. This will be done by a 
visual examination measure of the curve displayed & by 
numerical measures; these will be valid for all. Means, the 
goodness of fit measures for both linear and nonlinear 
parametric fits should provide: 

 
• Residuals  
• Goodness of fit statistics 
 
These measures could be grouped into two types: graphical 

and numerical. The residuals are graphical measures, while 
the goodness of fit statistics is numerical measures. 

Generally speaking, graphical measures are more beneficial 
than numerical measures because they allow us to view the 
entire data set at once, and they can easily display a wide 
range of relationships between the model and the data. The 
numerical measures are more narrowly focused on a particular 
aspect of the data and often try to compress that information 
into a single number. 

Also, it’s possible that none of the fits by the model 
constructed can be considered the best one. In this case, it 
might be that it needed to select a different model. 
Conversely, it is also possible that all the goodness of fit 
measures indicate that a particular fit is the best one. 
However, the criteria that will follow are that; examine both 
the goodness of fit statistics and the graphical measures to 
check the minimum error should be done. 

A. Some Definitions of Goodness of Fit Statistics 
 

• The sum of squares due to error (SSE)  
• r-square  
• Adjusted r-square  
• Root mean squared error (RMSE) 

1) Sum of Squares Due to Error: in this statistic the total 
variation of the response values from the fit to the response 
values is measured. It is also called the summed square of 
residuals and is usually labeled as SSE. 

∑
=

−=
n

i
iii YywSSE

1

2)(                              (14) 

Where iw  are   the weights. You can approximate the 
weights using an equation such as 

1

1

2)(1
−

=

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

n

i
ii yy

n
w                            (15) 

A value of SSE   closer to 0 indicates a better fit. 
 

2) r-Square:  this statistic measures how successful the fit is 
in clearing up the variation of the data. By other words, r-
square is the square of the correlation between the response 
values and the predicted response values (spot &forward 
prices). It is also called the square of the multiple correlation 
coefficients and the coefficient of multiple determinations. 

So, r-square can be defined as the ratio of the sum of 
squares of the regression (SSR) and the total sum of squares 
(SST). SSR is defined as: 

                                                                   
2

1
)(∑ =

−

−=
n

i ii yYwSSR                                 (16) 

SST is also called the sum of squares about the mean, it's 
define as      

                     ∑
=

−

−=
n

i
ii yywSST

1

2)(                                 (17) 

r-square is expressed as:  

SST
SSRsquarer =−                                    (18) 

                      
3) Degrees of Freedom Adjusted r-Square: This statistic 
uses the r-square statistic defined above, and adjusts it based 
on the residual degrees of freedom. The residual degrees of 
freedom is defined as the number of response values n minus 
the number of fitted coefficients m estimated from the 
response. 

)(
)1(1

vSST
nSSEsquareradjusted −

−=−                    (19)    

Where;    v = n-m 
 
The adjusted r-square statistic can take on any value less 

than or equal to 1, a value closer to 1 indicating a better fit. 
 

4) Root Mean Squared Error: This statistic is also known as 
the fit standard error and the standard error of the regression 

      MSEsRMSE ==                               (20) 
Where MSE is the mean square error or the residual mean 

square                                   
v

SSEMSE =                                       (21) 

A  RMSE value closer to 0 indicates a better fit. 

B. The Criteria for the Validation of the Models 
There are many mathematical tools as mentioned before for 

the model validation, but the primary tool for most modeling 
applications is graphical residual analysis. Different types of 
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plots of the residuals from a fitted model are provided in the 
next sections to give information on the adequacy of different 
aspects of the model, but, as mentioned before, the criteria that 
will followed is that,  both the goodness of fit statistics and the 
graphical measures should be examined to insure better fit . 

The definition of the residuals from a fitted model is the 
differences between the responses observed at each recorded 
values of the explanatory variables and the corresponding 
prediction of the response computed using the regression 
model. Mathematically, the definition of the residual for the ith 
observation in the data set is written (

iii Yye −=  ). 

C. Comparison the Calculations of the Different Models 
In the next sections, a first Comparison between the results 

of the different models will be created. The start will be with 
the analysis of the residuals curve result, and then go to 
analyze all the result of statistics measures. The different types 
of plots of the residuals from fitted models are as shown in 
Figs. 8-11. 

 
1)  The Polynomial Regression Models 

 

 
Fig. 8 Results of the model by using liner polynomial regression 
 

 

Fig. 9 Results of the model by using quadratic polynomial regression 

 

Fig. 10 Results of the model by using cubic polynomial regression 
 

 

Fig. 11 Results of the model by using 4th degree polynomial 
regression 

 
The quadratic model appears to fit the data, but, the 

residuals of all the models appear to be randomly distributed 
around zero. Therefore, a graphical evaluation of the fits does 
not reveal any obvious differences between the all equations. 
The numerical fit results for all the models fitted by the 
polynomial regression are shown below in the table: 

 
The goodness of fit statistics is shown. The statistics reveal 

a substantial difference between the equations, the second 
model in the table ( th2  degree polynomial regression) reveals 
the best results (minimum RMSE than all the others models), 
but, the r-square close to one than the first, third & forth. (But 
it’s not better then fifth &sixth). 

 
2)  The Radial Basis Functions Neural Networks Models 
Here, the residuals of the model for two parameters sigma 

and the number of the neurons are examined, the following 
plot represents this for sigma=900 &NN=10, Then; the two 
parameters are increased to sigma=1600 & NN=20, and 
observe the result as shown in Figs. 12, 13. 

 
Fig. 12 Results of the model by using RBF with σ=900 & NN=9 

 

TABLE I 
RESULTS OF FITS OF ALL THE POLYNOMIAL REGRESSION MODELS 

 
Name of 

Regression 

 
Tape 

 
# 

Coefficien
t 

 
SSE 

 
RMSE 

 

 
r-

square 

HPFC_LPR Liner 2 1.0421e
+004 

53.406
1 

0.1609 

HPFC_QPR Quadrati
c 

3 9.4098e
+003 

50.388
1 

0.2078 

HPFC_CPR cubic 4 1.2441e
+004 

62.304
5 

0.1960 

HPFC_4th 
degree PR 

4th 5 1.4257e
+004 

69.920
7 

0.1811 

HPFC_5th 
degree PR 

5th 6 1.5048e
+004 

72.989
2 

0.2270 

HPFC_6th 
degree PR 

6th 7 1.5496e
+004 

74.388
1 

0.2869 
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Fig. 13 Results of the model by using RBF with σ=1600 & NN=20 

 
In the first plot, the models appear to fit the data poor. 

Looking into the residuals, it's appear to be almost randomly 
distributed around zero than the other model (σ = 1600& 
NN=20), which seems more fit good for the data, since the 
residuals are more randomly distributed around zero. 

The numerical fit results for the models fitted by the RBF 
are (RMSE= 48.9969) for the second model, this means, the 
goodness of fit statistics is, the statistics reveal a difference 
between this model and the entire last model. 

The last one model (RBF regression model) reveals the best 
results (minimum RMSE than all the others models and better 
R-square close to one than other. 

 
3) A  Fourier Series (Trigonometric Polynomials) 

     Finally, coming to the Fourier series method, here, the 
examination of the method will be done under increase the 
number of the harmonics and looking to the best time period 
by changing it. The residuals will be checked, then again the 
numerical fit results for the models fitted by this method is 
checked too. The following plot; Fig. 14 represents this for 
number of harmonies=2 &time period equals to 16000, Then 
the two parameters must be increased to time period =20000 
& NH=5, and the result is observed in Fig. 15. 

 

 
Fig. 14 Results of the model by using a Fourier series (NH=2 

&T=16000) 
 

 
Fig. 15 Results of the model by using a Fourier series (NH=5 

&T=20000) 

VI. CORRELATION ANALYSIS 
Correlation analysis is a statistical technique that evaluates 

the relationship between two variables; i.e., how closely they 
match each other in terms of their individual mathematical 
change. The question addressed is: if one variable ( x ) moves 
or a change in a certain direction does the second variable 
( y ) also move or change in a similar or complementary 
direction? 

A.  The Coefficient of Correlation 
The coefficient of correlation   is a measure of the strength 

of the linear relationship between two variables   and. It is 
computed [10] (for a sample of n measurements on x   and y ) 
as follows: 

     
yyxx

xy

SSSS
SS

r =
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B. The Coefficient of Determination 
Another way to measure the contribution of x  in predicting  

Y  is to consider how much the errors of prediction of Y  can 
be reduced by using the information provided by x . 

The sample coefficient of determination is developed from 
the relationship between two kinds of variation: the variation 
of the Y   values in a data set around:  
 

• The fitted regression line. 
• Their own mean. 
 
The term variation in both cases is used in its usual 

statistical sense to mean “the sum of a group of squared 
deviations”. 

The first variation is the variation of Y  values around the 
regression line, i.e., around their predicted values. This 
variation is the sum of squares for error ( SSE ) of the 
regression model 

∑
=

−=
n

i
ii YySSE

1

2)(                                (24) 

The second variation is the variation of y values around 
their own mean 

∑
=

−=
n

i
iyy yySS

1

2)                              (25) 

It is easy to verify that 
 

yyyy

yy

SS
SSE

SS
SSESS

r −=
−

= 12                           (26) 

Where; r  is the coefficient of correlation, defined in the 
equation (22). 
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VII. PRACTICAL ANALYSIS OF THE COEFFICIENT OF 
DETERMINATION, 2r  

Now, by applying equations (22-26) given in previous 
sections to all the models constructed and by applying it on  
Alberta Market prices,  the results of each one as follows: 

A. Correlation Analysis of the result of Polynomial     
Regression Model: 

Defined in equation (1) that the general Polynomial 
Regression equation has the following form:         

ntnptptptpptY ..........3
3

2
210)( ++++=                 (27) 

The correlation analysis of the liner polynomial, quadratic 
polynomial, cubic polynomial, 4th order polynomial and the 5th 
order polynomial will be calculated. 5th order will be 
considered enough to give permissible error). 

 
1)  Results of the Model by Using Liner Polynomial 

Regression 
The liner polynomial is in the form tpptY .)( 10 +=          
Coefficients: 
         = 96.8761,     = -0.0050   
Goodness of fit: 
      SSE: 1.0421e+004 
      r-square: 0.1609 
      RMSE:   53.4061 
 
2) Results of the Model by Using Quadratic Polynomial  
Quadratic polynomial is in the form 2

210 ..)( tptpptY ++=   
Coefficients: 
        = 136.4662,     = -0.0199,     =  0.0000 
Goodness of fit: 
     SSE: 9.4098e+003 
     r-square: 0.2078 
     RMSE:  50.3 
 
Regression summary 
• Quadratic term clearly very important 
• Fairly impressive r-square 
• Decrease in RMSE to 94.18 
 
3) Results of the Model by Using Cubic Polynomial  
Cubic polynomial is in the form  

3
3

2
210 ...)( tptptpptY +++=  

Coefficients: 
        = 0.0000,     = 0.0409,     = -0.0000,    = 0.0000 
Goodness of fit: 
      SSE: 1.2441e+004 
      r-square: 0.1960 
      RMSE: 62.3045 
Regression summary  
• Cubic term clearly adds to fit. 
• High correlation between estimates for linear & cubic                           
• Impressive increase in RMSE to 80.7% 
 

4)  Results of the Model by using 4th Degree Polynomial 
4th degree polynomial is in the form 

4
4

3
3

2
210 ....)( tptptptpptY ++++=  

Coefficients: 
          = 1.0e-005 ,                     = 1.0e-005,   
        = 1.0e-005 * 0.4864,       = 1.0e-005 * -0.0001,     
        = 1.0e-005     
Goodness of fit: 
    SSE: 1.4257e+004 
    r-square: 0.1811 
    RMSE: 69.9207 
Regression summary  
• Adding 4th power doesn’t improve fit at all. 
• Impressive increase in RMSE to 80.7% 
 
5) Results of the Model by using 5th Degree Polynomial 
5th degree polynomial is in the form 

5.5
4.4

3.3
2.2.10)( tptptptptpptY +++++=  

 
Coefficients: 
        = 1.0e-009 * 0,                = 1.0e-009 *0,              
        = 1.0e-009 *0                  = 1.0e-009 * 0.4747      
        =  1.0e-009 *  -0.0001     = 1.0e-009 * 0.0000 
Goodness of fit: 
     SSE: 1.5048e+004 
     r-square: 0.2270 
     RMSE: 72.9892 
Regression summary  
• Adding 5th power doesn’t improve fit at all. 
• Impressive increase in RMSE to 89.1% 

B. Correlation Analysis of the RBF Neural Networks 
Models 

The general form of our hourly price forward curve 
(HPFC) modeled by RBF for number of neurons NN will be 
as in the next form: 

 

2)/)((exp(.....................

2)/)2((exp(.2
2)/)1((exp(.1)(

σ

σσ

NNctNNw

ctwctwtY

−−+

+−−+−−=
  (28) 

1) Results of the model by using RBF with σ=1601 & 
NN=10 

The model will be in the form 

2)/)10((exp(.10.....................

2)/)2((exp(.2
2)/)1((exp(.1)(

σ

σσ

ctw

ctwctwtY

−−+

+−−+−−=   (29) 

 
Goodness of fit: 
     SSE: 241.4264 
     r-square: 0.7576 
     RMSE: 50.9351 
Regression summary  
• Impressive increase in r-square 264 % than 6th degree 

polynomial. 
• Residuals still show need for more Neural. 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:2, No:9, 2008 

1762International Scholarly and Scientific Research & Innovation 2(9) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
9,

 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/3
00

0.
pd

f



 

 

C. Correlation Analysis of a Fourier Series Models 
The general form of our hourly price forward curve 

(HPFC) modeled by Fourier series will be as in the next form: 
  

)sin()cos(..).........2sin(
)2cos()sin()cos(.)(

2

2110

wtNbwtNawtb
wtawtbwtaatY

NN ∗∗∗+∗∗∗+∗∗∗
+∗∗∗+∗∗+∗+=  (30) 

1) Results of the model by using a Fourier series (NH=2 
&T=16000) 
 

)2sin()2cos(
)sin()cos(.)(

22

110

wtbwta
wtbwtaatY

∗∗∗+∗∗∗
+∗∗+∗+=                  (31) 

Coefficients: 
        =    56.4365 
        =    25.0413 
        =    21.5590 
        =   1.07770 
        =    20.1436      
Goodness of fit: 
      SSE: 9.6825e+003 
      r-square: 0.1894 
      RMSE:  51.4456 

VIII. OPTIMIZATION (MINIMIZING THE LOSS) 
Any engineer is interested in determining optimal settings 

of the model Factors (parameters); that is, to determine for 
each parameter a level of permissible error that optimizes the 
model response error. The loss or the error (RMSE) provides 
an objective measure of predictive error for a specific choice 
of model parameters. Thus; the goal is to find the values of the 
model parameters that minimize the error. 

The problem of finding minimum error can be solved by an 
iterative numerical technique called gradient descent. It works 
as follows:  

1. Choose some (random) initial values for the model 
parameters.  

2. Calculate the error function with respect to each 
model parameter.  

3. The model parameters change so that a short distance 
in the direction of the greatest rate of decrease of the 
error is recorded.  

4. Steps 2 and 3 will repeated until error gets close to 
zero. 

A. Optimization for HPFC Modeled by using a Fourier 
Series 

To optimize the model by changing the time period T until 
getting the smallest error. The time will change from zero to 
double of the time period that prices recorded. This change 
must occur until guaranteed that there is minimum error. The 
minimum error was recorded at T=25300 as shown in Fig. 16, 
results show that, there is decrease in the error to minimum 
value of 48.4623 at number of harmonics equals 20 and 
increase in the correlation coefficients, means better curve 
simulation Fig. 17. 

 
Fig. 16 Plot of the error RMSE versus time period 

 
Results after optimization: 
RMSE = 48.4623,      r_square= 0.2439 

  

 
Fig. 17 Plot of the HPFC after optimizing the model by using 

(NH=20 &T=25300) 
 

B. Optimization for HPFC modeled by RBF Neural 
Networks Models 

In the optimization of the models constructed by RBF 
regression, models fit to data collected using response surface 
designs is used. How the optimal region to run a process does 
is determined? The answer is the optimization will be done in 
an iterative process again. So, the optimization will be done 
here by changing both Sigma & number of Neurons until the 
target output is hit, which is minimize process output error, 
after repeating the iteration number of times until the goal is 
hit which is finding values of the parameters to minimize the 
error of the process. The error is found minimum by using 
Mat lab code when sigma=1001 & NN=19, the number of 
iterative was 20*20 =400 .The following plot (Fig. 18) show 
the change in the error with changing the parameters sigma 
&NN. 

 

 
Fig. 18 Plot of the error RMSE versus NN & sigma 
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Now; this value of the parameter T; which give almost the 
optimal model corresponding to the various choices of overall 
measure of loss, the other parameters "Sigma & number of 
Neurons" must be changed again to determine the coefficients 
"Weights" which gives the optimum model. 

The plot of the HPFC with parameters sigma=801 & 
NN=39 is shown in (fig.19).Even though, the error could be 
again minimized if the number of the neurons is increased, but 
this really computationally expensive ( for number of neurons 
equal to 60,it take a time of six hours on our computer! ).So, if 
the time needed to make better optimization is vital, then a 
sophisticated machine to perform this task is needed.   

 

 
Fig. 19 Plot of the HPFC after optimizing the model 

 
Here, modeling the HPFC by RBF regression will consist 

of twenty weighting coefficients, these coefficients & the 
optimum corresponding parameters will form the equation for 
prediction the forward prices in the future. 

 
*Results after optimization: 
       r_square =   0.2425, RMSE = 48.5848 
 
The results show that, there is decrease in the error to 

RMSE= 48.9644 at parameters of sigma=1001 and  NN 
=19,also the correlation coefficient come closer to one then 
before , means better curve simulation. 

IX. IMPLEMENTATION 
In this section, the optimal model derived in the last 

sections is implemented. The implementation modeled by 
RBF Neural Networks Models will apply to EEX market for 
data reading of more than five years. However, this 
implementation is intuitively can be applied to any other 
Market Data, but, keeping in mind that for the markets that 
have high changing prices between the seasons of the year, the 
regression for period that give parameters which draw curve 
should be run to deeply express the prices without care about 
the time needed for modeling, that is, the period of the 
iterative should be expanded as possible to get permissible 
error. 

The following plot shows the behavior of the prices of EEX 
market in the period of (from June 2001 until June 2006): 

 
Fig. 20 Plot of EEX Market Pries 

 
The prices with average equal 32.98 & standard deviation 

equal 25.57, which are means the pries are changing between 
24.54 & 41.41, which implies low volatility than Alberta 
Market Prices. So, the regression could be repeated with less 
number of the iterative for getting the permissible 
error.alternativly, if  the time is not vital , high number of 
iteration can be run , but, the error resulting from the model 
will not be significantly differ than if  low number is run! 

 
Fig. 21 Plot of the optimized HPFC after optimizing of EEX Market 

 
As it’s clear from the plot, the curve fit wills the prices 

along the five years period with smallest permissible error. 
The following are the results of the model: 

 
Finally, the optimized HPFC for EEX Market under these 

criteria could be written e as follows: 
 

2
29

2
2

2
1

)/)*(5.0(
29

)/)*(5.0(
2

)/)*(5.0(
1

exp...........................

expexp)(
sigmact

sigmactsigmact

w

wwtY
−−

−−−− ++=  
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3.5548e+004 
 

22.4084 
 

0.2492 
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Fig. 22 Optimized HPFC of EEX Market with time of two years in 

the future 
 

 
Fig. 23 Optimized HPFC of EEX Market for time of two years in the 

future 

X. CONCLUSION 
In this paper, the optimized method for modeling the 

Hourly Price Forward Curve (HPFC) using the regression 
technique is implemented. This implementation is approached 
using three methods (polynomial regression, RBF neural 
network regression & using a Fourier series (Trigonometric 
Polynomials Regression). The comparisons among these three 
methods using the RMSE (Root Mean Square Error) as overall 
measure of error have made. In comparing these three 
methods, the maximum loss values are observed close to fifty 
before optimization. For the method one, the degree of the 
polynomial containing of the loss values, then it is not wide 
that is, the variation of loss is high. For all the methods, it is 
observed that the loss is not monotonic for Y (t) as a function 
of the degree for method one and not monotonic for the other 
Y (t) which is defined in the other methods. 

From a computational point of view, Method 1 is simple. 
Method 2 is more complicated compared to the method 3. 
Method 2 is computationally harder than the other two 

methods because we apply the optimization technique to solve 
for N naturals, (where, N >>)   in two parameters. 
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