Search results for: validation study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13174

Search results for: validation study

12784 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: Landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate, Morocco.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
12783 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test

Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath

Abstract:

As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.

Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
12782 Fuzzy Uncertainty Theory for Stealth Fighter Aircraft Selection in Entropic Fuzzy TOPSIS Decision Analysis Process

Authors: C. Ardil

Abstract:

The purpose of this paper is to present fuzzy TOPSIS in an entropic fuzzy environment. Due to the ambiguous concepts often represented in decision data, exact values are insufficient to model real-life situations. In this paper, the rating of each alternative is defined in fuzzy linguistic terms, which can be expressed with triangular fuzzy numbers. The weight of each criterion is then derived from the decision matrix using the entropy weighting method. Next, a vertex method is proposed to calculate the distance between two triangular fuzzy numbers. According to the TOPSIS concept, a closeness coefficient is defined to determine the ranking order of all alternatives by simultaneously calculating the distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). Finally, an illustrative example of selecting stealth fighter aircraft is shown at the end of this article to highlight the procedure of the proposed method. Correlation analysis and validation analysis using TOPSIS, WSM, and WPM methods were performed to compare the ranking order of the alternatives.

Keywords: stealth fighter aircraft selection, fuzzy uncertainty theory (FUT), fuzzy entropic decision (FED), fuzzy linguistic variables, triangular fuzzy numbers, multiple criteria decision making analysis, MCDMA, TOPSIS, WSM, WPM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
12781 Validation and Application of a New Optimized RP-HPLC-Fluorescent Detection Method for Norfloxacin

Authors: Mahmood Ahmad, Ghulam Murtaza, Sonia Khiljee, Muhammad Asadullah Madni

Abstract:

A new reverse phase-high performance liquid chromatography (RP-HPLC) method with fluorescent detector (FLD) was developed and optimized for Norfloxacin determination in human plasma. Mobile phase specifications, extraction method and excitation and emission wavelengths were varied for optimization. HPLC system contained a reverse phase C18 (5 μm, 4.6 mm×150 mm) column with FLD operated at excitation 330 nm and emission 440 nm. The optimized mobile phase consisted of 14% acetonitrile in buffer solution. The aqueous phase was prepared by mixing 2g of citric acid, 2g sodium acetate and 1 ml of triethylamine in 1 L of Milli-Q water was run at a flow rate of 1.2 mL/min. The standard curve was linear for the range tested (0.156–20 μg/mL) and the coefficient of determination was 0.9978. Aceclofenac sodium was used as internal standard. A detection limit of 0.078 μg/mL was achieved. Run time was set at 10 minutes because retention time of norfloxacin was 0.99 min. which shows the rapidness of this method of analysis. The present assay showed good accuracy, precision and sensitivity for Norfloxacin determination in human plasma with a new internal standard and can be applied pharmacokinetic evaluation of Norfloxacin tablets after oral administration in human.

Keywords: Norfloxacin, Aceclofenac sodium, Methodoptimization, RP-HPLC method, Fluorescent detection, Calibrationcurve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
12780 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of big data technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centres or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through VADER and RoBERTa model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and Term Frequency – Inverse Document Frequency (TFIDF) Vectorization and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide if the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: Counter vectorization, Convolutional Neural Network, Crawler, data technology, Long Short-Term Memory, LSTM, Web Scraping, sentiment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174
12779 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation

Authors: P. D. Pastuszak

Abstract:

The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.

Keywords: Active thermography, finite element analysis, composite, curved structures, defects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
12778 Classifier Based Text Mining for Neural Network

Authors: M. Govindarajan, R. M. Chandrasekaran

Abstract:

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.

Keywords: Back propagation, classification accuracy, textmining, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218
12777 Extending BDI Multiagent Systems with Agent Norms

Authors: Francisco José Plácido da Cunha, Tassio Ferenzini Martins Sirqueira, Marx Leles Viana, Carlos José Pereira de Lucena

Abstract:

Open Multiagent Systems (MASs) are societies in which heterogeneous and independently designed entities (agents) work towards similar, or different ends. Software agents are autonomous and the diversity of interests among different members living in the same society is a fact. In order to deal with this autonomy, these open systems use mechanisms of social control (norms) to ensure a desirable social order. This paper considers the following types of norms: (i) obligation — agents must accomplish a specific outcome; (ii) permission — agents may act in a particular way, and (iii) prohibition — agents must not act in a specific way. All of these characteristics mean to encourage the fulfillment of norms through rewards and to discourage norm violation by pointing out the punishments. Once the software agent decides that its priority is the satisfaction of its own desires and goals, each agent must evaluate the effects associated to the fulfillment of one or more norms before choosing which one should be fulfilled. The same applies when agents decide to violate a norm. This paper also introduces a framework for the development of MASs that provide support mechanisms to the agent’s decision-making, using norm-based reasoning. The applicability and validation of this approach is demonstrated applying a traffic intersection scenario.

Keywords: BDI aAgent, BDI4JADE framework, multiagent system, normative agents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998
12776 A Simple and Empirical Refraction Correction Method for UAV-Based Shallow-Water Photogrammetry

Authors: I GD Yudha Partama, A. Kanno, Y. Akamatsu, R. Inui, M. Goto, M. Sekine

Abstract:

The aerial photogrammetry of shallow water bottoms has the potential to be an efficient high-resolution survey technique for shallow water topography, thanks to the advent of convenient UAV and automatic image processing techniques Structure-from-Motion (SfM) and Multi-View Stereo (MVS)). However, it suffers from the systematic overestimation of the bottom elevation, due to the light refraction at the air-water interface. In this study, we present an empirical method to correct for the effect of refraction after the usual SfM-MVS processing, using common software. The presented method utilizes the empirical relation between the measured true depth and the estimated apparent depth to generate an empirical correction factor. Furthermore, this correction factor was utilized to convert the apparent water depth into a refraction-corrected (real-scale) water depth. To examine its effectiveness, we applied the method to two river sites, and compared the RMS errors in the corrected bottom elevations with those obtained by three existing methods. The result shows that the presented method is more effective than the two existing methods: The method without applying correction factor and the method utilizes the refractive index of water (1.34) as correction factor. In comparison with the remaining existing method, which used the additive terms (offset) after calculating correction factor, the presented method performs well in Site 2 and worse in Site 1. However, we found this linear regression method to be unstable when the training data used for calibration are limited. It also suffers from a large negative bias in the correction factor when the apparent water depth estimated is affected by noise, according to our numerical experiment. Overall, the good accuracy of refraction correction method depends on various factors such as the locations, image acquisition, and GPS measurement conditions. The most effective method can be selected by using statistical selection (e.g. leave-one-out cross validation).

Keywords: Bottom elevation, multi-view stereo, river, structure-from-motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
12775 Comparison of Automated Zone Design Census Output Areas with Existing Output Areas in South Africa

Authors: T. Mokhele, O. Mutanga, F. Ahmed

Abstract:

South Africa is one of the few countries that have stopped using the same Enumeration Areas (EAs) for census enumeration and dissemination. The advantage of this change is that confidentiality issue could be addressed for census dissemination as the design of geographic unit for collection is mainly to ensure that this unit is covered by one enumerator. The objective of this paper was to evaluate the performance of automated zone design output areas against non-zone design developed geographies using the 2001 census data, and 2011 census to some extent, as the main input. The comparison of the Automated Zone-design Tool (AZTool) census output areas with the Small Area Layers (SALs) and SubPlaces based on confidentiality limit, population distribution, and degree of homogeneity, as well as shape compactness, was undertaken. Further, SPSS was employed for validation of the AZTool output results. The results showed that AZTool developed output areas out-perform the existing official SAL and SubPlaces with regard to minimum population threshold, population distribution and to some extent to homogeneity. Therefore, it was concluded that AZTool program provides a new alternative to the creation of optimised census output areas for dissemination of population census data in South Africa.

Keywords: AZTool, enumeration areas, small areal layers, South Africa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
12774 Comparison between Pushover Analysis Techniques and Validation of the Simplified Modal Pushover Analysis

Authors: N. F. Hanna, A. M. Haridy

Abstract:

One of the main drawbacks of the Modal Pushover Analysis (MPA) is the need to perform nonlinear time-history analysis, which complicates the analysis method and time. A simplified version of the MPA has been proposed based on the concept of the inelastic deformation ratio. Furthermore, the effect of the higher modes of vibration is considered by assuming linearly-elastic responses, which enables the use of standard elastic response spectrum analysis. In this thesis, the simplified MPA (SMPA) method is applied to determine the target global drift and the inter-story drifts of steel frame building. The effect of the higher vibration modes is considered within the framework of the SMPA. A comprehensive survey about the inelastic deformation ratio is presented. After that, a suitable expression from literature is selected for the inelastic deformation ratio and then implemented in the SMPA. The estimated seismic demands using the SMPA, such as target drift, base shear, and the inter-story drifts, are compared with the seismic responses determined by applying the standard MPA. The accuracy of the estimated seismic demands is validated by comparing with the results obtained by the nonlinear time-history analysis using real earthquake records.

Keywords: Modal analysis, pushover analysis, seismic performance, target displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
12773 Social Enterprise Concept in Sustaining Agro-Industry Development in Indonesia: Case Study of Yourgood Social Business

Authors: Koko Iwan Agus Kurniawan, Dwi Purnomo, Anas Bunyamin, Arif Rahman Jaya

Abstract:

Fruters model is a concept of technopreneurship-based on empowerment, in which technology research results were designed to create high value-added products and implemented as a locomotive of collaborative empowerment; thereby, the impact was widely spread. This model still needs to be inventoried and validated concerning the influenced variables in the business growth process. Model validation accompanied by mapping was required to be applicable to Small Medium Enterprises (SMEs) agro-industry based on sustainable social business and existing real cases. This research explained the empowerment model of Yourgood, an SME, which emphasized on empowering the farmers/ breeders in farmers in rural areas, Cipageran, Cimahi, to housewives in urban areas, Bandung, West Java, Indonesia. This research reviewed some works of literature discussing the agro-industrial development associated with the empowerment and social business process and gained a unique business model picture with the social business platform as well. Through the mapped business model, there were several advantages such as technology acquisition, independence, capital generation, good investment growth, strengthening of collaboration, and improvement of social impacts that can be replicated on other businesses. This research used analytical-descriptive research method consisting of qualitative analysis with design thinking approach and that of quantitative with the AHP (Analytical Hierarchy Process). Based on the results, the development of the enterprise’s process was highly affected by supplying farmers with the score of 0.248 out of 1, being the most valuable for the existence of the enterprise. It was followed by university (0.178), supplying farmers (0.153), business actors (0.128), government (0.100), distributor (0.092), techno-preneurship laboratory (0.069), banking (0.033), and Non-Government Organization (NGO) (0.031).

Keywords: Agro-Industry, small medium enterprises (SMEs), empowerment, design thinking, AHP, business model canvas, social business.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
12772 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
12771 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions

Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald

Abstract:

Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.

Keywords: Finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
12770 Static Analysis of Security Issues of the Python Packages Ecosystem

Authors: Adam Gorine, Faten Spondon

Abstract:

Python is considered the most popular programming language and offers its own ecosystem for archiving and maintaining open-source software packages. This system is called the Python Package Index (PyPI), the repository of this programming language. Unfortunately, one-third of these software packages have vulnerabilities that allow attackers to execute code automatically when a vulnerable or malicious package is installed. This paper contributes to large-scale empirical studies investigating security issues in the Python ecosystem by evaluating package vulnerabilities. These provide a series of implications that can help the security of software ecosystems by improving the process of discovering, fixing, and managing package vulnerabilities. The vulnerable dataset is generated using the NVD, the National Vulnerability Database, and the Snyk vulnerability dataset. In addition, we evaluated 807 vulnerability reports in the NVD and 3900 publicly known security vulnerabilities in Python Package Manager (Pip) from the Snyk database from 2002 to 2022. As a result, many Python vulnerabilities appear in high severity, followed by medium severity. The most problematic areas have been improper input validation and denial of service attacks. A hybrid scanning tool that combines the three scanners, Bandit, Snyk and Dlint, which provide a clear report of the code vulnerability, is also described.

Keywords: Python vulnerabilities, Bandit, Snyk, Dlint, Python Package Index, ecosystem, static analysis, malicious attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240
12769 Establishing Econometric Modeling Equations for Lumpy Skin Disease Outbreaks in the Nile Delta of Egypt under Current Climate Conditions

Authors: Abdelgawad, Salah El-Tahawy

Abstract:

This paper aimed to establish econometrical equation models for the Nile delta region in Egypt, which will represent a basement for future predictions of Lumpy skin disease outbreaks and its pathway in relation to climate change. Data of lumpy skin disease (LSD) outbreaks were collected from the cattle farms located in the provinces representing the Nile delta region during 1 January, 2015 to December, 2015. The obtained results indicated that there was a significant association between the degree of the LSD outbreaks and the investigated climate factors (temperature, wind speed, and humidity) and the outbreaks peaked during the months of June, July, and August and gradually decreased to the lowest rate in January, February, and December. The model obtained depicted that the increment of these climate factors were associated with evidently increment on LSD outbreaks on the Nile Delta of Egypt. The model validation process was done by the root mean square error (RMSE) and means bias (MB) which compared the number of LSD outbreaks expected with the number of observed outbreaks and estimated the confidence level of the model. The value of RMSE was 1.38% and MB was 99.50% confirming that this established model described the current association between the LSD outbreaks and the change on climate factors and also can be used as a base for predicting the of LSD outbreaks depending on the climatic change on the future.

Keywords: LSD, climate factors, econometric models, Nile Delta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
12768 Management Software for the Elaboration of an Electronic File in the Pharmaceutical Industry Following Mexican Regulations

Authors: M. Peña Aguilar Juan, Ríos Hernández Ezequiel, R. Valencia Luis

Abstract:

For certification, certain goods of public interest, such as medicines and food, it is required the preparation and delivery of a dossier. For its elaboration, legal and administrative knowledge must be taken, as well as organization of the documents of the process, and an order that allows the file verification. Therefore, a virtual platform was developed to support the process of management and elaboration of the dossier, providing accessibility to the information and interfaces that allow the user to know the status of projects. The development of dossier system on the cloud allows the inclusion of the technical requirements for the software management, including the validation and the manufacturing in the field industry. The platform guides and facilitates the dossier elaboration (report, file or history), considering Mexican legislation and regulations, it also has auxiliary tools for its management. This technological alternative provides organization support for documents and accessibility to the information required to specify the successful development of a dossier. The platform divides into the following modules: System control, catalog, dossier and enterprise management. The modules are designed per the structure required in a dossier in those areas. However, the structure allows for flexibility, as its goal is to become a tool that facilitates and does not obstruct processes. The architecture and development of the software allows flexibility for future work expansion to other fields, this would imply feeding the system with new regulations.

Keywords: Electronic dossier, technologies for management, web software, dossier elaboration, pharmaceutical industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
12767 A New Model for Question Answering Systems

Authors: Mohammad Reza Kangavari, Samira Ghandchi, Manak Golpour

Abstract:

Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems. If this module doesn't work properly, it will make problems for other sections. Moreover answer processing module is an emerging topic in Question Answering, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic classification. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. Answer processing module, consists of candidate answer filtering, candidate answer ordering components and also it has a validation section for interacting with user. This module makes it more suitable to find exact answer. In this paper we have described question and answer processing modules with modeling, implementing and evaluating the system. System implemented in two versions. Results show that 'Version No.1' gave correct answer to 70% of questions (30 correct answers to 50 asked questions) and 'version No.2' gave correct answers to 94% of questions (47 correct answers to 50 asked questions).

Keywords: Answer Processing, Classification, QuestionAnswering and Query Reformulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
12766 A Cross-Disciplinary Educational Model in Biomanufacturing to Sustain a Competitive Workforce Ecosystem

Authors: Rosa Buxeda, Lorenzo Saliceti-Piazza, Rodolfo J. Romañach, Luis Ríos, Sandra L. Maldonado-Ramírez

Abstract:

Biopharmaceuticals manufacturing is one of the major economic activities worldwide. Ninety-three percent of the workforce in a biomanufacturing environment concentrates in production-related areas. As a result, strategic collaborations between industry and academia are crucial to ensure the availability of knowledgeable workforce needed in an economic region to become competitive in biomanufacturing. In the past decade, our institution has been a key strategic partner with multinational biotechnology companies in supplying science and engineering graduates in the field of industrial biotechnology. Initiatives addressing all levels of the educational pipeline, from K-12 to college to continued education for company employees have been established along a ten-year span. The Amgen BioTalents Program was designed to provide undergraduate science and engineering students with training in biomanufacturing. The areas targeted by this educational program enhance their academic development, since these topics are not part of their traditional science and engineering curricula. The educational curriculum involved the process of producing a biomolecule from the genetic engineering of cells to the production of an especially targeted polypeptide, protein expression and purification, to quality control, and validation. This paper will report and describe the implementation details and outcomes of the first sessions of the program.

Keywords: Biomanufacturing curriculum, interdisciplinary learning, workforce development, industry-academia partnering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
12765 Earth Station Neural Network Control Methodology and Simulation

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

Keywords: Satellite, neural network, MATLAB, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
12764 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: S. Chahba, R. Sehab, A. Akrad, C. Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: Electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit fault diagnosis, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451
12763 Intensity Analysis to Link Changes in Land-Use Pattern in the Abuakwa North and South Municipalities, Ghana, from 1986 to 2017

Authors: Isaac Kwaku Adu, Jacob Doku Tetteh, John Joseph Puthenkalam, Kwabena Effah Antwi

Abstract:

The continuous increase in population implies increase in food demand. There is, therefore, the need to increase agricultural production and other forest products to ensure food security and economic development. This paper employs the three-level intensity analysis to assess the total change of land-use in two-time intervals (1986-2002 and 2002-2017), the net change and swap as well as gross gains and losses in the two intervals. The results revealed that the overall change in the 31-year period was greater in the second period (2002-2017). Agriculture and forest categories lost in the first period while the other land class gained. However, in the second period agriculture and built-up increased greatly while forest, water bodies and thick bushes/shrubland experienced loss. An assessment revealed a reduction of forest in both periods but was greater in the second period and expansion of agricultural land was recorded as population increases. The pixels gaining built-up targeted agricultural land in both intervals, it also targeted thick bushes/shrubland and waterbody in the second period only. Built-up avoided forest in both intervals as well as waterbody and thick bushes/shrubland. To help in developing the best land-use strategies/policies, a further validation of the social factors is necessary.

Keywords: Agricultural land-use, forest, intensity analysis, land-cover change, sustainable land-use.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
12762 Rapid Determination of Biochemical Oxygen Demand

Authors: Mayur Milan Kale, Indu Mehrotra

Abstract:

Biochemical Oxygen Demand (BOD) is a measure of the oxygen used in bacteria mediated oxidation of organic substances in water and wastewater. Theoretically an infinite time is required for complete biochemical oxidation of organic matter, but the measurement is made over 5-days at 20 0C or 3-days at 27 0C test period with or without dilution. Researchers have worked to further reduce the time of measurement. The objective of this paper is to review advancement made in BOD measurement primarily to minimize the time and negate the measurement difficulties. Survey of literature review in four such techniques namely BOD-BARTTM, Biosensors, Ferricyanidemediated approach, luminous bacterial immobilized chip method. Basic principle, method of determination, data validation and their advantage and disadvantages have been incorporated of each of the methods. In the BOD-BARTTM method the time lag is calculated for the system to change from oxidative to reductive state. BIOSENSORS are the biological sensing element with a transducer which produces a signal proportional to the analyte concentration. Microbial species has its metabolic deficiencies. Co-immobilization of bacteria using sol-gel biosensor increases the range of substrate. In ferricyanidemediated approach, ferricyanide has been used as e-acceptor instead of oxygen. In Luminous bacterial cells-immobilized chip method, bacterial bioluminescence which is caused by lux genes was observed. Physiological responses is measured and correlated to BOD due to reduction or emission. There is a scope to further probe into the rapid estimation of BOD.

Keywords: BOD, Four methods, Rapid estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3641
12761 Computing Entropy for Ortholog Detection

Authors: Hsing-Kuo Pao, John Case

Abstract:

Biological sequences from different species are called or-thologs if they evolved from a sequence of a common ancestor species and they have the same biological function. Approximations of Kolmogorov complexity or entropy of biological sequences are already well known to be useful in extracting similarity information between such sequences -in the interest, for example, of ortholog detection. As is well known, the exact Kolmogorov complexity is not algorithmically computable. In prac-tice one can approximate it by computable compression methods. How-ever, such compression methods do not provide a good approximation to Kolmogorov complexity for short sequences. Herein is suggested a new ap-proach to overcome the problem that compression approximations may notwork well on short sequences. This approach is inspired by new, conditional computations of Kolmogorov entropy. A main contribution of the empir-ical work described shows the new set of entropy-based machine learning attributes provides good separation between positive (ortholog) and nega-tive (non-ortholog) data - better than with good, previously known alter-natives (which do not employ some means to handle short sequences well).Also empirically compared are the new entropy based attribute set and a number of other, more standard similarity attributes sets commonly used in genomic analysis. The various similarity attributes are evaluated by cross validation, through boosted decision tree induction C5.0, and by Receiver Operating Characteristic (ROC) analysis. The results point to the conclu-sion: the new, entropy based attribute set by itself is not the one giving the best prediction; however, it is the best attribute set for use in improving the other, standard attribute sets when conjoined with them.

Keywords: compression, decision tree, entropy, ortholog, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
12760 Identification of Social Responsibility Factors within Mega Construction Projects

Authors: Ali Alotaibi, Francis Edum-Fotwe, Andrew Price /

Abstract:

Mega construction projects create buildings and major infrastructure to respond to work and life requirements while playing a vital role in promoting any nation’s economy. However, the industry is often criticised for not balancing economic, environmental and social dimensions of their projects, with emphasis typically on one aspect to the detriment of the others. This has resulted in many negative impacts including environmental pollution, waste throughout the project lifecycle, low productivity, and avoidable accidents. The identification of comprehensive Social Responsibility (SR) indicators, which combine social, environmental and economic aspects, is urgently needed. This is particularly the case in the context of the Kingdom of Saudi Arabia (KSA), which often has mega public construction projects. The aim of this paper is to develop a set of wide-ranging SR indicators which encompass social, economic and environmental aspects unique to the KSA. A qualitative approach was applied to explore relevant indicators through a review of the existing literature, international standards and reports. A list of appropriate indicators was developed, and its comprehensiveness was corroborated by interviews with experts on mega construction projects working with SR concepts in the KSA. The findings present 39 indicators and their metrics, covering 10 economic, 12 environmental and 17 social aspects of SR mapped against their references. These indicators are a valuable reference for decision-makers and academics in the KSA to understand factors related to SR in mega construction projects. The indicators are related to mega construction projects within the KSA and require validation in a real case scenario or within a different industry to demonstrate their generalisability.

Keywords: Social responsibility, construction projects, economic, social, environmental, indicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
12759 Variability of Hydrological Modeling of the Blue Nile

Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm

Abstract:

The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.

Keywords: Blue Nile Basin, Climate Change, Hydrological Modeling, Watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3073
12758 Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling

Authors: Salah Al-Enezi, Rashed Al-Zufairi, Naseer Ahmad

Abstract:

A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.

Keywords: Softening, high-pressure, polystyrene, CO2 diffusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
12757 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: Automatic calibration framework, approximate Bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
12756 Indian License Plate Detection and Recognition Using Morphological Operation and Template Matching

Authors: W. Devapriya, C. Nelson Kennedy Babu, T. Srihari

Abstract:

Automatic License plate recognition (ALPR) is a technology which recognizes the registration plate or number plate or License plate of a vehicle. In this paper, an Indian vehicle number plate is mined and the characters are predicted in efficient manner. ALPR involves four major technique i) Pre-processing ii) License Plate Location Identification iii) Individual Character Segmentation iv) Character Recognition. The opening phase, named pre-processing helps to remove noises and enhances the quality of the image using the conception of Morphological Operation and Image subtraction. The second phase, the most puzzling stage ascertain the location of license plate using the protocol Canny Edge detection, dilation and erosion. In the third phase, each characters characterized by Connected Component Approach (CCA) and in the ending phase, each segmented characters are conceptualized using cross correlation template matching- a scheme specifically appropriate for fixed format. Major application of ALPR is Tolling collection, Border Control, Parking, Stolen cars, Enforcement, Access Control, Traffic control. The database consists of 500 car images taken under dissimilar lighting condition is used. The efficiency of the system is 97%. Our future focus is Indian Vehicle License Plate Validation (Whether License plate of a vehicle is as per Road transport and highway standard).

Keywords: Automatic License plate recognition, Character recognition, Number plate Recognition, Template matching, morphological operation, canny edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405
12755 2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries

Authors: C. Leroy, G. Oger, D. Le Touzé, B. Alessandrini

Abstract:

A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.

Keywords: Finite volume method, cartesian grid, compressible solver, complex geometries, Paramesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610