
Evaluating Performance of
Quality-of-Service Routing in Large Networks

V. Narasimha Raghavan, M. Venkatesh, T. Peer Meera Labbai, and Praveen Dwarakanath Prabhu

Abstract—The performance and complexity of QoS routing
depends on the complex interaction between a large set of
parameters. This paper investigated the scaling properties of source-
directed link-state routing in large core networks. The simulation
results show that the routing algorithm, network topology, and link
cost function each have a significant impact on the probability of
successfully routing new connections. The experiments confirm and
extend the findings of other studies, and also lend new insight
designing efficient quality-of-service routing policies in large
networks.

Keywords—QoS, Link-State Routing, Dijkstra, Path Selection,
Path Computation.

I. INTRODUCTION
HE performance and implementation trade-offs of QoS
routing depend on the interaction between a large and

complex set of parameters. For example, the underlying
network topology not only dictates the number of candidate
paths between each pair of nodes, but also affects the
overheads for computing routes and distributing link-state
information. The effects of inaccurate link state information
depend on the amount of bandwidth requested by new flows.
In this paper, the performance issues are investigated through
a systematic study of the scaling characteristics of QoS routing
in large backbone networks. Also, a detailed model of QoS
routing that parameterizes the path selection algorithm, and
link-cost function, based on the proposed QoS extensions to
OSPF, as well as the results of previous performance studies is
constructed. The model permits a realistic evaluation of large
backbone networks and the routing of the longer-lived traffic
flows that are likely to employ QoS routing. Finally, new
routing algorithms have been proposed that reduce
computation and memory overheads by basing path selection
on a combination of few QoS parameters, dealt in detail
below. Finally, the paper concludes with a list of guidelines
for designing efficient quality-of-service routing policies in
large backbone networks.

II. LINK COST COMPUTATION
For better QoS, the ability to specify "path metrics" or

"link-cost metrics" that permit routers to compute QoS paths
to destinations and forward packets incrementally is needed.
Link state routing is a lowest cost algorithm. Cost, when said
simply is a weighted value based on a variety of factors such
as a) security levels b) traffic or c) state of the link. It is just
used for weighting and should not be confused with

transmission fees paid. There are various methods to calculate
link costs. A simple method is to assign a cost of 1 to all links.
It neither distinguishes between links on a latency basis nor on
capacity basis or on current load. Second method is to use
queue length as routing metric. Here the disadvantage is that
either bandwidth or delay is not taken into consideration.
Third one assigns weight to each link derived from average
delay experienced by packets recently sent over that link. Here
the disadvantage is congested link advertise high cost, traffic
moves off, leaving it idle. Then it advertises low cost,
attracting back traffic. (i.e., instability) Another method
considers utilization. But in this work utilized bandwidth is
considered for link cost computation. The formula mentioned
above is used to calculate cost values for each link. Since link
costs are based on utilized bandwidth, which is QoS
parameter, better QoS paths will be selected. Further, routing
takes into consideration the resource availability. Changes in
resources are quickly reflected. The cost function mentioned
above involves two link cost parameters. Those are briefly
discussed below.

A. Path Cost Determination
It is hoped that the integrated services Internet architecture

would allow providers to charge for IP flows based on their
QoS requirements. A QoS-based routing architecture can aid
in distributing information on expected costs of routing flows
to various destinations via different domains. Clearly, from a
provider's point of view, there is a cost incurred in
guaranteeing QoS to flows. This cost could be a function of
several parameters, some related to flow parameters, others
based on policy, and similarly here it uses utilized bandwidth.
From a user's point of view, the consequence of requesting a
particular QoS for a flow is the cost incurred, and hence the
selection of providers may be based on cost. A routing scheme
can aid a provider in distributing the costs in routing to various
destinations, as a function of several parameters, to other
providers or to end users. .

B. Link Cost Parameters
Since in the worst case all users can compete for the same

link at the same time, a necessary condition is that the link
cost to exceed the total number of tokens in the system when
the link utilization approaches unity. Among many possible
cost function with this property c(t) = a / (1 - u(t)) is one,
where a is the fixed cost associating with using the link, and
u(t) is the link utilization at time t. But this is very sensitive
when utilization reaches unity. Connection Blocking
Probability is an important QoS measurement. The connection
blocking probability is defined as the probability that there are

T

 World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

196International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

00
7.

pd
f

http://waset.org/publications/7007/Evaluating-Performance-of-Quality-of-Service-Routing-in-Large-Networks-

not enough resources between inlet and outlet of the switch to
assure the quality of all existing as well as new connection. An
optimal algorithm will maximize network throughput, so
minimizing the network connection blocking probability.
Fine-grain cost metrics are much less useful, and can even
degrade performance, in the presence of stale link-state
information. With a careful selection of the exponent α, the
path-selection algorithm can reduce the number of cost levels
C without increasing the blocking probability. Smaller values
of C reduce the space and time complexity of the route
computation, allowing the QoS-routing algorithm to scale to
larger network configurations.

C. Number of Cost Levels (C)
The experiments evaluate a link-cost function with a large

number of cost levels, limited only by machine precision.
With such fine-grain cost information, the path selection
algorithm can effectively differentiate between links to locate
the “cheapest” shortest-path route. Figures evaluate the
routing algorithm over a range of cost granularity and link
utilization. To isolate the effects of the cost function, the
routing algorithm does not attempt to prune (seemingly)
infeasible links before invoking the shortest-path computation
in this experiment. The C cost levels are distributed
throughout the range of link utilizations by setting umin = 0.
Compared to the high blocking probability for static routing
(C = 1), larger values of C tend to decrease the blocking rate.
Fine-grain cost metrics are less useful, however, when link
state information is stale. For example, having more than four
cost levels does not improve performance. Although fine-grain
cost metrics help the routing algorithm distinguish between
links, larger values of C also limit the number of links that the
routing algorithm considers which can cause route flapping. In
fact, under stale information, small values of C can sometimes
outperform large values of C, but this crossover only occurs
once the update period has grown so large that QoS routing
has a higher blocking probability than static routing. The
appropriate number of cost levels depends on the update
period and the connection-bandwidth requirements, as well as
the overheads for route computation. Larger values of C
increase the complexity of the Dijkstra shortest-path
computation without offering significant reductions in the
connection blocking probability.

Fig. 1 Cost vs. Link Utilization for α = 0 (static routing)

Fig. 2 Cost vs. Link Utilization for α values 0,1,2,3

D. Link-Cost Exponent (α)
To maximize the utility of coarse-grain load information,

the cost function should assign each cost level to a critical
range of link utilizations. Under fine-grain link costs (large C),
the exponent α does not have a significant impact on
performance; values of α ≥ 1 have nearly identical
performance. Other experiments (not shown) confirm that
these results hold across a range of link state update periods,
from very frequent updates to a period equal to 40 times the
mean connection inter arrival time. This implies that large
values of α do not introduce much extra route flapping. This
also has important implications for path selection algorithms,
since it suggests that widest shortest-path and cheapest
shortest-path should have similar performance under stale
link-state information. However, the choice of exponent α
plays a more important role in cost-based routing with coarse-
grain link costs. When α is too large, the link-cost function
concentrates most of the cost information in a very small,
high-load region. For large α and small C, some of the cost
intervals are so narrow that the arrival or departure of a single
connection could change the link cost by one or more levels.
For example, when α = 8 and C = 10, the link-cost function
has four cost levels in the 90–100% range. This sensitivity
exacerbates route flapping and also limits the routing
algorithm’s ability to differentiate between links with lower
utilization. The selection of α is actually more sensitive when
the QoS-routing algorithm has accurate knowledge of link
state.

III. QOS PATH SELECTION
“Quality of Service” is a set of service requirements to be

met by the network while transporting a flow. It is usually
taken to mean that the network gives the user some kind of
performance-related guarantee. Examples of QoS include
guarantees on n/w delay and guarantees on throughput.

A. Metrics
The process of selecting a path that can satisfy the QoS

requirements of a new flow relies on both the knowledge of
the flow's requirements and characteristics, and information
about the availability of resources in the network. In addition,
for purposes of efficiency, it is also important for the
algorithm to account for the amount of resources the network
has to allocate to support a new flow. In general, the network

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

197International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

00
7.

pd
f

http://waset.org/publications/7007/Evaluating-Performance-of-Quality-of-Service-Routing-in-Large-Networks-

prefers to select the cheapest path among all paths suitable for
a new flow, and it may even decide not to accept a new flow
for which a feasible path exists, if the cost of the path is
deemed too high. Accounting for these aspects involves
several metrics on which the path selection process is based.
They include:

• Link available bandwidth: As mentioned earlier,
we currently assume that most QoS requirements are
derivable from a rate-related quantity, termed
"bandwidth." We further assume that associated with
each link is a maximal bandwidth value, e.g. the link
physical bandwidth or some fraction thereof that has
been set aside for QoS flows. Since for a link to be
capable of accepting a new flow with given
bandwidth requirements, at least that much
bandwidth must be still available on the link, the
relevant link metric is, therefore, the (current) amount
of available (i.e., unallocated) bandwidth. Changes
in this metric need to be advertised as part of
extended LSAs, so that accurate information is
available to the path selection algorithm.

• Link propagation delay: This quantity is meant to
identify high latency links, e.g., satellite links, which
may be unsuitable for real-time requests. This
quantity also needs to be advertised as part of
extended LSAs, although timely dissemination of this
information is not critical as this parameter is
unlikely to change (significantly) over time.

• Hop-count: This quantity is used as a measure of the
path cost to the network. A path with a smaller
number of hops (that can support a requested
connection) is typically preferable, since it consumes
fewer network resources. As a result, the path
selection algorithm will attempt to find the
minimum hop path capable of satisfying the
requirements of a given request. Contrary to
bandwidth and propagation delay, hop count is a
metric that does not affect LSAs, and it is only used
implicitly as part of the path selection algorithm.

B. Metric Selection and Representation
There are some considerations in defining suitable link and

node metrics. First, the metrics must represent the basic
network properties of interest. Such metrics include residual
bandwidth, delay and jitter. Since the flow QoS requirements
have to be mapped onto path metrics, the metrics define the
types of QoS guarantees the network can support.
Alternatively, QoS-based routing cannot support QoS
requirements that cannot be meaningfully mapped onto a
reasonable combination of path metrics. Second, path
computation based on a metric or a combination of metrics
must not be too complex as to render them impractical. In
this regard, it is worthwhile to note that path computation
based on certain combinations of metrics (e.g., delay and
jitter) is theoretically hard. Thus, the allowable combinations
of metrics must be determined while taking into account the
complexity of computing paths based on these metrics and the
QoS needs of flows. A common strategy to allow flexible

combinations of metrics while at the same time reduce the
path computation complexity is to utilize "sequential
filtering". Under this approach, a combination of metrics is
ordered in some fashion, reflecting the importance of
different metrics (e.g., cost followed by delay, etc.). Paths
based on the primary metric are computed first (using a simple
algorithm, e.g., shortest path) and a subset of them are
eliminated based on the secondary metric and so forth until a
single path is found. This is an approximation technique and it
trades off global optimality for path computation simplicity
(The filtering technique may be simpler, depending on the set
of metrics used. For example, with bandwidth and cost as
metrics, it is possible to first eliminate the set of links that do
not have the requested bandwidth and then compute the least
cost path using the remaining links.)

Now, once suitable link and node metrics are defined, a
uniform representation of them is required across independent
domains - employing possibly different routing schemes - in
order to derive path metrics consistently (path metrics are
obtained by the composition of link and node metrics).
Encoding of the maximum, minimum, range, and granularity
of the metrics are needed. Also, the definitions of comparison
and accumulation operators are required. In addition, suitable
triggers must be defined for indicating a significant change
from a minor change. The former will cause a routing update
to be generated. The stability of the QoS routes would depend
on the ability to control the generation of updates. With
interdomain routing, it is essential to obtain a fairly stable
view of the interconnection among the ASs.

C. Metric Hierarchy
A hierarchy can be defined among various classes of

service based on the degree to which traffic from one class can
potentially degrade service of traffic from lower classes that
traverse the same link. In this hierarchy, guaranteed constant
bit rate traffic is at the top and "best-effort" datagram traffic at
the bottom. Classes providing service higher in the hierarchy
impact classes providing service in lower levels. The same
situation is not true in the other direction. For example, a
datagram flow cannot affect a real-time service. Thus, it may
be necessary to distribute and update different metrics for each
type of service in the worst case. But, several advantages
result by identifying a single default metric. For example, one
could derive a single metric combining the availability of
datagram and real-time service over a common substrate.

D. Path Selection
There are two major aspects to computing paths for QoS

requests. The first is the actual path selection algorithm itself,
i.e., which metrics and criteria it relies on. The second is
when the algorithm is actually invoked.

The topology on which the algorithm is run is a directed
graph where vertices consist of routers and networks (transit
vertices) as well as stub networks (non-transit vertices). When
computing a path, stub networks are added as a post-
processing step. The optimization criteria used by the path
selection are reflected in the costs associated with each

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

198International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

00
7.

pd
f

http://waset.org/publications/7007/Evaluating-Performance-of-Quality-of-Service-Routing-in-Large-Networks-

interface in the topology and how those costs are accounted
for in the algorithm itself. As mentioned before, the cost of a
path is a function of its available bandwidth. As a result, each
interface has associated with it a metric, which corresponds to
the amount of bandwidth that remains available on this
interface. This metric is combined with hop count information
to provide a cost value, whose goal is to pick a path with the
minimum possible number of hops among those that can
support the requested bandwidth. When several such paths are
available, the preference is for the path whose available
bandwidth (i.e., the smallest value on any of the links in the
path) is maximal. The rationale for the above rule is the
following: we focus on feasible paths (as accounted by the
available bandwidth metric) that consume a minimal amount
of network resources (as accounted by the hop-count metric);
and the rule for selecting among these paths is meant to
balance load as well as maximize the likelihood that the
required bandwidth is indeed available.

The standard routing algorithms are typically single
objective optimizations, i.e., they may minimize the hop-
count, or maximize the path bandwidth, but not both. Double
objective path optimization is a more complex task, and, in
general, it is an intractable problem. Nevertheless, because of
the specific nature of the two objectives being optimized
(bandwidth and hop count), the complexity of the above
algorithm is competitive with even that of standard single-
objective algorithms. Before proceeding with a more detailed
description of the path selection algorithm itself, we briefly
review the available options when it comes to deciding when
to invoke the algorithm. The two main options are: 1) to
perform on-demand computations, that is, trigger a
computation for each new request, and 2) to use some form of
pre-computation. The on-demand case involves no additional
issues in terms of when computations should be triggered, but
running the path selection algorithm for each new request can
be computationally expensive. On the other hand, pre-
computing paths amortizes the computational cost over
multiple requests, but each computation instance is usually
more expensive than in the on-demand case (paths are
computed to all destinations and for all possible bandwidth
requests rather than for a single destination and a given
bandwidth request). Furthermore, depending on how often
paths are recomputed, the accuracy of the selected paths may
be lower. In this case, clearly, an important issue is when such
pre-computation should take place. The two main options we
consider are periodic pre-computations and pre-computations
after a given (N) number of updates have been received. The
former has the benefit of ensuring a strict bound on the
computational load associated with pre-computations, while
the latter can provide for a more responsive solution.

Path computation by itself is merely a search technique,
e.g., Shortest Path First (SPF) is a search technique based on
dynamic programming. The usefulness of the paths computed
depends to a large extent on the metrics used in evaluating the
cost of a path with respect to a flow. Each link considered by
the path computation engine must be evaluated against the
requirements of the flow, i.e., the cost of providing the
services required by the flow must be estimated with respect
to the capabilities of the link. This requires a uniform method

of combining features such as delay, bandwidth, priority and
other service features. Furthermore, the costs must reflect the
lost opportunity of using each link after routing the flow.

E. Path Computation Algorithm
As explained in the metric selection part, combination of

two metrics is good and to have reduced computational
complexity, ‘sequential filtering’ can be used. The various
combinations of metrics used here are:

• Bandwidth and delay
• Hop count and delay
• Cost and bandwidth
• Cost and delay

For example take bandwidth and delay. Here, set of
possible paths is found first using bandwidth. Then a subset of
it is eliminated using the second metric, delay. This process of
elimination proceeds until it ends up with a single path. Also
here bandwidth is the primary metric and delay forms the
second metric. Similarly for hop count and delay, possible
paths are sorted out in ascending order of hop count. Then
path with minimum hop count is checked for, whether it
satisfies bandwidth or not. If it satisfies then it is the best path.
If not the process continues with the next minimum hop count
path. Third one finds the minimum cost path, and then it
checks for whether the minimum cost path satisfies the
bandwidth requirement. Similarly for the last combination,
minimum cost path is found. If two such paths exist, then path
with minimum delay is selected out of them.

Fig. 3 shows how much QoS path selection stands out when
compared with Dijkstra’s and Floyd’s path selection
algorithms. It takes less time to reach each destinations
compared to others, shown in blue color. Floyd’s behaves
better for destinations with more hops.

Fig. 3 QoS based Algorithm outperforms others

 World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

199International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

00
7.

pd
f

http://waset.org/publications/7007/Evaluating-Performance-of-Quality-of-Service-Routing-in-Large-Networks-

Fig. 4 Traffic Characteristics

Fig. 4 shows the characteristics of traffic generator used. As
mentioned above, exponential traffic generator is used. Figure
below (5) shows how link state routing behaves under various
loads. Next, Fig. 6 compares how dijkstra’s algorithm and
QoS parameter based algorithm behaves under various loads.

Fig. 5 Link State Routing under various loads

Fig. 6 Dijkstra’s and QoS based algorithm under various loads

Here also QoS parameter based algorithm behaves better
than its counterpart. On proving it, here further effort is laid in
analyzing in depth, other possible path computations
mentioned earlier. Following figure (7) shows how various
QoS parameter based path computations behave under various
loads.

Fig. 7 QoS parameter based path computation algorithms under
various loads

IV. PERFORMANCE OBJECTIVES
One common objective during path computation is to

improve the total network throughput. In this regard, merely
routing a flow on any path that accommodates its QoS
requirement is not a good strategy. In fact, this corresponds to
uncontrolled alternate routing and may adversely impact
performance at higher traffic loads. It is therefore necessary
to consider the total resource allocation for a flow along a
path, in relation to available resources, to determine whether
or not the flow should be routed on the path. Such a
mechanism is referred to in this document as "higher level
admission control". The goal of this is to ensure that the "cost"
incurred by the network in routing a flow with a given QoS is
never more than the revenue gained. The routing cost in this
regard may be the lost revenue in potentially blocking other
flows that contend for the same resources. The formulation of
the higher-level admission control strategy, with suitable
administrative hooks and with fairness to all flows desiring
entry to the network, is an issue. The fairness problem arises
because flows with smaller reservations tend to be more
successfully routed than flows with large reservations, for a
given engineered capacity. To guarantee a certain level of
acceptance rate for "larger" flows, without over-engineering
the network, requires a fair higher-level admission control
mechanism.

V. FUTURE WORK
Analysis can be done on various update policies to bring out

it’s impact. Further work can be done towards designing
efficient Quality-of-Service routing policies.

REFERENCES
[1] Apostolopoulos.G, Williams.D, Kamat.S, Guerin.R, Orda.A, and

Przygienda.T,(1998) “QoS routing mechanisms and OSPF extensions.”
Request for Comments 2676”.

[2] Apostolopoulos.G, Guerin.R, Kamat.S, and Tripathi.S, (1998) “Quality-of-
service based routing: A performance perspective,” in Proceedings of ACM
SIGCOMM, (Vancouver, Canada), pp. 17–28.

[3] Cherkassky.B.V, Goldberg A.V. and Radzik.T (1996), “Shortest-path
algorithms: Theory and Experimental Evaluation”, Mathematical
Programming, vol. 73, pp. 129-174.

[4] Chen.S and Nahrstedt.K, (1998) “An overview of quality of service routing
for next-generation high-speed networks: Problems and solutions,” IEEE
Network Magazine, vol. 12, pp. 64–79.

 World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

200International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

00
7.

pd
f

http://waset.org/publications/7007/Evaluating-Performance-of-Quality-of-Service-Routing-in-Large-Networks-

[5] Cormen.T.H, Leiserson.C.E, and Rivest.R.L, (1990) Introduction to
Algorithms. Cambridge, MA (New York): MIT Press (McGraw-Hill).

[6] Crawley.E, Nair.R, Rajagopalan.B, and Sandick.H, (1998) “A framework for
QoS-based routing in the Internet.” Request for Comments 2386”.

[7] Floyd.S and Jacobson.V, (1994) “Synchronization of periodic routing
messages,” IEEE/ACM Transactions on Networking, vol. 2, pp. 122–136.

[8] Ma.Q and Steenkiste.P, (1997) “Quality-of-service routing for traffic with
performance guarantees,” in Proc. IFIP International Workshop on Quality
of Service, (Columbia University, New York), pp. 115–126.

[9] Ma.Q and Steenkiste.P, (1997) “On path selection for traffic with bandwidth
guarantees”, in Proceedings of IEEE International Conference on Network
Protocols, (Atlanta, GA).

[10] Matta.I and Shankar.A.U, (1996) “Dynamic routing of real-time virtual
circuits,” in Proceedings of IEEE International Conference on Network

Protocols, (Columbus, OH), pp. 132–139.
[11] Pornavalai.C, Chakraborty.G, and Shiratori.N, (1997) “QoS based routing in

integrated services packet networks,” in Proceedings of IEEE International
Conference on Network Protocols, (Atlanta, GA).

[12] Shaikh. A, Rexford.J, and Shin.K.G, (1998) “Efficient precomputation of
 quality-of-service routes,” in Proceedings of Workshop on Network and
Operating System Support for Digital Audio and Video, pp. 15–27.

[13] Whang.Z and Crowcroft.J, (1996) “Quality-of-service routing for supporting
multimedia applications,” IEEE Journal on Selected Areas in
Communications, vol. 14, pp. 1228–1234.

[14] Zhang.Z, Sanchez.C, Salkewicz.B, and Crawley.E.S, (1997) “Quality of
service extensions to OSPF or quality of service path first routing (QOSPF)”.

 World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

201International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

00
7.

pd
f

http://waset.org/publications/7007/Evaluating-Performance-of-Quality-of-Service-Routing-in-Large-Networks-

