
 

 

  
Abstract—In this work, we study the impact of dynamically 

changing link slowdowns on the stability properties of packet-
switched networks under the Adversarial Queueing Theory 
framework. Especially, we consider the Adversarial, Quasi-Static 
Slowdown Queueing Theory model, where each link slowdown may 
take on values in the two-valued set of integers {1, D} with D > 1 
which remain fixed for a long time, under a (w, ρ)-adversary. In this 
framework, we present an innovative systematic construction for the 
estimation of adversarial injection rate lower bounds, which, if 
exceeded, cause instability in networks that use the LIS (Longest-in-
System) protocol for contention-resolution. In addition, we show that 
a network that uses the LIS protocol for contention-resolution may 
result in dropping its instability bound at injection rates ρ > 0 when 
the network size and the high slowdown D take large values. This is 
the best ever known instability lower bound for LIS networks.  
 

Keywords—Parallel computing, network stability, adversarial 
queueing theory, greedy scheduling protocols.  

I. INTRODUCTION 
NE of the most important features of today large-scale 
communication networks, such as the Internet, is their 

robustness. Robustness is the ability of communication 
despite network link failures. As the Internet evolves into a 
ubiquitous communication infrastructure and supports 
increasingly important services, its dependability in the 
presence of various failures becomes critical. These failures 
can degrade system performance and lead to service 
disruption. Thus, the study of performance and correctness 
properties of real networks which suffer from link failures 
becomes a necessity. This study could help on detecting, 
understanding and overcoming the conditions leading to these 
mentioned negative effects, as well as helping to their 
prevention.  

A. Motivation-Framework  
We are interested in the behavior of packet-switched 

networks in which packets arrive dynamically at the nodes and 
they are routed in discrete time steps across the links. Recent 
years have witnessed a vast amount of work on analyzing 
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packet-switched networks under non-probabilistic 
assumptions (rather than stochastic ones); we work within a 
model of worst-case continuous packet arrivals, originally 
proposed by Borodin et al. [7] and termed Adversarial 
Queueing Theory to reflect the assumption of an adversarial 
way of packet generation and path determination. A major 
issue that arises in such a setting is that of stability-- will the 
number of packets in the network remain bounded at all 
times? The answer to this question may depend on the rate of 
injecting packets into the network, the slowdown of the links, 
which is the time delay which is suffered by outgoing packets 
in order to be forwarded on a link, and the protocol that is 
used to resolve the conflict when more than one packet wants 
to cross a given link in a single time step. The underlying goal 
of our study is to establish the stability properties of networks 
when packets are injected by an adversary (rather than by an 
oblivious randomized process) and the link slowdowns are 
chosen by the same adversary in a dynamic way. 

Most studies of packet-switched networks assume that one 
packet can cross a network link (an edge) in a single time step. 
This assumption is well motivated when we assume that all 
network links are identical. However, a packet-switched 
network can contain different types of links, which is common 
especially in large-scale networks like Internet. Also, a real 
network can suffer from link failures due to natural disasters 
(like hurricanes), human action (like hacker attacks) or by 
unintentional software failures. Then, it is well motivated to 
assign a slowdown to each link. Furthermore, if each link 
slowdown takes on values in the two-valued set of integers   
{1, D} for D > 1, D takes on large values and each value 
remains fixed for a long time, then we can consider 
approximately as a link failure the assigning of slowdown D 
to a link, while the assigning of unit slowdown to a link can 
be considered as the proper service rate. Therefore, the study 
of the stability behavior of networks under our model of 
quasi-static slowdowns can be considered as an approximation 
of the fault-tolerance of a network where links can 
temporarily fail (infinite slowdown). The goal of this study is 
to provide an insight towards detecting, understanding, and 
overcoming the conditions leading to performance 
degradation and service disruption of today's communication 
networks during network attacks or failures. 

In this work, we consider the impact on the stability 
behavior of networks if the adversary besides the packet 
injections in paths which it determines, it also can set the 
slowdowns of network edges in each time step. This subfield 
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of study was initiated by Borodin et al. in [8]. Note that we 
continue to assume uniform packet sizes. 

Roughly speaking, a protocol P is stable [7] on a network G 
against an adversary A of rate ρ if there is a constant B (which 
may depend on G and A) such that the number of packets in 
the system is bounded at all times by B. On the other hand, a 
protocol P is universally stable [7] if it is stable against every 
adversary of rate less than 1 and on every network. We also 
say that a network G is universally stable [7] if every greedy 
protocol is stable against every adversary of rate less than 1 on 
G. We consider a greedy contention-resolution protocol-- ones 
that always advance a packet across a queue (but one packet at 
each discrete time step) whenever there resides at least one 
packet in the queue. This protocol is LIS (Longest-in-System) 
that gives priority to the least recently injected packet into the 
network.  

B. Contribution  
We define here the weakest possible adversary of 

dynamically changing network link slowdowns in the context 
of Adversarial Queueing Theory where the adversary may set 
link slowdowns to any of two integer values 1 and D (D > 1 is 
a parameter called high slowdown). In the classical 
Adversarial Queueing Theory only one slowdown value is 
available to the adversary. Moreover, once a link slowdown 
takes on a value, the value stays fixed for a continuous time 
period proportional to the number of packets in the system at 
the time of setting the slowdown to the value. We call this the 
Adversarial, Quasi-Static Slowdown Queueing Theory model. 
In this framework, we obtain the following results: 
•  We present for the first time to the best of our knowledge a 

systematic construction for the estimation of injection rate 
lower bounds, which, if exceeded, cause instability in 
networks where the LIS protocol is running on their nodes 
for contention-resolution.  

•   We study the behavior of the presented systematic 
construction when it approaches its limits. More 
specifically, we present a size-parameterized network 
which uses the LIS protocol for contention-resolution that 
is unstable at arbitrarily low injection rates when the 
network size takes large values and the link slowdowns 
can be changed dynamically between unit and a large 
enough value D. The drop of the instability bound is 
proportional to the increase of the high slowdown D and 
the network size.  This result is the first one that shows 
instability at arbitrarily low injection rates for a protocol 
that has been proved universally stable in the classical 
Adversarial Queueing Model. Till now instability bounds 
of 12 −  or more for the LIS protocol have been proved 
only on adversarial models where the network link 
capacities can be changed dynamically [8], [14].  

The combinatorial constructions of networks and 
adversaries that we have employed for showing that the LIS 
protocol can be unstable for arbitrarily low injection rates 
when link slowdowns can change dynamically significantly 
extend ones that appeared before in [7], [12]-[14]. In more 

detail, some of the tools we devise in order to obtain 
constructions of networks and adversaries that imply 
improved bounds are the following:  
• We employ combinatorial constructions of networks with 

multiple successively pairs of parallel queues; we 
judiciously use such paths for the simultaneous injection 
of various non-overlapping sets of packets. Also, this 
construction allows the adversary to inject a set of packets 
at a time period over a path with unit slowdown edges, 
while the previously injected sets of packets are delayed in 
another queue due to its high slowdown D.  

• We use the technical notion of investing flow; this is some 
special case of packet flow that we use in our adversarial 
constructions that consist of inductive phases. Roughly 
speaking, an investing flow injects packets in a phase 
some of which will remain in the system till the beginning 
of the next phase, in order to guarantee the inductive 
hypothesis for the next phase. 

C. Related Work  
Adversarial Queueing Theory was developed by Borodin et 

al. [7] as a more realistic model that replaces traditional 
stochastic assumptions in Queueing Theory [9] by more 
robust, worst-case ones. It received a lot of interest and 
attention in the study of stability and instability issues (see, 
e.g., [2], [4], [10]-[13]). The universal stability of various 
natural greedy protocols (SIS, LIS, NTS and FTG) was 
established by Andrews et al. [4]. Also, several greedy 
protocols such as NTG have been proved unstable at 
arbitrarily low rates of injection in [15]. 

Borodin et al. in [8] studied for the first time the impact on 
stability when the edges of a network can have capacities or 
slowdowns. They proved that the universal stability of 
networks is preserved under this varying context. Also, it was 
shown that many well-known universally stable protocols 
(SIS, NTS, FTG) do maintain their universal stability when the 
link capacity or slowdown is changing dynamically, whereas 
the universal stability of LIS is not preserved. More 
specifically Borodin et al. in [8] presented for the first time an 
instability bound of ρ > D / (D – 1) > 0.5 for the LIS protocol. 
This work was further extended by Koukopoulos et al. in [14] 
proving lower bounds of 12 − on the injection rates that 
guarantee instability for the LIS protocol under an adversary 
of dynamically changing link capacities.  

Alvarez et al. in [1] presented some variations of the 
adversarial queueing model for dynamic networks, the failure 
and reliable models where the adversary controls the edge 
failures. They proved that the universal stability of networks is 
preserved under this varying context. Also, it was shown that 
many well-known universally stable protocols (SIS, NTS, 
FTG) do maintain their universal stability, whereas the 
universal stability of LIS is not preserved. Furthermore, 
Alvarez et al. in [3] proposed three different ways of failure 
management and studied how they influence on the stability of 
faulty communication networks. 

Two other proposals for dynamic networks have been 
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initiated in [5] and [6]. In both cases the injected packets are 
defined by specifying only source and destination, and thus 
are not forced to follow a pre-specified path. The adversary is 
restricted to guarantee that a static multi-commodity problem 
has a solution. Stability results are obtained using a load 
balancing algorithm, for the case that the adversary injection 
rate is one, and the packets have a unique common 
destination. The main difference in both models is that in [6] 
the adversary has to provide a solution to the associated multi-
commodity problem, while in [5] the injection pattern must 
obey a condition that guarantees the existence of the solution.  

D. Road Map 
The rest of this paper is organized as follows. Section II 

presents model definitions. Section III demonstrates instability 
bounds for the LIS protocol. We conclude, in Section IV, with 
a discussion of our results and some open problems. 

II. PRELIMINARIES 
The model definitions are patterned after those in [7], 

adjusted to reflect the fact that the edge slowdowns may vary 
arbitrarily as in [8], but we address the weakest possible 
model of changing slowdowns. We consider that a routing 
network is modelled by a directed graph G = (V,E).  Each 
node u of the set V represents a communication switch, and 
each edge e of the set E represents a link between two 
switches. In each node, there is a buffer (queue) associated 
with each outgoing link. Time proceeds in discrete time steps. 
Buffers store packets that are injected into the network with a 
route, which is a simple directed path in G. A packet is an 
atomic entity that resides at a buffer at the end of any step. It 
must travel along paths in the network from its source to its 
destination,} both of which are nodes in the network. When a 
packet is injected, it is placed in the buffer of the first link on 
its route. When a packet reaches its destination, we say that it 
is absorbed. During each step, a packet may be sent from its 
current node along one of the outgoing edges from that node. 
Edges can have different integer slowdowns, which may or 
may not vary over time. Denote De(t) the slowdown of the 
edge e at time step t. That is, we assume that if a packet p is 
scheduled to traverse the edge e at time t, then packet p 
completes the traversal of e at time t + De(t) and during this 
time interval, no other packet can be scheduled on e. 

Let D > 1 be an integer parameter. We demand that for all e 
and for all t, { }DtDe ,1)( ∈  (i.e. each edge slowdown can get 
only two values, high and low). We also demand for each 
edge e that De(t)  stays at some value for a continuous period 
of time at least equal to f (ρ,D)s time steps, where s is the 
number of packets in the system at the time of setting the link 
capacity to the value and f (ρ,D) is a function of the injection 
rate ρ of the adversary in the network and the high link 
slowdown D. We call this the Adversarial, Quasi-Static 
Slowdown Queueing Theory Model. This model is the weakest 
possible of the models that are implied by [8]. 

Any packets that wish to travel along an edge e at a 
particular time step, but they are not sent, they wait in a queue 

for the edge e. At each step, an adversary generates a set of 
requests. A request is a path specifying the route that will be 
followed by a packet. In this work, it is assumed, as it is 
common in packet routing, that all paths are simple paths with 
no overlapping edges. We say that the adversary generates a 
set of packets when it generates a set of requested paths. Also, 
we say that a packet p requires an edge e at time t if the edge e 
lies on the path from its position to its destination at time t. 
We restrict our study to the case of non-adaptive routing, 
where the path that is traversed by each packet is fixed at the 
time of injection, so that we are able to focus on queueing 
rather than routing aspects of the problem. There are no 
computational restrictions on how the adversary chooses its 
requests at any given time step. 

Fix any arbitrary positive integer 1≥w . For any edge e of the 
network and any sequence of w consecutive time steps, define 
N(w, e) to be the number of paths that are injected by the 
adversary during the time interval of w consecutive time steps 
requiring to traverse the edge e. For any constant ρ, 10 ≤< ρ , a 
(w, ρ)-adversary is an adversary that injects packets subject to 
the following load condition: For every edge e and for every 
sequence τ of w consecutive time steps,  

( ) ∑ ∈
≤

τ
ρτ

t
e tD

eN
)(

1,  (1)  

We say that a (w, ρ)-adversary injects packets at rate ρ with 
window size w. The assumption that ρ is less than 1 ensures 
that it is not necessary a priori that some edge of the network 
is congested (that happens when ρ > 1). 

In order to formalize the behavior of a network under the 
adversarial, quasi-static slowdown queueing theory model, we 
use the notion of system. A triple of the form PAG ,,  where 

G is a network, A is an adversary and P is the used protocol on 
the network queues is called a system. 

A contention-resolution protocol specifies, for each pair of 
an edge e and a time step, which packet among those waiting 
at the tail of the edge e will be moved along the edge e. A 
greedy contention-resolution protocol always specifies some 
packet to move along the edge e if there are packets waiting to 
use the edge e. In this work, we restrict attention to the LIS 
(Longest-in-System) protocol that gives priority to the least 
recently injected packet into the network. 

In the adversarial constructions we study here for proving 
instability, we split time into phases. In each phase, we study 
the evolution of the system configuration by considering 
corresponding time rounds. For each phase, we inductively 
prove that the number of packets of a specific subset of 
queues in the system increases in order to guarantee 
instability. This inductive argument can be applied repeatedly, 
thus showing instability. Furthermore, we assume that there is 
a sufficiently large number of packets s0 in the initial system 
configuration. This will imply instability results for networks 
with an empty initial configuration, as it was established by 
Andrews et al. [4]. For simplicity, and in a way similar to that 
in [4] and in works following it, we omit floors and ceilings 
from our analysis, and we, sometimes, count time steps and 
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packets only roughly. This may only result to loosing small 
additive constants, while it implies a gain in clarity. 

III. INSTABILITY BOUNDS FOR LIS 
In this section, we prove that the LIS protocol can become 

unstable for arbitrarily low injection rates. In our proof, we 
denote by Xi the set of packets that are injected into the system 
in the ith round of a phase. These packet sets are characterized 
as investing flows because only packets from these sets will 
remain in the system at the beginning of the next phase 
contributing in packet accumulation.  

A. A Parameterized Network Family 
We provide here a parameterized family of networks Nl. 

The motivation that led us to such a parameterization in the 
network topology is two-fold: 

• The existence of many pairs of parallel queues in the 
network allows the adversary to inject an investing flow 
at a time round over a path with unit slowdown edges, 
while the previously injected investing flows are delayed 
in another queue due to its high slowdown D.  

• Such a parameterized network topology construction 
enables a parameterized analysis of the system 
configuration evolution into distinguished rounds whose 
number depends on the parameterized network topology. 

B. A Systematic Adversarial Construction for Instability 
Lower Bounds  
The main ideas of the adversarial construction we present 

here are (a) the accurate tuning of the duration of each round 
of every phase j (as a function of the high slowdown D, the 
injection rate ρ and the number of packets in the system at the 
beginning of phase j, sj) to maximize the growth of the packet 
population in the system, (b) the careful setting of the 
slowdowns of some edges to D for specified time intervals in 
order to accumulate packets, and (c) the careful injections of 
packets in order to guarantee that the load condition is 
satisfied. We consider an instance of the parameterized 
network family (network Nl, see Fig. 1). We show: 
Theorem 1. Let ρ'=0.0057. For the network Nl where l > 
1000  is a parameter linear to the number of network queues 
there is an adversary A of rate ρ that can change the link 
slowdowns of Nl between the two integer values 1 and D > 
1000 such that the system LISANl ,,  is unstable for every 

ρ>ρ'.  
Proof: The construction of the adversary A} is broken into 
phases. 

Inductive Hypothesis: At the beginning of phase j (suppose 
j is even), there are sj packets that are queued in the queues f4l-

9', f4l-6' (in total) requiring to traverse the edges e0, f1. 
Induction Step: At the beginning of phase j + 1, there will 

be sj+1 > sj packets that will be queued in the queues f4l-9, f4l-6 
(in total) requiring to traverse the edges e1, f1'. 

We will construct an adversary A such that the induction 
step will hold. Proving that the induction step holds, we 
ensure that the inductive hypothesis will hold at the beginning 

of phase j + 1 for the symmetric edges with an increased value 
of sj, sj+1 > sj. By the symmetry of the network, repeating the 
phase construction an unbounded number of times, we will 
create an unbounded number of packets in the network. 

e0

f2

e1
f1 f3 f5 f4l-7

f4 f6 f4l-6

f1'

f4l-6'

f4l-7'

f6' f4' f2'

f5' f3'

 Fig. 1 The network 
 
From the inductive hypothesis, initially, there are sj packets 

(that constitute the set of packets S) in the queues f4l-9', f4l-6' 
requiring to traverse the edges e0, f1. In order to prove the 
induction step, it is assumed that the set S has a large enough 
number of | S | = sj packets in the initial system configuration. 

During phase j the adversary plays l rounds of injections as 
follows: 
 
• Round 1: It lasts |T1|=sj time steps. 

Adversary's behavior. During this round the edge f1 has 
high slowdown D, while all the other edges have unit 
slowdown. The adversary injects a set X1 of | X1 | = ρ | T1 | 
packets in the queue e0 wanting to traverse the edges e0, f2, 
f3, f6, f7, f10,…, f4l-9, f4l-6, e1, f1'. These injections satisfy the 
load condition because the edges of the assigned path have 
unit slowdown. 

Evolution of the system configuration. The packets of the 
set S delay the packets of the set X1 in the queue e0 because 
they are longer time in the system than the packets of the 
set X1. At the same time, the packets of the set S are 
delayed in f1 due to the high slowdown of the edge f1. At 
the end of this round, the remaining packets of the set S in 
f1 are | S '  | = | S | - | T1 | / D. 

 
• Round 2: It lasts | T2 | = | S ' | time steps. 

Adversary's behavior. During this round the edge f2 has 
high slowdown D, while all the other edges have unit 
slowdown. The adversary injects a set X2 of | X2 | = ρ | T2 | 
packets in the queue f1 requiring to traverse the edges f1, f3, 
f6, f7, f10, …, f4l-9, f4l-6, e1, f1 '. These packet injections 
satisfy the load condition because the assigned path 
consists of edges that have unit slowdown  during this 
round. 

Evolution of the system configuration. The packets of the 
set X2 are delayed by the packets of the set S ' in the queue 
f1 because the packets of the set S ' are longer time in the 
system than the packets of the set X2. At the same time, the 
packets of the set X1 are delayed in the queue f2 due to its 
high slowdown D. Therefore, the remaining packets of the 
set X1 in the queue f2 are | X1 | - | T2 | / D. 

• Round 3: It lasts | T3 | = | X1 | + | X2 | - | T2 | / D time steps. 
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Adversary's behavior. During this round the edge f6 has 
high slowdown D, while all the other edges have unit 
slowdown. The adversary injects a set X3 of | X3 | = ρ | T3 | 
packets in the queue f3 requiring to traverse the edges f3, f5, 
f7, f10, … , f4l-9, f4l-6, e1,  f1'. These packet injections satisfy 
the load condition because the assigned path consists of 
edges that have unit slowdown during this round. 

Evolution of the system configuration. The packets of the 
sets X1, X2 delay the packets of the set X3 in the queue f3 
because they are longer time in the system than the packets 
of the set X3. At the same time, the packets of the sets X1, 
X2 are delayed in  f6 due to the high slowdown of the edge 
f6. Therefore, the remaining packets of the sets X1, X2 in 
the queue f6 are | X1 | + | X2 | - | T2 | / D - | T3 | / D. 

 
• Round l: It lasts ∑ ∑−

=

−

=
−=

1

1

1

2
/|||||| l

i

l

i iil DTXT  steps. 

Adversary's behavior. During this round the edge f4l-6 has 
high slowdown D, while all the other edges have unit 
slowdown. The adversary injects a set Xl of | Xl | = ρ | Tl | 
packets in the queue f4l-9 requiring to traverse the edges    
f4l-9, f4l-7, e1, f1'. These packet injections satisfy the load 
condition because the assigned path consists of edges that 
have unit slowdown during this round. 

Evolution of the system configuration. The packets of the 
sets X1, … , Xl-1 delay the packets of the set Xl in the queue 
f4l-9 because they are longer time in the system than the 
packets of the set Xl. At the same time, the packets of the 
sets X1, …, Xl-1 are delayed in f4l-6 due to the high 
slowdown of the edge f4l-6. Therefore, the remaining 
packets of the sets X1, …, Xl-1 in the queue f4l-6 are 

∑∑ =

−

=
−

l

i i
l

i i DTX
2

1

1
/|||| . 

Thus, the number of packets in the queues f4l-9, f4l-6 
requiring to traverse the edges e1, f1' at the end of this 
round is  
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In order to have instability, we must have sj+1 > sj. From 

(7) it suffices to hold that 
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If we let ρ = 0.0057, D = 1000 and l = 1000, the 
inequality holds. Thus, for {D, l}>1000 the inequality 
holds, too. This argument can be repeated for an infinite 
number of phases ensuring that the number of packets in 
the system at the end of a phase will be bigger than at the 
beginning of the phase.■ 

 
Corollary 1. If the parameters D and l that are related to the 
high link slowdown and the number of network queues 
correspondingly tend to infinity then there is a network Nl  
and an adversary A of rate ρ > 0 such that the 
system LISANl ,, is unstable. 

Proof: From Theorem 1, we can construct an adversary that 
leads the system LISANl ,,  to instability. It suffices (8) in 

order to guarantee instability. If ∞→D , it holds that 

∞→kD
1  for all 1≥k . Then, (8) becomes  

2)1(2
1

−+
> lρ

ρ  (9) 

But, if ∞→l  and x > 0, it holds that ∞→+ −2)1( lx . 
Therefore, when the parameters D and l tend to infinity (10) 
holds for ρ > 0. Note that if we have a sequence of equations 

)(},{ ρlDf  and there exists the 

limit )()(lim },{},{ ρρ ∞∞→ = ff lDlD , then it holds fundamentally 

by the theory of function limits that if ρ(D,l) is the root of 
0)(},{ =ρlDf , then ),(lim },{ lDlD ρ∞→

 is the root of )(ρ∞f . 

Therefore, for ρ > 0 the system is unstable.■ 

IV. CONCLUSION 
In this work, we studied how the dynamic changing of the 

network link slowdowns affects the instability properties of 
the LIS contention-resolution protocol using an extension of 
the adversarial model that was first initiated by Borodin et al. 
in [8], the Adversarial, Quasi-Static Slowdown Queueing 
Theory Model. In particular, we proved that the LIS protocol 
can be unstable at arbitrarily low injection rates due to 
dynamic link slowdowns.  

However, a lot of problems remain open. Our results 
suggest that, for every unstable network, its instability bound 
in the model of quasi-static slowdowns may be lower than for 
the classical adversarial queueing model or other dynamic 
adversarial models. Proving (or disproving) this, remains an 
open problem. Studying the impact of dynamically changing 
link slowdowns on other greedy protocols and networks is 
another interesting problem. Finally, it worths to receive 
attention the study of the stability behavior of networks and 
protocols in environments where the adversary controls the 
movement of the network nodes. 
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