Search results for: robust ranking technique
3360 Fuzzy Neuro Approach to Busbar Protection; Design and Implementation
Authors: M. R. Aghaebrahimi, H. Khorashadi Zadeh
Abstract:
This paper presents a new approach for busbar protection with stable operation of current transformer during saturation, using fuzzy neuro and symmetrical components theory. This technique uses symmetrical components of current signals to learn the hidden relationship existing in the input patterns. Simulation studies are preformed and the influence of changing system parameters such as inception fault and source impedance is studied. Details of the design procedure and the results of performance studies with the proposed relay are given in the paper. An analysis of the performance of the proposed technique during ct saturation conditions is presented. The performance of the technique was investigated for a variety of operating conditions and for several busbar configurations. Data generated by EMTDC simulations of model power systems were used in the investigations. The results indicate that the proposed technique is stable during ct saturation conditions.
Keywords: Busbar protection, fuzzy neuro, Ct saturation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18703359 Robust Fractional-Order PI Controller with Ziegler-Nichols Rules
Authors: Mazidah Tajjudin, Mohd Hezri Fazalul Rahiman, Norhashim Mohd Arshad, Ramli Adnan
Abstract:
In process control applications, above 90% of the controllers are of PID type. This paper proposed a robust PI controller with fractional-order integrator. The PI parameters were obtained using classical Ziegler-Nichols rules but enhanced with the application of error filter cascaded to the fractional-order PI. The controller was applied on steam temperature process that was described by FOPDT transfer function. The process can be classified as lag dominating process with very small relative dead-time. The proposed control scheme was compared with other PI controller tuned using Ziegler-Nichols and AMIGO rules. Other PI controller with fractional-order integrator known as F-MIGO was also considered. All the controllers were subjected to set point change and load disturbance tests. The performance was measured using Integral of Squared Error (ISE) and Integral of Control Signal (ICO). The proposed controller produced best performance for all the tests with the least ISE index.
Keywords: PID controller, fractional-order PID controller, PI control tuning, steam temperature control, Ziegler-Nichols tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34773358 Blood Glucose Measurement and Analysis: Methodology
Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali
Abstract:
There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.Keywords: Invasive, linear, near-infrared (Nir), non-invasive, non-linear, prediction system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8633357 Aircraft Selection Using Multiple Criteria Decision Making Analysis Method with Different Data Normalization Techniques
Authors: C. Ardil
Abstract:
This paper presents an original application of multiple criteria decision making analysis theory to the evaluation of aircraft selection problem. The selection of an optimal, efficient and reliable fleet, network and operations planning policy is one of the most important factors in aircraft selection problem. Given that decision making in aircraft selection involves the consideration of a number of opposite criteria and possible solutions, such a selection can be considered as a multiple criteria decision making analysis problem. This study presents a new integrated approach to decision making by considering the multiple criteria utility theory and the maximal regret minimization theory methods as well as aircraft technical, economical, and environmental aspects. Multiple criteria decision making analysis method uses different normalization techniques to allow criteria to be aggregated with qualitative and quantitative data of the decision problem. Therefore, selecting a suitable normalization technique for the model is also a challenge to provide data aggregation for the aircraft selection problem. To compare the impact of different normalization techniques on the decision problem, the vector, linear (sum), linear (max), and linear (max-min) data normalization techniques were identified to evaluate aircraft selection problem. As a logical implication of the proposed approach, it enhances the decision making process through enabling the decision maker to: (i) use higher level knowledge regarding the selection of criteria weights and the proposed technique, (ii) estimate the ranking of an alternative, under different data normalization techniques and integrated criteria weights after a posteriori analysis of the final rankings of alternatives. A set of commercial passenger aircraft were considered in order to illustrate the proposed approach. The obtained results of the proposed approach were compared using Spearman's rho tests. An analysis of the final rank stability with respect to the changes in criteria weights was also performed so as to assess the sensitivity of the alternative rankings obtained by the application of different data normalization techniques and the proposed approach.
Keywords: Normalization Techniques, Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5963356 A New Technique for Multi Resolution Characterization of Epileptic Spikes in EEG
Authors: H. N. Suresh, Dr. V. Udaya Shankara
Abstract:
A technique proposed for the automatic detection of spikes in electroencephalograms (EEG). A multi-resolution approach and a non-linear energy operator are exploited. The signal on each EEG channel is decomposed into three sub bands using a non-decimated wavelet transform (WT). The WT is a powerful tool for multi-resolution analysis of non-stationary signal as well as for signal compression, recognition and restoration. Each sub band is analyzed by using a non-linear energy operator, in order to detect spikes. A decision rule detects the presence of spikes in the EEG, relying upon the energy of the three sub-bands. The effectiveness of the proposed technique was confirmed by analyzing both test signals and EEG layouts.Keywords: EEG, Spike, SNEO, Wavelet Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13833355 A New Face Detection Technique using 2D DCT and Self Organizing Feature Map
Authors: Abdallah S. Abdallah, A. Lynn Abbott, Mohamad Abou El-Nasr
Abstract:
This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the two-dimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised SOM training session is used to cluster feature vectors into groups, and to assign “face" or “non-face" labels to those clusters. Evaluation was performed using a new image database of 286 images, containing 1027 faces. After training, our detection technique achieved a detection rate of 77.94% during subsequent tests, with a false positive rate of 5.14%. To our knowledge, the proposed technique is the first to combine DCT-based feature extraction with a SOM for detecting human faces within color images. It is also one of a few attempts to combine a feature-invariant approach, such as color-based skin segmentation, together with appearance-based face detection. The main advantage of the new technique is its low computational requirements, in terms of both processing speed and memory utilization.Keywords: Face detection, skin color segmentation, self-organizingmap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25463354 Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection
Authors: Hong Pan, Yaping Zhu, Liang Zheng Xia
Abstract:
We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.
Keywords: Adaboost, Face detection, Feature selection, PSO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22013353 Feature Vector Fusion for Image Based Human Age Estimation
Authors: D. Karthikeyan, G. Balakrishnan
Abstract:
Human faces, as important visual signals, express a significant amount of nonverbal info for usage in human-to-human communication. Age, specifically, is more significant among these properties. Human age estimation using facial image analysis as an automated method which has numerous potential real‐world applications. In this paper, an automated age estimation framework is presented. Support Vector Regression (SVR) strategy is utilized to investigate age prediction. This paper depicts a feature extraction taking into account Gray Level Co-occurrence Matrix (GLCM), which can be utilized for robust face recognition framework. It applies GLCM operation to remove the face's features images and Active Appearance Models (AAMs) to assess the human age based on image. A fused feature technique and SVR with GA optimization are proposed to lessen the error in age estimation.
Keywords: Support vector regression, feature extraction, gray level co-occurrence matrix, active appearance models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13173352 Query Reformulation Guided by External Resource for Information Retrieval
Authors: Mohammed El Amine Abderrahim
Abstract:
Reformulating the user query is a technique that aims to improve the performance of an Information Retrieval System (IRS) in terms of precision and recall. This paper tries to evaluate the technique of query reformulation guided by an external resource for Arabic texts. To do this, various precision and recall measures were conducted and two corpora with different external resources like Arabic WordNet (AWN) and the Arabic Dictionary (thesaurus) of Meaning (ADM) were used. Examination of the obtained results will allow us to measure the real contribution of this reformulation technique in improving the IRS performance.
Keywords: Arabic NLP, Arabic Information Retrieval, Arabic WordNet, Query Expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14053351 Improving the Performance of Proxy Server by Using Data Mining Technique
Authors: P. Jomsri
Abstract:
Currently, web usage make a huge data from a lot of user attention. In general, proxy server is a system to support web usage from user and can manage system by using hit rates. This research tries to improve hit rates in proxy system by applying data mining technique. The data set are collected from proxy servers in the university and are investigated relationship based on several features. The model is used to predict the future access websites. Association rule technique is applied to get the relation among Date, Time, Main Group web, Sub Group web, and Domain name for created model. The results showed that this technique can predict web content for the next day, moreover the future accesses of websites increased from 38.15% to 85.57 %. This model can predict web page access which tends to increase the efficient of proxy servers as a result. In additional, the performance of internet access will be improved and help to reduce traffic in networks.
Keywords: Association rule, proxy server, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30653350 A Clock Skew Minimization Technique Considering Temperature Gradient
Authors: Se-Jin Ko, Deok-Min Kim, Seok-Yoon Kim
Abstract:
The trend of growing density on chips has increases not only the temperature in chips but also the gradient of the temperature depending on locations. In this paper, we propose the balanced skew tree generation technique for minimizing the clock skew that is affected by the temperature gradients on chips. We calculate the interconnect delay using Elmore delay equation, and find out the optimal balanced clock tree by modifying the clock trees generated through the Deferred Merge Embedding(DME) algorithm. The experimental results show that the distance variance of clock insertion points with and without considering the temperature gradient can be lowered below 54% and we confirm that the skew is remarkably decreased after applying the proposed technique.Keywords: clock, clock-skew, temperature, thermal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17173349 Solving Bus Terminal Location Problem Using Genetic Algorithm
Authors: S. Babaie-Kafaki, R. Ghanbari, S.H. Nasseri, E. Ardil
Abstract:
Bus networks design is an important problem in public transportation. The main step to this design, is determining the number of required terminals and their locations. This is an especial type of facility location problem, a large scale combinatorial optimization problem that requires a long time to be solved. The genetic algorithm (GA) is a search and optimization technique which works based on evolutionary principle of natural chromosomes. Specifically, the evolution of chromosomes due to the action of crossover, mutation and natural selection of chromosomes based on Darwin's survival-of-the-fittest principle, are all artificially simulated to constitute a robust search and optimization procedure. In this paper, we first state the problem as a mixed integer programming (MIP) problem. Then we design a new crossover and mutation for bus terminal location problem (BTLP). We tested the different parameters of genetic algorithm (for a sample problem) and obtained the optimal parameters for solving BTLP with numerical try and error.Keywords: Bus networks, Genetic algorithm (GA), Locationproblem, Mixed integer programming (MIP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23073348 Robot Movement Using the Trust Region Policy Optimization
Authors: Romisaa Ali
Abstract:
The Policy Gradient approach is a subset of the Deep Reinforcement Learning (DRL) combines Deep Neural Networks (DNN) with Reinforcement Learning (RL). This approach finds the optimal policy of robot movement, based on the experience it gains from interaction with its environment. Unlike previous policy gradient algorithms, which were unable to handle the two types of error variance and bias introduced by the DNN model due to over- or underestimation, this algorithm is capable of handling both types of error variance and bias. This article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.
Keywords: Deep neural networks, deep reinforcement learning, Proximal Policy Optimization, state-of-the-art, trust region policy optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953347 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition
Authors: L. Hamsaveni, Navya Prakash, Suresha
Abstract:
Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.Keywords: Grayscale image format, image fusing, SURF detection, YCbCr image format.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11593346 Hybrid Control Mode Based On Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot
Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin
Abstract:
This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.
Keywords: Autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22103345 Fast Search for MPEG Video Clips Using Adjacent Pixel Intensity Difference Quantization Histogram Feature
Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi
Abstract:
In this paper, we propose a novel fast search algorithm for short MPEG video clips from video database. This algorithm is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Instead of fully decompressed video frames, partially decoded data, namely DC images are utilized. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 3 % is achieved, which is more accurately and robust than conventional fast video search algorithm.
Keywords: Fast search, adjacent pixel intensity difference quantization (APIDQ), DC image, histogram feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15823344 Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building
Authors: Kittipob Kondee, Chutima Prommak
Abstract:
In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters.
Keywords: Indoor positioning System, Optimization System design, Multi-Floor Building, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19853343 Exploring the Professional Competency Contents for International Marketer in Taiwan
Authors: Shu-Ning Liou
Abstract:
The main purpose of this study was to establish Professional Competency Contents for International Marketer in Taiwan. To establish these contents a set of interviews with international marketing managers and three rounds of Delphi Technique surveys were employed. Five international marketing managers were interviewed for discussions on definitions, framework, and items of international marketing competency. A questionnaire for the " Delphi Technique Survey " was developed based on the results acquired from the interviews. The resulting questionnaire was distributed to another group of 30 international marketer of trading companies in Taiwan. After three rounds of Delphi Technique Survey with these participants, the "Contents of Professional Competency for International Marketer " was established. Five dimensions and thirty indicators were identified. It is hoped that the proposed contents could be served as a self-evaluation tool for international marketer as well as the basis for staffing and training programs for international marketer in Taiwan.
Keywords: Professional competency, International marketer, Delphi technique
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14163342 An Efficient Technique for Extracting Fuzzy Rulesfrom Neural Networks
Authors: Besa Muslimi, Miriam A. M. Capretz, Jagath Samarabandu
Abstract:
Artificial neural networks (ANN) have the ability to model input-output relationships from processing raw data. This characteristic makes them invaluable in industry domains where such knowledge is scarce at best. In the recent decades, in order to overcome the black-box characteristic of ANNs, researchers have attempted to extract the knowledge embedded within ANNs in the form of rules that can be used in inference systems. This paper presents a new technique that is able to extract a small set of rules from a two-layer ANN. The extracted rules yield high classification accuracy when implemented within a fuzzy inference system. The technique targets industry domains that possess less complex problems for which no expert knowledge exists and for which a simpler solution is preferred to a complex one. The proposed technique is more efficient, simple, and applicable than most of the previously proposed techniques.
Keywords: fuzzy rule extraction, fuzzy systems, knowledgeacquisition, pattern recognition, artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15853341 Simulating Discrete Time Model Reference Adaptive Control System with Great Initial Error
Authors: Bubaker M. F. Bushofa, Abdel Hafez A. Azab
Abstract:
This article is based on the technique which is called Discrete Parameter Tracking (DPT). First introduced by A. A. Azab [8] which is applicable for less order reference model. The order of the reference model is (n-l) and n is the number of the adjustable parameters in the physical plant. The technique utilizes a modified gradient method [9] where the knowledge of the exact order of the nonadaptive system is not required, so, as to eliminate the identification problem. The applicability of the mentioned technique (DPT) was examined through the solution of several problems. This article introduces the solution of a third order system with three adjustable parameters, controlled according to second order reference model. The adjustable parameters have great initial error which represent condition. Computer simulations for the solution and analysis are provided to demonstrate the simplicity and feasibility of the technique.Keywords: Adaptive Control System, Discrete Parameter Tracking, Discrete Time Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10693340 A Multigranular Linguistic Additive Ratio Assessment Model in Group Decision Making
Authors: Wiem Daoud Ben Amor, Luis Martínez López, Jr., Hela Moalla Frikha
Abstract:
Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain context where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ELH-ARAS). Within the ELH-ARAS approach, the decision maker (DMs) can diagnose the results (the ranking of the alternatives) in a decomposed style i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e., the collective final results of all experts are able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ELH-ARAS technique makes it easier for decision-makers to understand the results. Finally, an MCGDM case study is given to illustrate the proposed approach.
Keywords: Additive ratio assessment, extended hierarchical linguistic, multi-criteria group decision making problems, multi granular linguistic contexts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3683339 A Wavelet Based Object Watermarking System for Image and Video
Authors: Abdessamad Essaouabi, Ibnelhaj Elhassane
Abstract:
Efficient storage, transmission and use of video information are key requirements in many multimedia applications currently being addressed by MPEG-4. To fulfill these requirements, a new approach for representing video information which relies on an object-based representation, has been adopted. Therefore, objectbased watermarking schemes are needed for copyright protection. This paper proposes a novel blind object watermarking scheme for images and video using the in place lifting shape adaptive-discrete wavelet transform (SA-DWT). In order to make the watermark robust and transparent, the watermark is embedded in the average of wavelet blocks using the visual model based on the human visual system. Wavelet coefficients n least significant bits (LSBs) are adjusted in concert with the average. Simulation results shows that the proposed watermarking scheme is perceptually invisible and robust against many attacks such as lossy image/video compression (e.g. JPEG, JPEG2000 and MPEG-4), scaling, adding noise, filtering, etc.
Keywords: Watermark, visual model, robustness, in place lifting shape adaptive-discrete wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19023338 Efficient Web Usage Mining Based on K-Medoids Clustering Technique
Authors: P. Sengottuvelan, T. Gopalakrishnan
Abstract:
Web Usage Mining is the application of data mining techniques to find usage patterns from web log data, so as to grasp required patterns and serve the requirements of Web-based applications. User’s expertise on the internet may be improved by minimizing user’s web access latency. This may be done by predicting the future search page earlier and the same may be prefetched and cached. Therefore, to enhance the standard of web services, it is needed topic to research the user web navigation behavior. Analysis of user’s web navigation behavior is achieved through modeling web navigation history. We propose this technique which cluster’s the user sessions, based on the K-medoids technique.Keywords: Clustering, K-medoids, Recommendation, User Session, Web Usage Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14003337 A Comparative Analysis Approach Based on Fuzzy AHP, TOPSIS and PROMETHEE for the Selection Problem of GSCM Solutions
Authors: Omar Boutkhoum, Mohamed Hanine, Abdessadek Bendarag
Abstract:
Sustainable economic growth is nowadays driving firms to extend toward the adoption of many green supply chain management (GSCM) solutions. However, the evaluation and selection of these solutions is a matter of concern that needs very serious decisions, involving complexity owing to the presence of various associated factors. To resolve this problem, a comparative analysis approach based on multi-criteria decision-making methods is proposed for adequate evaluation of sustainable supply chain management solutions. In the present paper, we propose an integrated decision-making model based on FAHP (Fuzzy Analytic Hierarchy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) to contribute to a better understanding and development of new sustainable strategies for industrial organizations. Due to the varied importance of the selected criteria, FAHP is used to identify the evaluation criteria and assign the importance weights for each criterion, while TOPSIS and PROMETHEE methods employ these weighted criteria as inputs to evaluate and rank the alternatives. The main objective is to provide a comparative analysis based on TOPSIS and PROMETHEE processes to help make sound and reasoned decisions related to the selection problem of GSCM solution.Keywords: GSCM solutions, multi-criteria analysis, FAHP, TOPSIS, PROMETHEE, decision support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9443336 Wavelet based Image Registration Technique for Matching Dental x-rays
Authors: P. Ramprasad, H. C. Nagaraj, M. K. Parasuram
Abstract:
Image registration plays an important role in the diagnosis of dental pathologies such as dental caries, alveolar bone loss and periapical lesions etc. This paper presents a new wavelet based algorithm for registering noisy and poor contrast dental x-rays. Proposed algorithm has two stages. First stage is a preprocessing stage, removes the noise from the x-ray images. Gaussian filter has been used. Second stage is a geometric transformation stage. Proposed work uses two levels of affine transformation. Wavelet coefficients are correlated instead of gray values. Algorithm has been applied on number of pre and post RCT (Root canal treatment) periapical radiographs. Root Mean Square Error (RMSE) and Correlation coefficients (CC) are used for quantitative evaluation. Proposed technique outperforms conventional Multiresolution strategy based image registration technique and manual registration technique.Keywords: Diagnostic imaging, geometric transformation, image registration, multiresolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17663335 New Efficient Method for Coding Color Images
Authors: Walaa M.Abd-Elhafiez, Wajeb Gharibi
Abstract:
In this paper a novel color image compression technique for efficient storage and delivery of data is proposed. The proposed compression technique started by RGB to YCbCr color transformation process. Secondly, the canny edge detection method is used to classify the blocks into the edge and non-edge blocks. Each color component Y, Cb, and Cr compressed by discrete cosine transform (DCT) process, quantizing and coding step by step using adaptive arithmetic coding. Our technique is concerned with the compression ratio, bits per pixel and peak signal to noise ratio, and produce better results than JPEG and more recent published schemes (like CBDCT-CABS and MHC). The provided experimental results illustrate the proposed technique that is efficient and feasible in terms of compression ratio, bits per pixel and peak signal to noise ratio.
Keywords: Image compression, color image, Q-coder, quantization, edge-detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16753334 A Weighted Sum Technique for the Joint Optimization of Performance and Power Consumption in Data Centers
Authors: Samee Ullah Khan, C.Ardil
Abstract:
With data centers, end-users can realize the pervasiveness of services that will be one day the cornerstone of our lives. However, data centers are often classified as computing systems that consume the most amounts of power. To circumvent such a problem, we propose a self-adaptive weighted sum methodology that jointly optimizes the performance and power consumption of any given data center. Compared to traditional methodologies for multi-objective optimization problems, the proposed self-adaptive weighted sum technique does not rely on a systematical change of weights during the optimization procedure. The proposed technique is compared with the greedy and LR heuristics for large-scale problems, and the optimal solution for small-scale problems implemented in LINDO. the experimental results revealed that the proposed selfadaptive weighted sum technique outperforms both of the heuristics and projects a competitive performance compared to the optimal solution.Keywords: Meta-heuristics, distributed systems, adaptive methods, resource allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18403333 Prediction of a Human Facial Image by ANN using Image Data and its Content on Web Pages
Authors: Chutimon Thitipornvanid, Siripun Sanguansintukul
Abstract:
Choosing the right metadata is a critical, as good information (metadata) attached to an image will facilitate its visibility from a pile of other images. The image-s value is enhanced not only by the quality of attached metadata but also by the technique of the search. This study proposes a technique that is simple but efficient to predict a single human image from a website using the basic image data and the embedded metadata of the image-s content appearing on web pages. The result is very encouraging with the prediction accuracy of 95%. This technique may become a great assist to librarians, researchers and many others for automatically and efficiently identifying a set of human images out of a greater set of images.Keywords: Metadata, Prediction, Multi-layer perceptron, Human facial image, Image mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12183332 Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control
Authors: Vivekanandan C., Prabhakar .R., Prema D.
Abstract:
This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presentedKeywords: Inverted pendulum, Variable Structure, Sliding mode control, Discrete-time systems, Nonlinear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20093331 Ranking of the Main Criteria for Contractor Selection Procedures on Major Construction Projects in Libya Using the Delphi Method
Authors: Othoman Elsayah, Naren Gupta, Binsheng Zhang
Abstract:
The construction sector constitutes one of the most important sectors in the economy of any country. Contractor selection is a critical decision that is undertaken by client organizations and is central to the success of any construction project. Contractor selection (CS) is a process which involves investigating, screening and determining whether candidate contractors have the technical and financial capability to be accepted to formally tender for construction work. The process should be conducted prior to the award of contract, characterized by many factors such as: contactor’s skills, experience on similar projects, track- record in the industry, and financial stability. However, this paper evaluates the current state of knowledge in relation to contractor selection process and demonstrates the findings from the analysis of the data collected from the Delphi questionnaire survey. The survey was conducted with a group of 12 experts working in the Libyan construction industry (LCI). The paper starts by briefly explaining the general outline of the questionnaire including the survey participation rate, the different fields the experts came from, and the business titles of the participants. Then the paper describes the tests used to determine when the experts had reached consensus. The paper is based on research which aims to develop rank contractor selection criteria with specific application to make construction projects in the Libyan context. The findings of this study will be utilized to establish the scope of work that will be used as part of a PhD research.
Keywords: Contractor selection, Libyan construction industry, Decision experts and Delphi technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2956