Search results for: training.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 982

Search results for: training.

592 Investigating the Performance of Minimax Search and Aggregate Mahalanobis Distance Function in Evolving an Ayo/Awale Player

Authors: Randle O. A., Olugbara, O. O., Lall M.

Abstract:

In this paper we describe a hybrid technique of Minimax search and aggregate Mahalanobis distance function synthesis to evolve Awale game player. The hybrid technique helps to suggest a move in a short amount of time without looking into endgame database. However, the effectiveness of the technique is heavily dependent on the training dataset of the Awale strategies utilized. The evolved player was tested against Awale shareware program and the result is appealing.

Keywords: Minimax Search, Mahalanobis Distance, Strategic Game, Awale

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
591 Assessment Methods for Surgical Skill

Authors: Siti Nor Zawani Ahmmad, Eileen Su Lee Ming, Yeong Che Fai, Fauzan Khairi bin Che Harun

Abstract:

The increasingly sophisticated technologies have now been able to provide assistance for surgeons to improve surgical performance through various training programs. Equally important to learning skills is the assessment method as it determines the learning and technical proficiency of a trainee. A consistent and rigorous assessment system will ensure that trainees acquire the specific level of competency prior to certification. This paper reviews the methods currently in use for assessment of surgical skill and some modern techniques using computer-based measurements and virtual reality systems for more quantitative measurements

Keywords: assessment, surgical skill, checklist, global rating, virtual reality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430
590 Efficacy of Selected Mobility Exercises and Participation in Special Games on Psychomotor Abilities, Functional Abilities and Game Performance among Intellectually Disabled Children of Under 14 Age

Authors: J. Samuel Jesudoss

Abstract:

The purpose of the study was to find out the efficacy of selected mobility exercises and participation in special games on psychomotor abilities, functional abilities and skill performance among intellectually disabled children of age group under 14. Thirty male students who were studying in Balar Kalvi Nilayam and YMCA College Special School, Chennai, acted as subjects for the study. They were only mild and moderate in intellectual disability. These students did not undergo any special training or coaching programme apart from their regular routine physical activity classes as a part of the curriculum in the school. They were attached at random, based on age in which 30 belonged to under 14 age group, which was divided into three equal group of ten for each experimental treatment. 10 students (Treatment group I) underwent calisthenics and special games participation, 10 students (Treatment group II) underwent aquatics and special games participation, 10 students (Treatment group III) underwent yoga and special games participation. The subjects were tested on selected criterion variables prior (pre test) and after twelve weeks of training (post test). The pre and post test data collected from three groups on functional abilities(self care, learning, capacity for independent living), psychomotor variables(static balance, eye hand coordination, simple reaction time test) and skill performance (bocce skill, badminton skill, table tennis skill) were statistically examined for significant difference, by applying the analysis ANACOVA. Whenever an 'F' ratio for adjusted test was found to be significant for adjusted post test means, Scheffe-s test was followed as a post-hoc test to determine which of the paired mean differences was significant. The result of the study showed that among under 14 age groups there was a significant improvement on selected criterion variables such as, Balance, Coordination, self-care and learning and also in Bocce, Badminton & Table Tennis skill performance, due to mobility exercises and participation in special games. However there were no significant differences among the groups.

Keywords: Functional ability, intellectually disabled, Mobility exercises, Psychomotor ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
589 The Usefulness of Logical Structure in Flexible Document Categorization

Authors: Jebari Chaker, Ounalli Habib

Abstract:

This paper presents a new approach for automatic document categorization. Exploiting the logical structure of the document, our approach assigns a HTML document to one or more categories (thesis, paper, call for papers, email, ...). Using a set of training documents, our approach generates a set of rules used to categorize new documents. The approach flexibility is carried out with rule weight association representing your importance in the discrimination between possible categories. This weight is dynamically modified at each new document categorization. The experimentation of the proposed approach provides satisfactory results.

Keywords: categorization rule, document categorization, flexible categorization, logical structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
588 The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation

Authors: Radouane Iqdour, Abdelouhab Zeroual

Abstract:

The Multi-Layered Perceptron (MLP) Neural networks have been very successful in a number of signal processing applications. In this work we have studied the possibilities and the met difficulties in the application of the MLP neural networks for the prediction of daily solar radiation data. We have used the Polack-Ribière algorithm for training the neural networks. A comparison, in term of the statistical indicators, with a linear model most used in literature, is also performed, and the obtained results show that the neural networks are more efficient and gave the best results.

Keywords: Daily solar radiation, Prediction, MLP neural networks, linear model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
587 Learning and Evaluating Possibilistic Decision Trees using Information Affinity

Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi

Abstract:

This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.

Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
586 Improving Classification in Bayesian Networks using Structural Learning

Authors: Hong Choon Ong

Abstract:

Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.

Keywords: Bayesian Network, Classification, Naïve Bayes, Structural Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599
585 Decomposition Method for Neural Multiclass Classification Problem

Authors: H. El Ayech, A. Trabelsi

Abstract:

In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.

Keywords: Artificial neural network, letter-recognition, Multi class Classification, Multi Layer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
584 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling

Authors: Prof. Chokri SLIM

Abstract:

A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.

Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16687
583 Genetic Algorithm with Fuzzy Genotype Values and Its Application to Neuroevolution

Authors: Hidehiko Okada

Abstract:

The author proposes an extension of genetic algorithm (GA) for solving fuzzy-valued optimization problems. In the proposed GA, values in the genotypes are not real numbers but fuzzy numbers. Evolutionary processes in GA are extended so that GA can handle genotype instances with fuzzy numbers. The proposed method is applied to evolving neural networks with fuzzy weights and biases. Experimental results showed that fuzzy neural networks evolved by the fuzzy GA could model hidden target fuzzy functions well despite the fact that no training data was explicitly provided.

Keywords: Evolutionary algorithm, genetic algorithm, fuzzy number, neural network, neuroevolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
582 Management of Multimedia Contents for Distributed e-Learning System

Authors: Kazunari Meguro, Daisuke Yamamoto, Shinichi Motomura, Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara

Abstract:

We have developed a distributed asynchronous Web based training system. In order to improve the scalability and robustness of this system, all contents and functions are realized on mobile agents. These agents are distributed to computers, and they can use a Peer to Peer network that modified Content-Addressable Network. In the proposed system, only text data can be included in a exercise. To make our proposed system more useful, the mechanism that it not only adapts to multimedia data but also it doesn-t influence the user-s learning even if the size of exercise becomes large is necessary.

Keywords: e-Learning, multimedia, Mobile Agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
581 Educational Path for Pedagogical Skills: A Football School Experience

Authors: A. Giani

Abstract:

The current pedagogical culture recognizes an educational scope within the sports practices. It is widely accepted, in the pedagogical culture, that thanks to the acquisition and development of motor skills, it is also possible to exercise abilities that concern the way of facing and managing the difficulties of everyday life. Sport is a peculiar educational environment: the children have the opportunity to discover the possibilities of their body, to correlate with their peers, and to learn how to manage the rules and the relationship with authorities, such as coaches. Educational aspects of the sport concern both non-formal and formal educational environments. Coaches play a critical role in an agonistic sphere: exactly like the competencies developed by the children, coaches have to work on their skills to properly set up the educational scene. Facing these new educational tasks - which are not new per se, but new because they are brought back to awareness - a few questions arise: does the coach have adequate preparation? Is the training of the coach in this specific area appropriate? This contribution aims to explore the issue in depth by focusing on the reality of the Football School. Starting from a possible sense of pedagogical inadequacy detected during a series of meetings with several football clubs in Piedmont (Italy), there have been highlighted some important educational needs within the professional training of sports coaches. It is indeed necessary for the coach to know the processes underlying the educational relationship in order to better understand the centrality of the assessment during the educational intervention and to be able to manage the asymmetry in the coach-athlete relationship. In order to provide a response to these pedagogical needs, a formative plan has been designed to allow both an in-depth study of educational issues and a correct self-evaluation of certain pedagogical skills’ control levels, led by the coach. This plan has been based on particular practices, the Educational Practices of Pre-test (EPP), a specific version of community practices designed for the extracurricular activities. The above-mentioned practices realized through the use of texts meant as pre-tests, promoted a reflection within the group of coaches: they set up real and plausible sports experiences - in particular football, triggering a reflection about the relationship’s object, spaces, and methods. The characteristic aspect of pre-tests is that it is impossible to anticipate the reflection as it is necessarily connected to the personal experience and sensitivity, requiring a strong interest and involvement by participants: situations must be considered by the coaches as possible settings in which they could be found on the field.

Keywords: Relational needs, responsibility, self-evaluation, values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
580 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: Metagenomics, phenotype prediction, deep learning, embeddings, multiple instance learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
579 Stability of Electrical Drives Supplied by a Three Level Inverter

Authors: M. S. Kelaiaia, H. Labar, S. Kelaiaia, T. Mesbah

Abstract:

The development of the power electronics has allowed increasing the precision and reliability of the electrical devices, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) applied to the three level inverters, which is the object of this study. The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus, the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment). The optimal behavior of any electric device can be achieved by the minimization of the stored electrical and mechanical energy.

Keywords: Multi level inverter, PWM, Harmonics, oscillation, control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
578 Accent Identification by Clustering and Scoring Formants

Authors: Dejan Stantic, Jun Jo

Abstract:

There have been significant improvements in automatic voice recognition technology. However, existing systems still face difficulties, particularly when used by non-native speakers with accents. In this paper we address a problem of identifying the English accented speech of speakers from different backgrounds. Once an accent is identified the speech recognition software can utilise training set from appropriate accent and therefore improve the efficiency and accuracy of the speech recognition system. We introduced the Q factor, which is defined by the sum of relationships between frequencies of the formants. Four different accents were considered and experimented for this research. A scoring method was introduced in order to effectively analyse accents. The proposed concept indicates that the accent could be identified by analysing their formants.

Keywords: Accent Identification, Formants, Q Factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
577 Enhancing the Quality of Learning by Using an Innovative Approach for Teaching Energy in Secondary Schools

Authors: Adriana Alexandru, Ovidiu Bica, Eleonora Tudora, Cristina Simona Alecu, Cristina-Adriana Alexandru, Ioan Covalcic

Abstract:

This paper presents the results of the authors in designing, experimenting, assessing and transferring an innovative approach to energy education in secondary schools, aimed to enhance the quality of learning in terms of didactic curricula and pedagogic methods. The training is online delivered to youngsters via e-Books and portals specially designed for this purpose or by learning by doing via interactive games. An online educational methodology is available teachers.

Keywords: Education, eLearning, Energy Efficiency, InternetMethodology, Renewable Energy Sources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
576 Regional Medical Imaging System

Authors: Michal Javornik, Otto Dostal, Karel Slavicek

Abstract:

The purpose of this article is to introduce an advanced system for the support of processing of medical image information, and the terminology related to this system, which can be an important element to a faster transition to a fully digitalized hospital. The core of the system is a set of DICOM compliant applications running over a dedicated computer network. The whole integrated system creates a collaborative platform supporting daily routines in the radiology community, developing communication channels, supporting the exchange of information and special consultations among various medical institutions as well as supporting medical training for practicing radiologists and medical students. It gives the users outside of hospitals the tools to work in almost the same conditions as in the radiology departments.

Keywords: DICOM, Integration, Medical Education, MedicalImaging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
575 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks

Authors: Yuichi Masukake, Yoshihisa Ishida

Abstract:

In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.

Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
574 Real-Time Identification of Media in a Laboratory-Scaled Penetrating Process

Authors: Sheng-Hong Pong, Herng-Yu Huang, Yi-Ju Lee, Shih-Hsuan Chiu

Abstract:

In this paper, a neural network technique is applied to real-time classifying media while a projectile is penetrating through them. A laboratory-scaled penetrating setup was built for the experiment. Features used as the network inputs were extracted from the acceleration of penetrator. 6000 set of features from a single penetration with known media and status were used to train the neural network. The trained system was tested on 30 different penetration experiments. The system produced an accuracy of 100% on the training data set. And, their precision could be 99% for the test data from 30 tests.

Keywords: back-propagation, identification, neural network, penetration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
573 Robust Cerebellar Model Articulation Controller Design for Flight Control Systems

Authors: Y. J. Huang, T. C. Kuo, B. W. Hong, B. C. Wu

Abstract:

This paper presents a robust proportionalderivative (PD) based cerebellar model articulation controller (CMAC) for vertical take-off and landing flight control systems. Successful on-line training and recalling process of CMAC accompanying the PD controller is developed. The advantage of the proposed method is mainly the robust tracking performance against aerodynamic parametric variation and external wind gust. The effectiveness of the proposed algorithm is validated through the application of a vertical takeoff and landing aircraft control system.

Keywords: vertical takeoff and landing, cerebellar modelarticulation controller, proportional-derivative control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
572 Influence of Strength Abilities on Quality of the Handstand

Authors: P. Hedbávný, G. Bago, M. Kalichová

Abstract:

The contribution deals with influence of strength abilities on quality of performance of static balance movement structure – handstand. To test the strength abilities we selected following tests: number of push-ups per minute and persistence in trunk backward bend in sitting position. We tested the dependent variable by three tests – persistence in handstand position on a stabilometric platform, persistence in handstand position and evaluation of quality of handstand performance. Pearson’s correlation coefficient was used to formulate the relationship between variables. The results showed a statistically significant dependence using which we deduced conclusions for training practice.

Keywords: Strength abilities, handstand, balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752
571 Prediction of Natural Gas Viscosity using Artificial Neural Network Approach

Authors: E. Nemati Lay, M. Peymani, E. Sanjari

Abstract:

Prediction of viscosity of natural gas is an important parameter in the energy industries such as natural gas storage and transportation. In this study viscosity of different compositions of natural gas is modeled by using an artificial neural network (ANN) based on back-propagation method. A reliable database including more than 3841 experimental data of viscosity for testing and training of ANN is used. The designed neural network can predict the natural gas viscosity using pseudo-reduced pressure and pseudo-reduced temperature with AARD% of 0.221. The accuracy of designed ANN has been compared to other published empirical models. The comparison indicates that the proposed method can provide accurate results.

Keywords: Artificial neural network, Empirical correlation, Natural gas, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3245
570 Part of Speech Tagging Using Statistical Approach for Nepali Text

Authors: Archit Yajnik

Abstract:

Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.

Keywords: Hidden Markov model, Viterbi algorithm, POS tagging, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
569 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.

Keywords: Data science, fraud detection, machine learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
568 Pruning Method of Belief Decision Trees

Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli

Abstract:

The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.

Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
567 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Seawater

Authors: N. Hammouda, K. Belmokre

Abstract:

Paints are the most widely used methods of protection against atmospheric corrosion of metals. The aim of this work was to determine the protective performance of epoxy coating against sea water before and after damage. Investigations are conducted using stationary and non-stationary electrochemical tools such as electrochemical impedance spectroscopy has allowed us to characterize the protective qualities of these films. The application of the EIS on our damaged in-situ painting shows the existence of several capacitive loops which is an indicator of the failure of our tested paint. Microscopic analysis (micrograph) helped bring essential elements in understanding the degradation of our paint condition and immersion training corrosion products.

Keywords: Epoxy Paints, Electrochemical Impedance Spectroscopy, Corrosion Mechanisms, sea water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
566 Distributed e-Learning System with Client-Server and P2P Hybrid Architecture

Authors: Kazunari Meguro, Shinichi Motomura, Takao Kawamura, Kazunori Sugahara

Abstract:

We have developed a distributed asynchronous Web based training system. In order to improve the scalability and robustness of this system, all contents and a function are realized on mobile agents. These agents are distributed to computers, and they can use a Peer to Peer network that modified Content-Addressable Network. In this system, all computers offer the function and exercise by themselves. However, the system that all computers do the same behavior is not realistic. In this paper, as a solution of this issue, we present an e-Learning system that is composed of computers of different participation types. Enabling the computer of different participation types will improve the convenience of the system.

Keywords: Distributed Multimedia Systems, e-Learning, P2P, Mobile Agen

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
565 E-learning: An Effective Approach for Enhancing Social and Behavior Change Communication Capacity in Bangladesh

Authors: Mohammad K. Abedin, Mohammad Shahjahan, Zeenat Sultana, Tawfique Jahan, Jesmin Akter

Abstract:

To strengthen social and behavior change communication (SBCC) capacity of Ministry of Health and Family Welfare (MoHFW) of the Government of Bangladesh, BCCP/BKMI developed two eLearning courses providing opportunities for professional development of SBCC Program Managers who have no access to training or refreshers training. The two eLearning courses – Message and Material Development (MMD) and Monitoring and Evaluation (MandE) of SBCC programs – went online in September 2015, where all users could register their participation so results could be monitored. Methodology: To assess the uses of these courses a randomly selected sample was collected to run a pre and post-test analyses and a phone survey were conducted. Systematic random sampling was used to select a sample of 75 MandE and 25 MMD course participants from a sampling frame of 179 and 51 respectively. Results: As of September 2016, more than 179 learners have completed the MandE course, and 49 learners have completed the MMD course. The users of these courses are program managers, university faculty members, and students. Encouraging results were revealed from the analysis of pre and post-test scores and a phone survey three months after course completion. Test scores suggested a substantial increase in knowledge. The pre-test scores findings suggested that about 19% learners scored high on the MandE. The post-test scores finding indicated a high score (92%) of the sample across 4 modules of MandE. For MMD course in pre-test scoring, 30% of the learners scored high, and 100% scored high at the post-test. It was found that all the learners in the phone survey have discussed the courses. Most of the sharing occurred with colleagues and friends, usually through face to face (70%) interaction. The learners reported that they did recommend the two courses to concerned people. About 67% MandE and 76% MMD learners stated that the concepts that they had to learn during the course were put into practice in their work settings. The respondents for both MandE and MMD courses have provided a valuable set of suggestions that would further strengthen the courses. Conclusions: The study showed that the initiative offered ample opportunities to build capacity in various ways in which the eLearning courses were used. It also highlighted the importance of scaling up these efforts to further strengthen the outcomes.

Keywords: E-learning course, message and material development, monitoring and evaluation, social and behavior change communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867
564 Optimization of Gentamicin Production: Comparison of ANN and RSM Techniques

Authors: M.Rajasimman, S.Subathra

Abstract:

In this work, statistical experimental design was applied for the optimization of medium constituents for Gentamicin production by Micromsonospora echinospora subs pallida (MTCC 708) in a batch reactor and the results are compared with the ANN predicted values. By central composite design, 50 experiments are carried out for five test variables: Starch, Soya bean meal, K2HPO4, CaCO3 and FeSO4. The optimum condition was found to be: Starch (8.9,g/L), Soya bean meal (3.3 g/L), K2HPO4 (0.8 g/L), CaCO3 (4 g/L) and FeSO4 (0.03 g/L). At these optimized conditions, the yield of gentamicin was found to be 1020 mg/L. The R2 values were found to be 1 for ANN training set, 0.9953 for ANN test set, and 0.9286 for RSM.

Keywords: Gentamicin, optimization, Micromonospora echinospora, ANN, RSM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
563 Adaptive Equalization Using Controlled Equal Gain Combining for Uplink/Downlink MC-CDMA Systems

Authors: Miloud Frikel , Boubekeur Targui, Francois Hamon, Mohammed M'SAAD

Abstract:

In this paper we propose an enhanced equalization technique for multi-carrier code division multiple access (MC-CDMA). This method is based on the control of Equal Gain Combining (EGC) technique. Indeed, we introduce a new level changer to the EGC equalizer in order to adapt the equalization parameters to the channel coefficients. The optimal equalization level is, first, determined by channel training. The new approach reduces drastically the mutliuser interferences caused by interferes, without increasing the noise power. To compare the performances of the proposed equalizer, the theoretical analysis and numerical performances are given.

Keywords: MC-CDMA, Equalization, EGC, Single User Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408