

Abstract—Python is considered the most popular programming

language and offers its own ecosystem for archiving and maintaining
open-source software packages. This system is called the Python
Package Index (PyPI), the repository of this programming language.
Unfortunately, one-third of these software packages have
vulnerabilities that allow attackers to execute code automatically when
a vulnerable or malicious package is installed. This paper contributes
to large-scale empirical studies investigating security issues in the
Python ecosystem by evaluating package vulnerabilities. These
provide a series of implications that can help the security of software
ecosystems by improving the process of discovering, fixing, and
managing package vulnerabilities. The vulnerable dataset is generated
using the NVD, the National Vulnerability Database, and the Snyk
vulnerability dataset. In addition, we evaluated 807 vulnerability
reports in the NVD and 3900 publicly known security vulnerabilities
in Python Package Manager (Pip) from the Snyk database from 2002
to 2022. As a result, many Python vulnerabilities appear in high
severity, followed by medium severity. The most problematic areas
have been improper input validation and denial of service attacks. A
hybrid scanning tool that combines the three scanners, Bandit, Snyk
and Dlint, which provide a clear report of the code vulnerability, is also
described.

Keywords—Python vulnerabilities, Bandit, Snyk, Dlint, Python

Package Index, ecosystem, static analysis, malicious attacks.

I. INTRODUCTION

YTHON’S popularity has skyrocketed in the last 16 years.
Its programming methodology is to construct third-party

extensions rather than build functionality by developers
directly.

Python packages are becoming more prevalent and
extensively utilised in applications, and most of the code
generated and software applications used today rely on them.
These packages are accessible through online repositories
known as package managers. For example, NPM is the package
management for Node.js apps, while PyPI is the package
manager for Python projects. PyPI now has 419,968 packages
uploaded, which is growing daily [1]. However, the simplicity
of reusing third-party software comes with security
vulnerabilities that endanger millions of users. These internal
functionalities allow programmers a wide range of dynamic
techniques, while attackers may easily download malicious
code from the Internet and execute it instantly. Furthermore, it
is challenging for existing Python system security to identify all
possible security flaws and privacy threats in third-party
extensions [2]. So, security vulnerabilities are one of the most

Dr Adam Gorine is a Senior Lecturer in Cyber Security at the University of

the West of England, UWE Bristol, UK (corresponding author, e-mail:
adam.gorine@uwe.ac.uk).

critical challenges affecting these products.
This study discusses the security concerns in the Python

ecosystem by examining the triviality of package reuse
concerning publicly known security problems. This research
paper includes 807 vulnerability reports in the NVD from 2002
to 2022, as well as 3900 publicly known security problems in
Python Package Manager (Pip) from the Snyk database [3], [4].
The main conclusion is that the security flaws in Python
package management are significant and could be misused.
This study also presented an automated hybrid scanning tool
that combines three scanners, Bandit, Snyk, and Dlint. It would
function as a static analysis tool and deliver a clear
vulnerabilities report.

II. BACKGROUND

A. Python Package

A package is a folder that contains a collection of several
modules. In a nutshell, many functions are saved in modules,
which are put into packages. A package allows the structuring
of modules in a more organised way, whereas a package is the
same as a directory. Within the directory, sub-packages and
modules can be created in a structured way, as shown in Fig. 1.
Moreover, it will make the sub-packages and modules easy to
access and understand. So, packages help keep other sub-
packages and modules used by the other user when necessary
[1].

The first step in creating a Python package is to write the
__init__.py file. This file must be maintained in a package and
signal to the Python interpreter that a package has been formed.

Fig. 1 Structure of a Python package

Faten Spondon is a Research Student at the University of the West of
England, UWE Bristol, UK (email: faten.spondon@live.uwe.ac.uk).

Adam Gorine, Faten Spondon

Static Analysis of Security Issues of the Python
Packages Ecosystem

P

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

8International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

1.
pd

f

B. National Vulnerability Database

The United States government developed the NVD to assist
people and organisations in developing the automation of
vulnerability assessments and other security mechanisms [3].
This database contains a list of vulnerabilities. The National
Institute of Standards and Technology (NIST), which has
sponsored NVD since 2015, researches Common
Vulnerabilities and Exposures (CVEs). It defines a Common
Vulnerability Scoring System (CVSS), which provides basic
information about each vulnerability and updates the score as
new data become available. Constant evaluation and analysis
assist NVD users in assessing the severity of each vulnerability
and prioritising risk management activities. For example, when
a vulnerability in Python is discovered, MITRE assigns a
unique CVE identification, a brief description, and external
references.

C. Common Vulnerability Scoring System

CVSS is a general framework for rating software security
vulnerabilities' severity. A CVSS score is composed of three
metrics: Base, Temporal, and Environmental; each of which
has an underlying scoring component.
 Base metrics are the fundamental characteristics of a

vulnerability that do not change in time and across user
environments [5].

The base metric produces a score ranging from 0 to 10, which
can be modified by scoring the Temporal and Environmental
metrics.
 Temporal metrics are metrics that change over the lifetime

of a vulnerability. In addition, these metrics measure the
current exploitability of the vulnerability.

 Environmental metrics represent vulnerability
characteristics that are impacted by the user’s environment.
These are essentially modifiers to the Base metric group.

D. Common Weakness Enumeration

CWE is a community-maintained listing of various types of
vulnerabilities in software and hardware published by the
MITRE Corporation. The vulnerabilities are categorised and
given uniquely identifiable IDs [6].

E. CVE of Heartbleed Vulnerability

The Heartbleed vulnerability (CVE-2014-0160) is a flaw in
the implementation of the protocol used by the Secure Socket
Layer (SSL) and Transport Layer Security (TLS) that update
the connection between the Client and Server. Heartbleed
vulnerability enables an attacker to retrieve data from the
victim's computer memory without authorisation [7].

CVE-2014-0160 for Heartbleed Vulnerability is the 160th
vulnerability listed in the NVD in 2014. It has a CVSS Base
Score of 7.5 (High), as shown in Fig. 2.

Fig. 2 Metric score of the Heartbleed vulnerability

III. RELATED WORK

A. Static Analysis

This section concentrates on three significant areas of linked
study, allowing us to define the scope of the work better.

Due to new vulnerabilities emerging daily, the analysis will
change from past years based on these data. As a result, staying
current is vital. Making a tool that can interpret current data can
provide accurate and exact results.

Reference [8] collects data from PyPI.org, Package
download statistics, and Safety DB. They provided a large-scale
examination of the Python ecosystem based on PyPI. They
demonstrated how easily the ecosystem might be attacked,
analysed the impact of attacking a package, and explained how
attackers deceive users into downloading harmful packages.

First, they examine their data with Safety DB, where they can
improve some of their functionalities.
• The open-source Safety DB is only updated once a month.
• The premium versions are expensive.
• The output does not show the severity of the vulnerability,

simply the ID.
Their investigation comprises a limited set of data, which

needs to be more comprehensive to analyse the entire
ecosystem. Therefore, the analysis must obtain data from the
sound source.

Reference [9] used NVD data to analyse third-party
susceptible data in their study. The completeness of some
project repositories is one of their dataset's limitations. There
are old project versions that do not exist in the project's current
repository. As a result, if the NVD contains entries for these

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

9International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

1.
pd

f

versions, the mapping process will fail.
Reference [10] talks about the security issues of the Python

packages in detail. Descriptive package security concerns with
severity and issue categories were acquired using the Bandit
tool. Bandit is a well-known Python utility for detecting
security flaws. However, it occasionally produces false
positives and is unable to identify critical assaults like SQL
injections, which can lead to inaccurate analysis.

Safety DB is also used in [11] to track vulnerabilities. They
examined the common vulnerability exposures (CVE) listed in
NVD and provided statistical results based on severity, CWE
id, and publication year. However, as previously stated, the
Safety DB requires specific enhancements, and a centralised
tracking system for software vulnerabilities is needed.

In [2], researchers empirically assess security vulnerabilities
in the PyPi ecosystem, examining approximately 500 package
vulnerabilities affecting 252 packages. They investigated
vulnerability propagation, discovery, and remedies in particular
and compared the findings to the NPM ecosystem. Libraries.io
and Snyk.io provided the dataset. Essentially, the emphasis is
on the timeliness of vulnerable package discovery rather than
discussing specifics on other sectors such as severity, CVE,
CVE, or attack types in general.

Reference [12] investigates the similarities and differences
between reported software vulnerabilities for interpreted
programming languages. The CVSS and the CWE are used to
compare vulnerabilities across four software repositories not
only in PyPI but also in Maven, npm, and RubyGems based on
a sample of vulnerabilities from each repository. They
discussed the most common flaws across all four repositories:
cross-site scripting and input validation. This research needs to
clearly explain which repositories they used. Therefore, more
study is needed to address this assumed restriction; one
potential road forward would be to compare the results to
different databases, such as the commercial Snyk database.

The mentioned study [12] lacks clarity in its data collection
technique, impacting the reliability and reproducibility of
findings. Our suggested solution would manually parse the
necessary data using Python and JavaScript, providing a clear
comprehension for statistical analysis. We can collect updated
data using this strategy because new vulnerable packages are
published every day, and predictions might alter from year to
year. Selecting the correct database to collect all the
information is also critical. Our study technique collects data
from both the NVD and the Snyk Database.

B. Security Issues

Many assessments of software ecosystems are discussed in
the literature; nonetheless, it is essential to concentrate on
security-related concerns. While these efforts provide helpful
information for interpreting these complicated objects, they fail
to address the issue of attackers spreading malicious software
by leveraging holes in the PyPI ecosystem.

The most critical part of the analysis is discussing security
concerns after obtaining the vulnerability. The sorts of security
issues, how they occur, and the mitigation will assist in
preventing the installation of malicious packages in the future,

or at the very least make you aware of it. Unfortunately, the
preventative strategy needs to be included in these publications
[13], [14], which presented a quick overview of typical problem
kinds.

On both sides of the socio-technical research paradigm,
either known vulnerabilities (based on the CVEs framework) or
abstract weaknesses (based on the equivalent CWE framework)
are employed [15], [16]. However, CVEs are more beneficial
on the technical side of the study, whereas CWEs are more
valuable on the social side [17]. CWEs, for example, have been
used to improve understanding of common programming errors
in Python packages, to offer dynamic information sources for
software developers using static analysis tools, and so on.

Despite the benefits of such methodologies for systematic
empirical research, the approach utilised in this work is based
on the issue categories offered by the static analysis tool.
Although the program can map concerns to CWEs [18], such
mapping produces fewer fine-grained categories and must be
done manually.

Our research outlines the most prevalent forms of attacks that
can occur and the mitigation method. After analysing the data,
we explained the most common forms of attacks and CWE for
the vulnerability.

C. Scanning Tools

Static vulnerability detection techniques are often used in a
programming language that does not run applications. The
source code is the primary analysis object. It can also have
deep-buried vulnerabilities, although it requires user assistance
and has a significant false positive rate.

Reference [19] offered a Python security analysis
framework. The suggested method is built into the Python
interpreter. When users run a Python script, the interpreter
automatically searches for the backup file and verifies the
script's integrity. If the script's integrity is compromised, the
bandit with a taint module detects the vulnerabilities.
Experiment findings suggest that the Python security analysis
framework performs well and that the bandit with taint can
decrease false positives.

The research paper [18] used a qualitative approach to
generate security smells from Python Gists and syntactic
contexts to identify scent occurrences in the environment
automatically. They utilised two static analysers to locate scent
occurrences. Bandit is the first static analyser used for security
smells in Python programs. Another is their tool which uses
Python as a module to collect some occurrences while
traversing the Python Gists abstract syntax tree. Some static
analysis tools specialise in locating specific frameworks. For
example, flask vulnerabilities can be found using static analysis
tools such as PyT.

In our research paper, we created a static analyser by
combining popular scanning technologies. These are Bandit,
Snyk, and Dlint. The shell script will download the scanner,
scan the code, and generate a report automatically. It will lower
the number of false positives, make the script accessible to
everyone, and work for all forms of attacks.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

10International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

1.
pd

f

IV. METHODOLOGY

This section explains the methodology for collecting and
preparing the data to achieve our objectives. It is divided into
two parts.

A. Data Collection from NVD and Snyk.io

JSON is a text-based data storage format. In other words,
data structures are used to represent objects as text. Despite
being inherited from JavaScript, it has become the de facto
standard for object transfer.

Most common programming languages, including Python,
support this format. APIs most typically use JSON to
communicate data objects. An example of a JSON string is as
shown in Fig. 3.

Fig. 3 JSON Format

B. Report Generation from the Combined Scanner

Not all scanners provide an individually accurate report for
every type of vulnerability. Some scanners have their own set
of restrictions. For example, some scanners provide false
positive results, while others cannot detect specific attacks. In
addition, some scanners focus on packages, while others go
through line-by-line execution.

Combining many scanners to obtain every possible result as
a report will aid in detecting and preventing code security
measures while also saving time. First, the shell script

establishes dependencies and configures the combined scanner.
Then, the project folder undergoes scanning, with the results
saved as a text file and an HTML report generated, as depicted
in Fig. 4.

Fig. 4 Report generation from the combined scanner

V. TEST AND RESULTS

A. Results from NVD

The NVD extraction involves Python vulnerability reports
from 2002 to 2022, revealing approximately 807
vulnerabilities, as depicted in Fig. 5. Subsequently, the data
review process commenced, leading to the confident assertion
that the number of new exposures is increasing. However, the
sheer quantity of vulnerabilities is not what we should be
concerned about. If identifying a considerable number of
potential attack pathways or low-impact exploits is possible,
this might not be as frightening as it appears.

Fig. 5 Python vulnerability reports

1. CVSS Score

The data indicate a mix of version 3 and version 2, as shown
in Fig. 6. There is a difference between the versions. But each
version does not separately include the entire score from 2002
to 2022. After 2015, for example, there is no score for version
3, and the upgraded version needs scores for version 2. To

obtain the whole result, the version 3 score was first prioritised.
Those CVEs that do not have a version 3 score have their
version 2 score taken. The vast majority are for version 6.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

11International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

1.
pd

f

Fig. 6 A comparison of CVSS Scores v2 and v3

The occurrences of the base score are identified, and the
resulting data are depicted in the pie chart in Fig. 7, which
demonstrates the overall CVSS ratings and severity. Around
62.7% of the vulnerabilities are classified as high severity
(CVSS >= 7), while 34.3% are classified as medium severity
(CVSS 7 and CVSS >= 4). In a nutshell, 97% of publicly
available exploits target medium or high-severity
vulnerabilities.

Fig. 7 The distribution of the base score occurrences

2. Common Weakness Enumeration (CWE)

After analysing the CWE data from NVD, it is possible to
determine which CWE occurs most frequently.

Fig. 8 CWE data from NVD

NVD implements CWE into CVE vulnerability scoring by
giving a cross-section of the total CWE framework. CVEs are
scored by NVD analysts using CWEs from multiple levels of
the hierarchical structure, as shown in Fig. 8. Because of the
varying levels of specificity offered by different CVEs, this
cross-section of CWEs enables analysts to assess CVEs at both
fine and coarse granularity. For example, Fig. 9 (a) represents
CWE 2022’s top 25 most dangerous software weaknesses [20]
and Fig. 9 (b) illustrates the top five CWE that are frequently
occurring.

B. Results from Snyk.io Database

The vulnerability reports available in the Snyk database have
been taken, which is a platform for security. Python
vulnerabilities are often published publicly after a more
extended period. However, Snyk identifies many vulnerabilities
before they are distributed in public databases.

Around 3900 vulnerability reports from Python's package
manager, pip, are obtained. The Snyk report unveiled 1,391
distinct vulnerable packages spanning from 12 January 2010 to
25 November 2022. Notably, frequently encountered Python

packages include TensorFlow, TensorFlow-CPU, TensorFlow-
GPU, Django, Plone, Ansible, Pillow, Salt, Apache-Airflow,
and RdiffWeb, as illustrated in Fig. 10.

TensorFlow is Google's open-source machine learning
framework, which was created to make machine learning
models simpler and easier to apply [21]. It was initially released
16 years ago. TensorFlow has a very active community, which
means that many essential building pieces for getting started
with data sets, models, and other things are readily available.
TensorFlow has also been translated into other languages;
Python being unquestionably the most popular. Its adaptable
design enables simple computational deployment over various
platforms, including CPUs and GPUs.

TensorFlow is an extensive framework that relies heavily on
third-party libraries, which is why it creates significant
vulnerability reports and ranks first in vulnerability reports.
According to the statistics, TensorFlow-CPU, TensorFlow-
GPU, and TensorFlow are the most vulnerable to Denial-of-
Service attacks (DoS) [22]. These three occur most in
vulnerability reports.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

12International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

1.
pd

f

Fig. 9 (a) The most often occurring Python CWE

Fig. 9 (b) The top five CWEs that are occurring frequently

Fig. 10 Most often encountered Python packages

Django, recognized for its Object-Relational Mapper, has
consistently held a position in the top 10 web development
frameworks for multiple years, as indicated by [25]. It is built
on Python, a candidate for the most popular and easiest learning
coding language. However, Django contains high
vulnerabilities, and the security update releases prevent remote
attackers from exploiting these vulnerabilities like SQL
injection.

Plone contains a bug allowing unauthorised users to access
the restricted Python ecosystem. As a result, users who can edit

PloneFormGen templates and site admins with ZMI access are
vulnerable.

Ansible has a bug in which the secret information in async
files is exposed when the job dir is changed to a world-
accessible directory. As a result, an unauthorised user on that
system will be able to view confidential information in an async
status file.

The Python Imaging Library (PIL expansion) pillow is the
image processing package for the Python programming
language. It includes minimal image processing applications

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

13International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

1.
pd

f

that assist with picture editing, creation, and storage. This
package's known vulnerabilities include DoS attacks, out-of-
bounds read attacks, buffer overflow, etc.

Fig. 11 Most often encountered Python packages counts

Salt is a unique infrastructure management technique based
on a dynamic communication network. Salt also is used for
data-driven automation, remote execution for infrastructure,
app stack configuration management, etc. The affected version
of this package leads to Arbitrary Code Execution. The
ClearFuncs class in the salt-master process does not correctly
verify method calls [23]. This enables a remote user to access
authorisation. It is also useful for retrieving user tokens from
the salt master and running arbitrary instructions on salt
minions.

Apache airflow is a Python-based open-source platform for
developing, analysing, and scheduling batch-oriented
processes. It comes with a default security key that is used to
sign authentication information. This results in a security
misconfiguration. A session cookie is generated when a user
logs in with their authentication information in JSON format.
Using a key, the JSON can identify the user's login history. This
JSON file is signed with a string defined in the airflow.cfg
config file [24].

An interface to rdiff-backup repositories is provided by
rdiffweb. Because of missing set timeouts, affected versions of
this software are vulnerable to Insufficient Session Expiration,
which allows an attacker to steal the user session while utilising
a shared computer. Additionally, an attacker can read sensitive
data even when they are not signed into an account due to poor
cache management.

These are the attacks that occurred within this ecosystem.

C. Results from Hybrid Data Scanning Tool

The report generated by the hybrid data scanning tool gives
an overall solution after scanning a project. It identifies areas of
vulnerability in projects, allowing them to take actions to
minimise exposures and lower the risk of an attack as shown in
Fig. 12.

Fig. 12 Generated report in HTML format

VI. CONCLUSION

This research examined the security flaws in Python
packages. The attacks that occur due to vulnerability cannot be
neglected. From developing a small project to working in a
large corporation, it is critical to understand how to safeguard a
system. Although this research could not mitigate the problem,
and new vulnerabilities are being discovered daily, the revised
analysis provided an overall understanding. From this, we may
infer the severity of these exploits, the most prevalent attacks in
systems, the most impacted packages, and various ways to
leverage them. Also, if we know how the most common threats
occur, we may avoid them by implementing security measures.
Finally, it is essential to ensure security remains in the code
after constructing the code. The automatic scanner report will
protect against any vulnerability attack.

REFERENCES
[1] “PyPI ꞏ the Python Package Index,” PyPI. (Online). Available:

https://pypi.org/. (Accessed: 26-Dec-2022).
[2] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical analysis of security

vulnerabilities in python packages,” in 2021 IEEE International
Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2021.

[3] “NVD - home,” Nist.gov. (Online). Available: https://nvd.nist.gov/.
(Accessed: 26-Dec-2022).

[4] “Snyk vulnerability database,” Find detailed information and remediation
guidance for vulnerabilities. Accessed on 26-Dec-22 at:
https://security.snyk.io/

[5] “Common Vulnerability Scoring System version 3.1, Specification
Document, Revision 1”. Accessed on 12-Jan-2023 at:

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

14International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

1.
pd

f

https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
[6] “Common Weakness Enumeration,” Mitre.org. Accessed on 26-Dec-

2022 at : https://cwe.mitre.org/index.html
[7] Wenliang Du, “Computer & Internet Security: A Hands-on Approach 2nd

Edition”, Independently published, May 2019.
[8] A. Bagmar, J. Wedgwood, D. Levin, and J. Purtilo, “I Know What You

Imported Last Summer: A study of security threats in the python
ecosystem,” arXiv (cs.CR), 2021.

[9] A. Gkortzis, D. Mitropoulos, and D. Spinellis, “VulinOSS: A dataset of
security vulnerabilities in open-source systems,” in Proceedings of the
15th International Conference on Mining Software Repositories - MSR
’18, 2018.

[10] J. Ruohonen, K. Hjerppe, and K. Rindell, “A large-scale security-oriented
static analysis of python packages in PyPI,” in 2021 18th International
Conference on Privacy, Security and Trust (PST), 2021.

[11] J. Ruohonen, “An empirical analysis of vulnerabilities in python packages
for web applications,” in 2018 9th International Workshop on Empirical
Software Engineering in Practice (IWESEP), 2018.

[12] J. Ruohonen, “The similarities of software vulnerabilities for interpreted
programming languages,” in 2021 IEEE International Conference on
Progress in Informatics and Computing (PIC), 2021.

[13] G. Antal, M. Keleti, and P. Hegedŭs, “Exploring the security awareness
of the python and JavaScript open source communities,” in Proceedings
of the 17th International Conference on Mining Software Repositories,
2020.

[14] S. Turner, "Security vulnerabilities of the top ten programming languages:
C, Java, C++, Objective-C, C#, PHP, Visual Basic, Python, Perl, and
Ruby," Journal of Technology Research.

[15] J. Garbajosa, X. Wang, and A. Aguiar, Eds., Agile Processes in Software
Engineering and Extreme Programming: 19Th International Conference,
XP 2018, Porto, Portugal, May 21-25, 2018, Proceedings, 1st ed. Cham,
Switzerland: Springer International Publishing, 2018.

[16] J. Lopez and Y. Wu, Eds., Information security practice and experience:
11Th international conference, ISPEC 2015, Beijing, China, May 5-8,
2015, proceedings, 2015th ed. Basel, Switzerland: Springer International
Publishing, 2015.

[17] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford, “How
developers diagnose potential security vulnerabilities with a static
analysis tool,” IEEE Trans. Soft. Eng., vol. 45, no. 9, pp. 877–897, 2019.

[18] M. R. Rahman, A. Rahman, and L. Williams, “Share, but be aware:
Security Smells in Python Gists,” in 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2019.

[19] S. Peng, P. Liu, and J. Han, “A python security analysis framework in
integrity verification and vulnerability detection,” Wuhan Univ. J. Nat.
Sci., vol. 24, no. 2, pp. 141–148, 2019.

[20] “CWE-2022 CWE top 25 most dangerous software weaknesses,”
Mitre.org. (Online). Accessed on 26-Dec-2022 at:
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html.

[21] G. Blok Dyk, TensorFlow: A Complete Guide. 5starcooks, 2018.
[22] “Denial of Service guidance, National Cyber Security Centre. Accessed

on 26-Dec-2022 at: https://www.ncsc.gov.uk/collection/denial-service-
dos-guidance-collection.

[23] “Red Hat Bugzilla-Bug 1832472 – (CVE-2020-11651) CVE-2020-11651
salt: salt-master process ClearFuncs class does not properly validate
method calls,” Redhat.com. Accessed on 26-Dec-2023 at:
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2020-11651

[24] “Python API reference – airflow documentation,” Apache.org. Accessed
on 19-Dec-2023 at: https://airflow.apache.org/docs/apache-
airflow/stable/python-api- ref.html.

[25] Django. (2019). The web framework for perfectionists with deadlines |
Django. djangoproject.com.2019 (Online). Available at
https://www.djangoproject.com/.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:1, 2024

15International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

1.
pd

f

