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Abstract—The performance and complexity of QoS routing 
depends on the complex interaction between a large set of 
parameters. This paper investigated the scaling properties of source-
directed link-state routing in large core networks. The simulation 
results show that the routing algorithm, network topology, and link 
cost function each have a significant impact on the probability of 
successfully routing new connections. The experiments confirm and 
extend the findings of other studies, and also lend new insight 
designing efficient quality-of-service routing policies in large 
networks.  

Keywords—QoS, Link-State Routing, Dijkstra, Path Selection, 
Path Computation.   

I.  INTRODUCTION 
HE performance and implementation trade-offs of QoS 
routing depend on the interaction between a large and 

complex set of parameters. For example, the underlying 
network topology not only dictates the number of candidate 
paths between each pair of nodes, but also affects the 
overheads for computing routes and distributing link-state 
information. The effects of inaccurate link state information 
depend on the amount of bandwidth requested by new flows. 
In this paper, the performance issues are investigated through 
a systematic study of the scaling characteristics of QoS routing 
in large backbone networks. Also, a detailed model of QoS 
routing that parameterizes the path selection algorithm, and 
link-cost function, based on the proposed QoS extensions to 
OSPF, as well as the results of previous performance studies is 
constructed. The model permits a realistic evaluation of large 
backbone networks and the routing of the longer-lived traffic 
flows that are likely to employ QoS routing. Finally, new 
routing algorithms have been proposed that reduce 
computation and memory overheads by basing path selection 
on a combination of few QoS parameters, dealt in detail 
below. Finally, the paper concludes with a list of guidelines 
for designing efficient quality-of-service routing policies in 
large backbone networks.  

II.  LINK COST COMPUTATION 
For better QoS, the ability to specify "path metrics" or 

"link-cost metrics" that permit routers to compute QoS paths 
to destinations and forward packets incrementally is needed. 
Link state routing is a lowest cost algorithm. Cost, when said 
simply is a weighted value based on a variety of factors such 
as a) security levels b) traffic or c) state of the link. It is just 
used for weighting and should not be confused with  

 
transmission fees paid. There are various methods to calculate 
link costs. A simple method is to assign a cost of 1 to all links. 
It neither distinguishes between links on a latency basis nor on 
capacity basis or on current load. Second method is to use 
queue length as routing metric. Here the disadvantage is that 
either bandwidth or delay is not taken into consideration. 
Third one assigns weight to each link derived from average 
delay experienced by packets recently sent over that link. Here 
the disadvantage is congested link advertise high cost, traffic 
moves off, leaving it idle. Then it advertises low cost, 
attracting back traffic. (i.e., instability) Another method 
considers utilization. But in this work utilized bandwidth is 
considered for link cost computation. The formula mentioned 
above is used to calculate cost values for each link. Since link 
costs are based on utilized bandwidth, which is QoS 
parameter, better QoS paths will be selected. Further, routing 
takes into consideration the resource availability. Changes in 
resources are quickly reflected. The cost function mentioned 
above involves two link cost parameters. Those are briefly 
discussed below. 

A.  Path Cost Determination  
It is hoped that the integrated services Internet architecture 

would allow providers to charge for IP flows based on their 
QoS requirements.  A QoS-based routing architecture can aid 
in distributing information on expected costs of routing flows 
to various destinations via different domains. Clearly, from a 
provider's point of view, there is a cost incurred in 
guaranteeing QoS to flows.  This cost could be a function of 
several parameters, some related to flow parameters, others 
based on policy, and similarly here it uses utilized bandwidth. 
From a user's point of view, the consequence of requesting a 
particular QoS for a flow is the cost incurred, and hence the 
selection of providers may be based on cost. A routing scheme 
can aid a provider in distributing the costs in routing to various 
destinations, as a   function of several parameters, to other 
providers or to end users.  .  

B.  Link Cost Parameters  
Since in the worst case all users can compete for the same 

link at the same time, a necessary condition is that the link 
cost to exceed the total number of tokens in the system when 
the link utilization approaches unity. Among many possible 
cost function with this property c(t) = a / (1 - u(t)) is one, 
where a is the fixed cost associating with using the link, and 
u(t) is the link utilization at time t. But this is very sensitive 
when utilization reaches unity. Connection Blocking 
Probability is an important QoS measurement. The connection 
blocking probability is defined as the probability that there are 
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not enough resources between inlet and outlet of the switch to 
assure the quality of all existing as well as new connection. An 
optimal algorithm will maximize network throughput, so 
minimizing the network connection blocking probability. 
Fine-grain cost metrics are much less useful, and can even 
degrade performance, in the presence of stale link-state 
information. With a careful selection of the exponent α, the 
path-selection algorithm can reduce the number of cost levels 
C without increasing the blocking probability. Smaller values 
of C reduce the space and time complexity of the route 
computation, allowing the QoS-routing algorithm to scale to 
larger network configurations.  

C.  Number of Cost Levels (C) 
The experiments evaluate a link-cost function with a large 

number of cost levels, limited only by machine precision. 
With such fine-grain cost information, the path selection 
algorithm can effectively differentiate between links to locate 
the “cheapest” shortest-path route. Figures evaluate the 
routing algorithm over a range of cost granularity and link 
utilization. To isolate the effects of the cost function, the 
routing algorithm does not attempt to prune (seemingly) 
infeasible links before invoking the shortest-path computation 
in this experiment. The C cost levels are distributed 
throughout the range of link utilizations by setting umin = 0. 
Compared to the high blocking probability for static routing 
(C = 1), larger values of C tend to decrease the blocking rate. 
Fine-grain cost metrics are less useful, however, when link 
state information is stale. For example, having more than four 
cost levels does not improve performance. Although fine-grain 
cost metrics help the routing algorithm distinguish between 
links, larger values of C also limit the number of links that the 
routing algorithm considers which can cause route flapping. In 
fact, under stale information, small values of C can sometimes 
outperform large values of C, but this crossover only occurs 
once the update period has grown so large that QoS routing 
has a higher blocking probability than static routing. The 
appropriate number of cost levels depends on the update 
period and the connection-bandwidth requirements, as well as 
the overheads for route computation. Larger values of C 
increase the complexity of the Dijkstra shortest-path 
computation without offering significant reductions in the 
connection blocking probability.        

 

Fig. 1 Cost vs. Link Utilization for α = 0 (static routing) 

 

Fig. 2 Cost vs. Link Utilization for α values 0,1,2,3 

D.  Link-Cost Exponent (α)   
To maximize the utility of coarse-grain load information, 

the cost function should assign each cost level to a critical 
range of link utilizations. Under fine-grain link costs (large C), 
the exponent α does not have a significant impact on 
performance; values of α ≥ 1 have nearly identical 
performance. Other experiments (not shown) confirm that 
these results hold across a range of link state update periods, 
from very frequent updates to a period equal to 40 times the 
mean connection inter arrival time. This implies that large 
values of α do not introduce much extra route flapping. This 
also has important implications for path selection algorithms, 
since it suggests that widest shortest-path and cheapest 
shortest-path should have similar performance under stale 
link-state information. However, the choice of exponent α 
plays a more important role in cost-based routing with coarse-
grain link costs. When α is too large, the link-cost function 
concentrates most of the cost information in a very small, 
high-load region. For large α and small C, some of the cost 
intervals are so narrow that the arrival or departure of a single 
connection could change the link cost by one or more levels. 
For example, when α = 8 and C = 10, the link-cost function 
has four cost levels in the 90–100% range. This sensitivity 
exacerbates route flapping and also limits the routing 
algorithm’s ability to differentiate between links with lower 
utilization. The selection of α is actually more sensitive when 
the QoS-routing algorithm has accurate knowledge of link 
state.   

III.  QOS PATH SELECTION 
“Quality of Service” is a set of service requirements to be 

met by the network while transporting a flow. It is usually 
taken to mean that the network gives the user some kind of 
performance-related guarantee. Examples of QoS include 
guarantees on n/w delay and guarantees on throughput. 

A.  Metrics 
The process of selecting a path that can satisfy the QoS 

requirements of a new flow relies on both the knowledge of 
the flow's requirements and characteristics, and information 
about the availability of resources in the network. In addition, 
for purposes of efficiency, it is also important for the 
algorithm to account for the amount of resources the network 
has to allocate to support a new flow.  In general, the network 
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prefers to select the cheapest path among all paths suitable for 
a new flow, and it may even decide not to accept a new flow 
for which a feasible path exists, if the cost of the path is 
deemed too high.  Accounting for these aspects involves 
several metrics on which the path selection process is based.  
They include:  

• Link available bandwidth:  As mentioned earlier, 
we currently assume that most QoS requirements are 
derivable from a rate-related quantity, termed 
"bandwidth."  We further assume that associated with 
each link is a maximal bandwidth value, e.g. the link 
physical bandwidth or some fraction thereof that has 
been set aside for QoS flows.  Since for a link to be 
capable of accepting a new flow with given 
bandwidth requirements, at least that much 
bandwidth must be still available on the link, the 
relevant link metric is, therefore, the (current) amount 
of available (i.e., unallocated) bandwidth.  Changes 
in this metric need to be advertised as part of 
extended LSAs, so that accurate information is 
available to the path selection algorithm.  

• Link propagation delay:  This quantity is meant to 
identify high latency links, e.g., satellite links, which 
may be unsuitable for real-time requests.  This 
quantity also needs to be advertised as part of 
extended LSAs, although timely dissemination of this 
information is not critical as this parameter is 
unlikely to change (significantly) over time.   

• Hop-count:  This quantity is used as a measure of the 
path cost to the network.  A path with a smaller 
number of hops (that can support a requested 
connection) is typically preferable, since it consumes 
fewer network resources.  As a result, the path 
selection   algorithm will attempt to find the 
minimum hop path capable of satisfying the 
requirements of a given request. Contrary to 
bandwidth and propagation delay, hop count is a 
metric that does not affect LSAs, and it is only used 
implicitly as part of the path selection algorithm.  

B.  Metric Selection and Representation 
There are some considerations in defining suitable link and 

node metrics. First, the metrics must represent the basic 
network properties of interest. Such metrics include residual 
bandwidth, delay and jitter.  Since the flow QoS requirements 
have to be mapped onto path metrics, the metrics define the 
types of QoS guarantees the network can support.  
Alternatively, QoS-based routing cannot support QoS 
requirements that cannot be meaningfully mapped onto a 
reasonable combination of path metrics.  Second, path 
computation based on a metric or a combination of metrics 
must not be too complex as to    render them impractical. In 
this regard, it is worthwhile to note that path computation 
based on certain combinations of metrics (e.g., delay and 
jitter) is theoretically hard. Thus, the allowable combinations 
of metrics must be determined while taking into account the 
complexity of computing paths based on these metrics and the 
QoS needs of flows. A common strategy to allow flexible 

combinations of metrics while at the same time reduce the 
path computation complexity is to utilize "sequential 
filtering". Under this approach, a combination of metrics is 
ordered in some fashion, reflecting the    importance of 
different metrics (e.g., cost followed by delay, etc.). Paths 
based on the primary metric are computed first (using a simple 
algorithm, e.g., shortest path) and a subset of them are 
eliminated based on the secondary metric and so forth until a 
single path is found. This is an approximation technique and it 
trades off global optimality for path computation simplicity 
(The filtering technique may be simpler, depending on the set 
of metrics used. For example, with bandwidth and cost as 
metrics, it is possible to first eliminate the set of links that do 
not have the requested bandwidth and then compute the least 
cost path using the remaining links.)  

Now, once suitable link and node metrics are defined, a 
uniform representation of them is required across independent 
domains - employing possibly different routing schemes - in 
order to derive path metrics consistently (path metrics are 
obtained by the composition of link and node metrics). 
Encoding of the maximum, minimum, range, and granularity 
of the metrics are needed. Also, the definitions of comparison 
and accumulation operators are required. In addition, suitable 
triggers must be defined for indicating a significant change 
from a minor change.  The former will cause a routing update 
to be generated. The stability of the QoS routes would depend 
on the ability to control the generation of updates. With 
interdomain routing, it is essential to obtain a fairly stable 
view of the interconnection among the ASs.  

C.  Metric Hierarchy 
A hierarchy can be defined among various classes of 

service based on the degree to which traffic from one class can 
potentially degrade service of traffic from lower classes that 
traverse the same link. In this hierarchy, guaranteed constant 
bit rate traffic is at the top and "best-effort" datagram traffic at 
the bottom.  Classes providing service higher in the hierarchy 
impact classes providing service in lower levels. The same 
situation is not true in the other direction. For example, a 
datagram flow cannot affect a real-time service. Thus, it may 
be necessary to distribute and update different metrics for each 
type of service in the worst case.  But, several advantages 
result by identifying a single default metric.  For example, one 
could derive a single metric combining the availability of 
datagram and real-time service over a common substrate.  

D.  Path Selection 
There are two major aspects to computing paths for QoS 

requests.  The first is the actual path selection algorithm itself, 
i.e., which metrics and criteria it relies on.  The second is 
when the algorithm is actually invoked.  

The topology on which the algorithm is run is a directed 
graph where vertices consist of routers and networks (transit 
vertices) as well as stub networks (non-transit vertices).  When 
computing a path, stub networks are added as a post-
processing step.  The optimization criteria used by the path 
selection are reflected in the costs associated with each 
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interface in the topology and how those costs are accounted 
for in the algorithm itself.  As mentioned before, the cost of a 
path is a function of its available bandwidth.  As a result, each 
interface has associated with it a metric, which corresponds to 
the amount of bandwidth that remains available on this 
interface.  This metric is combined with hop count information 
to provide a cost value, whose goal is to pick a path with the 
minimum possible number of hops among those that can 
support the requested bandwidth.  When several such paths are 
available, the preference is for the path whose available 
bandwidth    (i.e., the smallest value on any of the links in the 
path) is maximal.  The rationale for the above rule is the 
following:  we focus on feasible paths (as accounted by the 
available bandwidth metric) that consume a minimal amount 
of network resources (as accounted by the hop-count metric); 
and the rule for selecting among these paths is meant to 
balance load as well as maximize the likelihood that the 
required bandwidth is indeed available.  

The standard routing algorithms are typically single 
objective optimizations, i.e., they may minimize the hop-
count, or maximize the path bandwidth, but not both.  Double 
objective path optimization is a more complex task, and, in 
general, it is an intractable problem.  Nevertheless, because of 
the specific nature of the two objectives being optimized 
(bandwidth and hop count), the complexity of the above 
algorithm is competitive with even that of standard single-
objective algorithms. Before proceeding with a more detailed 
description of the path selection algorithm itself, we briefly 
review the available options when it comes to deciding when 
to invoke the algorithm.  The two main options are: 1) to 
perform on-demand computations, that is, trigger a 
computation for each new request, and 2) to use some form of 
pre-computation.  The on-demand case involves no additional 
issues in terms of when computations should be triggered, but 
running the path selection algorithm for each new request can 
be computationally expensive.  On the other hand, pre-
computing paths amortizes the computational cost over 
multiple requests, but each computation instance is usually 
more expensive than in the on-demand case (paths are 
computed to all destinations and for all possible bandwidth 
requests rather than for a single destination and a given 
bandwidth request). Furthermore, depending on how often 
paths are recomputed, the accuracy of the   selected paths may 
be lower.  In this case, clearly, an important issue is when such 
pre-computation should take place.  The two main options we 
consider are periodic pre-computations and pre-computations 
after a given (N) number of updates have been received.  The 
former has the benefit of ensuring a strict bound on the 
computational load associated with pre-computations, while 
the latter can provide for a more responsive   solution.  

Path computation by itself is merely a search technique, 
e.g., Shortest Path First (SPF) is a search technique based on 
dynamic programming. The usefulness of the paths computed 
depends to a large extent on the metrics used in evaluating the 
cost of a path with respect to a flow. Each link considered by 
the path computation engine must be evaluated against the 
requirements of the flow, i.e., the cost of providing the 
services required by the flow must be estimated with respect 
to the capabilities of the link. This requires a uniform method 

of combining features such as delay, bandwidth, priority and 
other service features.  Furthermore, the costs must reflect the 
lost opportunity of using each link after routing the flow. 

E.  Path Computation Algorithm 
As explained in the metric selection part, combination of 

two metrics is good and to have reduced computational 
complexity, ‘sequential filtering’ can be used. The various 
combinations of metrics used here are:  

• Bandwidth and delay  
• Hop count and delay  
• Cost and bandwidth  
• Cost and delay  

For example take bandwidth and delay. Here, set of 
possible paths is found first using bandwidth. Then a subset of 
it is eliminated using the second metric, delay. This process of 
elimination proceeds until it ends up with a single path. Also 
here bandwidth is the primary metric and delay forms the 
second metric. Similarly for hop count and delay, possible 
paths are sorted out in ascending order of hop count. Then 
path with minimum hop count is checked for, whether it 
satisfies bandwidth or not. If it satisfies then it is the best path. 
If not the process continues with the next minimum hop count 
path. Third one finds the minimum cost path, and then it 
checks for whether the minimum cost path satisfies the 
bandwidth requirement. Similarly for the last combination, 
minimum cost path is found. If two such paths exist, then path 
with minimum delay is selected out of them. 

Fig. 3 shows how much QoS path selection stands out when 
compared with Dijkstra’s and Floyd’s path selection 
algorithms. It takes less time to reach each destinations 
compared to others, shown in blue color. Floyd’s behaves 
better for destinations with more hops.   

 

 
 

Fig. 3  QoS based Algorithm outperforms others 
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Fig. 4 Traffic Characteristics 
 

Fig. 4 shows the characteristics of traffic generator used. As 
mentioned above, exponential traffic generator is used. Figure 
below (5) shows how link state routing behaves under various 
loads. Next, Fig. 6 compares how dijkstra’s algorithm and 
QoS parameter based algorithm behaves under various loads. 
 

 
  

Fig. 5 Link State Routing under various loads 
 

 
 

Fig. 6 Dijkstra’s and QoS based algorithm under various loads 
 

Here also QoS parameter based algorithm behaves better 
than its counterpart. On proving it, here further effort is laid in 
analyzing in depth, other possible path computations 
mentioned earlier. Following figure (7) shows how various 
QoS parameter based path computations behave under various 
loads. 
 

 
 

Fig. 7 QoS parameter based path computation algorithms under 
various loads 

 

IV.  PERFORMANCE OBJECTIVES 
One common objective during path computation is to 

improve the total network throughput.  In this regard, merely 
routing a flow on any path that accommodates its QoS 
requirement is not a good strategy. In fact, this corresponds to 
uncontrolled alternate routing and may adversely impact 
performance at higher traffic loads.  It is    therefore necessary 
to consider the total resource allocation for a flow along a 
path, in relation to available resources, to determine whether 
or not the flow should be routed on the path.  Such a 
mechanism is referred to in this document as "higher level 
admission control". The goal of this is to ensure that the "cost" 
incurred by the network in routing a flow with a given QoS is 
never more than the revenue gained.  The routing cost in this 
regard may be the lost revenue in potentially blocking other 
flows that contend for the same resources. The formulation of 
the higher-level admission control strategy, with suitable 
administrative hooks and with fairness to all flows desiring 
entry to the network, is an issue.  The fairness problem arises 
because flows with smaller reservations tend to be more 
successfully routed than flows with large reservations, for a 
given engineered capacity.  To guarantee a certain level of 
acceptance rate for "larger" flows, without over-engineering 
the network, requires a fair higher-level admission control 
mechanism.  

V.  FUTURE WORK 
Analysis can be done on various update policies to bring out 

it’s impact. Further work can be done towards designing 
efficient Quality-of-Service routing policies. 
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