Search results for: Artificial neuronal networks
2088 Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud
Authors: A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, N. Y. Lysov, A. V. Orlov, D. S. Zhuravkova
Abstract:
Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation.
Keywords: Cloud and channel discharges, hydrometeor form, lightning initiation, negative and positive artificial charged aerosol cloud.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8752087 Forecasting of Grape Juice Flavor by Using Support Vector Regression
Authors: Ren-Jieh Kuo, Chun-Shou Huang
Abstract:
The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractive. Thus, this study intends to introducing the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN, and LR to forecast the flavor of grapes juice in real data shows that SVR is more suitable and effective at predicting performance.
Keywords: Flavor forecasting, artificial neural networks, support vector regression, grape juice flavor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22162086 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model
Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili
Abstract:
Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. Byproducts such as ferronickel slags (FNS), fly ash (FA), and waste as Crepidula fornicata shells (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 days to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype were utilized to build an artificial neural network.
Keywords: Artificial neural network, cement, circular economy, concrete, byproducts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3522085 Microservices-Based Provisioning and Control of Network Services for Heterogeneous Networks
Authors: Shameemraj M. Nadaf, Sipra Behera, Hemant K. Rath, Garima Mishra, Raja Mukhopadhyay, Sumanta Patro
Abstract:
Microservices architecture has been widely embraced for rapid, frequent, and reliable delivery of complex applications. It enables organizations to evolve their technology stack in various domains. Today, the networking domain is flooded with plethora of devices and software solutions which address different functionalities ranging from elementary operations, viz., switching, routing, firewall etc., to complex analytics and insights based intelligent services. In this paper, we attempt to bring in the microservices based approach for agile and adaptive delivery of network services for any underlying networking technology. We discuss the life cycle management of each individual microservice and a distributed control approach with emphasis for dynamic provisioning, management, and orchestration in an automated fashion which can provide seamless operations in large scale networks. We have conducted validations of the system in lab testbed comprising of Traditional/Legacy and Software Defined Wireless Local Area networks.
Keywords: Microservices architecture, software defined wireless networks, traditional wireless networks, automation, orchestration, intelligent networks, network analytics, seamless management, single pane control, fine-grain control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8902084 Accelerating Integer Neural Networks On Low Cost DSPs
Authors: Thomas Behan, Zaiyi Liao, Lian Zhao, Chunting Yang
Abstract:
In this paper, low end Digital Signal Processors (DSPs) are applied to accelerate integer neural networks. The use of DSPs to accelerate neural networks has been a topic of study for some time, and has demonstrated significant performance improvements. Recently, work has been done on integer only neural networks, which greatly reduces hardware requirements, and thus allows for cheaper hardware implementation. DSPs with Arithmetic Logic Units (ALUs) that support floating or fixed point arithmetic are generally more expensive than their integer only counterparts due to increased circuit complexity. However if the need for floating or fixed point math operation can be removed, then simpler, lower cost DSPs can be used. To achieve this, an integer only neural network is created in this paper, which is then accelerated by using DSP instructions to improve performance.Keywords: Digital Signal Processor (DSP), Integer Neural Network(INN), Low Cost Neural Network, Integer Neural Network DSPImplementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17962083 Improved Exponential Stability Analysis for Delayed Recurrent Neural Networks
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of exponential stability analysis for recurrent neural networks with time-varying delay.By establishing a suitable augmented LyapunovCKrasovskii function and a novel sufficient condition is obtained to guarantee the exponential stability of the considered system.In order to get a less conservative results of the condition,zero equalities and reciprocally convex approach are employed. The several exponential stability criterion proposed in this paper is simpler and effective. A numerical example is provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Exponential stability , Neural networks, Linear matrix inequality, Lyapunov-Krasovskii, Time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17662082 An Adversarial Construction of Instability Bounds in LIS Networks
Authors: Dimitrios Koukopoulos
Abstract:
In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, ¤ü)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates ¤ü > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.Keywords: Network stability, quality of service, adversarial queueing theory, greedy scheduling protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12292081 Knowledge Management in Cross- Organizational Networks as Illustrated by One of the Largest European ICT Associations A Case Study of the “METORA
Authors: Thomas Klauß
Abstract:
In networks, mainly small and medium-sized businesses benefit from the knowledge, experiences and solutions offered by experts from industry and science or from the exchange with practitioners. Associations which focus, among other things, on networking, information and knowledge transfer and which are interested in supporting such cooperations are especially well suited to provide such networks and the appropriate web platforms. Using METORA as an example – a project developed and run by the Federal Association for Information Economy, Telecommunications and New Media e.V. (BITKOM) for the Federal Ministry of Economics and Technology (BMWi) – This paper will discuss how associations and other network organizations can achieve this task and what conditions they have to consider.
Keywords: Associations, collaboration, communities, crossdepartmental organizations, semantic web, web 2.0.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13042080 Enhancing the Connectedness in Ad–hoc Mesh Networks using the Terranet Technology
Authors: Obeidat I., Bsoul M., Khasawneh A., Kilani Y.
Abstract:
This paper simulates the ad-hoc mesh network in rural areas, where such networks receive great attention due to their cost, since installing the infrastructure for regular networks in these areas is not possible due to the high cost. The distance between the communicating nodes is the most obstacles that the ad-hoc mesh network will face. For example, in Terranet technology, two nodes can communicate if they are only one kilometer far from each other. However, if the distance between them is more than one kilometer, then each node in the ad-hoc mesh networks has to act as a router that forwards the data it receives to other nodes. In this paper, we try to find the critical number of nodes which makes the network fully connected in a particular area, and then propose a method to enhance the intermediate node to accept to be a router to forward the data from the sender to the receiver. Much work was done on technological changes on peer to peer networks, but the focus of this paper will be on another feature which is to find the minimum number of nodes needed for a particular area to be fully connected and then to enhance the users to switch on their phones and accept to work as a router for other nodes. Our method raises the successful calls to 81.5% out of 100% attempt calls.
Keywords: Adjacency matrix, Ad-hoc mesh network, Connectedness, Terranet technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16182079 Improved Robust Stability Criteria for Discrete-time Neural Networks
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
In this paper, the robust exponential stability problem of uncertain discrete-time recurrent neural networks with timevarying delay is investigated. By constructing a new augmented Lyapunov-Krasovskii function, some new improved stability criteria are obtained in forms of linear matrix inequality (LMI). Compared with some recent results in literature, the conservatism of the new criteria is reduced notably. Two numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
Keywords: Robust exponential stability, delay-dependent stability, discrete-time neutral networks, time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14772078 Stability Analysis of Neural Networks with Leakage, Discrete and Distributed Delays
Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong
Abstract:
This paper deals with the problem of stability of neural networks with leakage, discrete and distributed delays. A new Lyapunov functional which contains some new double integral terms are introduced. By using appropriate model transformation that shifts the considered systems into the neutral-type time-delay system, and by making use of some inequality techniques, delay-dependent criteria are developed to guarantee the stability of the considered system. Finally, numerical examples are provided to illustrate the usefulness of the proposed main results.
Keywords: Neural networks, Stability, Time-varying delays, Linear matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16182077 Blockchain Security in MANETs
Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara
Abstract:
The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.Keywords: Ad hoc networks, blockchain, MPR, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9182076 A Systematic Construction of Instability Bounds in LIS Networks
Authors: Dimitrios Koukopoulos
Abstract:
In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, p)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates p > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.
Keywords: Parallel computing, network stability, adversarial queuing theory, greedy scheduling protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14152075 Evaluating Performance of Quality-of-Service Routing in Large Networks
Authors: V. Narasimha Raghavan, M. Venkatesh, T. Peer Meera Labbai, Praveen Dwarakanath Prabhu
Abstract:
The performance and complexity of QoS routing depends on the complex interaction between a large set of parameters. This paper investigated the scaling properties of source-directed link-state routing in large core networks. The simulation results show that the routing algorithm, network topology, and link cost function each have a significant impact on the probability of successfully routing new connections. The experiments confirm and extend the findings of other studies, and also lend new insight designing efficient quality-of-service routing policies in large networks.
Keywords: QoS, Link-State Routing, Dijkstra, Path Selection, Path Computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15812074 Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity
Authors: Chia-Ling Chang, Chung-Sheng Liao
Abstract:
The present study focuses on the discussion over the parameter of Artificial Neural Network (ANN). Sensitivity analysis is applied to assess the effect of the parameters of ANN on the prediction of turbidity of raw water in the water treatment plant. The result shows that transfer function of hidden layer is a critical parameter of ANN. When the transfer function changes, the reliability of prediction of water turbidity is greatly different. Moreover, the estimated water turbidity is less sensitive to training times and learning velocity than the number of neurons in the hidden layer. Therefore, it is important to select an appropriate transfer function and suitable number of neurons in the hidden layer in the process of parameter training and validation.Keywords: Artificial Neural Network (ANN), sensitivity analysis, turbidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28132073 Stability Criteria for Uncertainty Markovian Jumping Parameters of BAM Neural Networks with Leakage and Discrete Delays
Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong
Abstract:
In this paper, the problem of stability criteria for Markovian jumping BAM neural networks with leakage and discrete delays has been investigated. Some new sufficient condition are derived based on a novel Lyapunov-Krasovskii functional approach. These new criteria based on delay partitioning idea are proved to be less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, one numerical example is given to illustrate the the usefulness and feasibility of the proposed main results.
Keywords: Stability, Markovian jumping neural networks, Timevarying delays, Linear matrix inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51402072 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: Artificial neural network, classification, decision tree, diabetes mellitus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24172071 Exponential State Estimation for Neural Networks with Leakage, Discrete and Distributed Delays
Authors: Liyuan Wang, Shouming Zhong
Abstract:
In this paper, the design problem of state estimator for neural networks with the mixed time-varying delays are investigated by constructing appropriate Lyapunov-Krasovskii functionals and using some effective mathematical techniques. In order to derive several conditions to guarantee the estimation error systems to be globally exponential stable, we transform the considered systems into the neural-type time-delay systems. Then with a set of linear inequalities(LMIs), we can obtain the stable criteria. Finally, three numerical examples are given to show the effectiveness and less conservatism of the proposed criterion.
Keywords: State estimator, Neural networks, Globally exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16642070 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks
Authors: Salvatore Marra, Francesco C. Morabito
Abstract:
In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.
Keywords: Elman neural networks, sunspot, solar activity, time series prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18542069 Delay-Dependent Stability Analysis for Neutral Type Neural Networks with Uncertain Parameters and Time-Varying Delay
Authors: Qingqing Wang, Shouming Zhong
Abstract:
In this paper, delay-dependent stability analysis for neutral type neural networks with uncertain paramters and time-varying delay is studied. By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments, a novel sufficient condition is established to guarantee the globally asymptotically stability of the considered system. Finally, a numerical example is provided to illustrate the usefulness of the proposed main results.
Keywords: Neutral type neural networks, Time-varying delay, Stability, Linear matrix inequality(LMI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18192068 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: Landcover classification, artificial neural network, remote sensing, SPOT-5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16062067 A Review on Medical Image Registration Techniques
Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry
Abstract:
This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.Keywords: Image registration techniques, medical images, neural networks, optimisation, transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18122066 Influence of Noise on the Inference of Dynamic Bayesian Networks from Short Time Series
Authors: Frank Emmert Streib, Matthias Dehmer, Gökhan H. Bakır, Max Mühlhauser
Abstract:
In this paper we investigate the influence of external noise on the inference of network structures. The purpose of our simulations is to gain insights in the experimental design of microarray experiments to infer, e.g., transcription regulatory networks from microarray experiments. Here external noise means, that the dynamics of the system under investigation, e.g., temporal changes of mRNA concentration, is affected by measurement errors. Additionally to external noise another problem occurs in the context of microarray experiments. Practically, it is not possible to monitor the mRNA concentration over an arbitrary long time period as demanded by the statistical methods used to learn the underlying network structure. For this reason, we use only short time series to make our simulations more biologically plausible.Keywords: Dynamic Bayesian networks, structure learning, gene networks, Markov chain Monte Carlo, microarray data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16112065 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8292064 Stability Analysis of Impulsive BAM Fuzzy Cellular Neural Networks with Distributed Delays and Reaction-diffusion Terms
Authors: Xinhua Zhang, Kelin Li
Abstract:
In this paper, a class of impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms is formulated and investigated. By employing the delay differential inequality and inequality technique developed by Xu et al., some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.
Keywords: Bi-directional associative memory, fuzzy cellular neuralnetworks, reaction-diffusion, delays, impulses, global exponentialstability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15432063 Smart Trust Management for Vehicular Networks
Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel
Abstract:
Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.
Keywords: Component, active vehicle, cooperation, petri nets, trust management, VANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11242062 Performance Analysis of Self Excited Induction Generator Using Artificial Bee Colony Algorithm
Authors: A. K. Sharma, N. P. Patidar, G. Agnihotri, D. K. Palwalia
Abstract:
This paper presents the performance state analysis of Self-Excited Induction Generator (SEIG) using Artificial Bee Colony (ABC) optimization technique. The total admittance of the induction machine is minimized to calculate the frequency and magnetizing reactance corresponding to any rotor speed, load impedance and excitation capacitance. The performance of SEIG is calculated using the optimized parameter found. The results obtained by ABC algorithm are compared with results from numerical method. The results obtained coincide with the numerical method results. This technique proves to be efficient in solving nonlinear constrained optimization problems and analyzing the performance of SEIG.
Keywords: Artificial bee colony, Steady state analysis, Selfexcited induction generator, Nonlinear constrained optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21802061 Finding Equilibrium in Transport Networks by Simulation and Investigation of Behaviors
Authors: Gábor Szűcs, Gyula Sallai
Abstract:
The goal of this paper is to find Wardrop equilibrium in transport networks at case of uncertainty situations, where the uncertainty comes from lack of information. We use simulation tool to find the equilibrium, which gives only approximate solution, but this is sufficient for large networks as well. In order to take the uncertainty into account we have developed an interval-based procedure for finding the paths with minimal cost using the Dempster-Shafer theory. Furthermore we have investigated the users- behaviors using game theory approach, because their path choices influence the costs of the other users- paths.Keywords: Dempster-Shafer theory, S-O and U-Otransportation network, uncertainty of information, Wardropequilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15302060 Evaluation of Context Information for Intermittent Networks
Authors: S. Balaji, E. Golden Julie, Y. Harold Robinson
Abstract:
The context aware adaptive routing protocol is presented for unicast communication in intermittently connected mobile ad hoc networks (MANETs). The selection of the node is done by the Kalman filter prediction theory and it also makes use of utility functions. The context aware adaptive routing is defined by spray and wait technique, but the time consumption in delivering the message is too high and also the resource wastage is more. In this paper, we describe the spray and focus routing scheme for avoiding the existing problems.
Keywords: Context aware adaptive routing, Kalman filter prediction, spray and wait, spray and focus, intermittent networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9132059 Analysis of Data Gathering Schemes for Layered Sensor Networks with Multihop Polling
Authors: Bhed Bahadur Bista, Danda B. Rawat
Abstract:
In this paper, we investigate multihop polling and data gathering schemes in layered sensor networks in order to extend the life time of the networks. A network consists of three layers. The lowest layer contains sensors. The middle layer contains so called super nodes with higher computational power, energy supply and longer transmission range than sensor nodes. The top layer contains a sink node. A node in each layer controls a number of nodes in lower layer by polling mechanism to gather data. We will present four types of data gathering schemes: intermediate nodes do not queue data packet, queue single packet, queue multiple packets and aggregate data, to see which data gathering scheme is more energy efficient for multihop polling in layered sensor networks.
Keywords: layered sensor network, polling, data gatheringschemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568