Search results for: fatigue testing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2353

Search results for: fatigue testing machine

1963 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine

Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin

Abstract:

This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.

Keywords: CAM, multi-axis milling machining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3581
1962 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine

Authors: Karin Kandananond

Abstract:

The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.

Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
1961 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
1960 Speed Control of a Permanent Magnet Synchronous Machine (PMSM) Fed by an Inverter Voltage Fuzzy Control Approach

Authors: Jamel Khedri, Mohamed Chaabane, Mansour Souissi, Driss Mehdi

Abstract:

This paper deals with the synthesis of fuzzy controller applied to a permanent magnet synchronous machine (PMSM) with a guaranteed H∞ performance. To design this fuzzy controller, nonlinear model of the PMSM is approximated by Takagi-Sugeno fuzzy model (T-S fuzzy model), then the so-called parallel distributed compensation (PDC) is employed. Next, we derive the property of the H∞ norm. The latter is cast in terms of linear matrix inequalities (LMI-s) while minimizing the H∞ norm of the transfer function between the disturbance and the error ( ) ev T . The experimental and simulations results were conducted on a permanent magnet synchronous machine to illustrate the effects of the fuzzy modelling and the controller design via the PDC.

Keywords: Feedback controller, Takagi-Sugeno fuzzy model, Linear Matrix Inequality (LMI), PMSM, H∞ performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
1959 Development of a New Method for T-joint Specimens Testing under Shear Loading

Authors: R. Doubrava, R. Růžek

Abstract:

Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fibre reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented.

Keywords: T-joint, shear, composite, mechanical testing, Finite Element analysis, methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660
1958 The Imaging Methods for Classifying Crispiness of Freeze-Dried Durian using Fuzzy Logic

Authors: Sitthichon Kanitthakun, Pinit Kumhom, Kosin Chamnongthai

Abstract:

In quality control of freeze-dried durian, crispiness is a key quality index of the product. Generally, crispy testing has to be done by a destructive method. A nondestructive testing of the crispiness is required because the samples can be reused for other kinds of testing. This paper proposed a crispiness classification method of freeze-dried durians using fuzzy logic for decision making. The physical changes of a freeze-dried durian include the pores appearing in the images. Three physical features including (1) the diameters of pores, (2) the ratio of the pore area and the remaining area, and (3) the distribution of the pores are considered to contribute to the crispiness. The fuzzy logic is applied for making the decision. The experimental results comparing with food expert opinion showed that the accuracy of the proposed classification method is 83.33 percent.

Keywords: Durian, crispiness, freeze drying, pore, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
1957 Machining Stability of a Milling Machine with Different Preloaded Spindle

Authors: Jui-Pin Hung, Qiao-Wen Chang, Kung-Da Wu, Yong-Run Chen

Abstract:

This study was aimed to investigate the machining stability of a spindle tool with different preloaded amount. To this end, the vibration tests were conducted on the spindle unit with different preload to assess the dynamic characteristics and machining stability of the milling machine. Current results demonstrate that the tool tip frequency response characteristics and the machining stabilities in X and Y direction are affected to change due to the different preload of spindle bearings. As found from the results, a high preloaded spindle tool shows higher limited cutting depth at mid position, while a spindle with low preload shows a higher limited depth. This indicates that the machining stability of a milling machine is affected to vary by the spindle unit when it was assembled with different bearing preload.

Keywords: Dynamic compliance, Bearing preload, Machining stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
1956 Upper Bound of the Generalize p-Value for the Behrens-Fisher Problem with a Known Ratio of Variances

Authors: Rada Somkhuean, Suparat Niwitpong, Sa-aat Niwitpong

Abstract:

This paper presents the generalized p-values for testing the Behrens-Fisher problem when a ratio of variance is known. We also derive a closed form expression of the upper bound of the proposed generalized p-value.

Keywords: Generalized p-value, hypothesis testing, ratio of variances, upper bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
1955 Construct Pairwise Test Suites Based on the Bak-Sneppen Model of Biological Evolution

Authors: Jianjun Yuan, Changjun Jiang

Abstract:

Pairwise testing, which requires that every combination of valid values of each pair of system factors be covered by at lease one test case, plays an important role in software testing since many faults are caused by unexpected 2-way interactions among system factors. Although meta-heuristic strategies like simulated annealing can generally discover smaller pairwise test suite, they may cost more time to perform search, compared with greedy algorithms. We propose a new method, improved Extremal Optimization (EO) based on the Bak-Sneppen (BS) model of biological evolution, for constructing pairwise test suites and define fitness function according to the requirement of improved EO. Experimental results show that improved EO gives similar size of resulting pairwise test suite and yields an 85% reduction in solution time over SA.

Keywords: Covering Arrays, Extremal Optimization, Simulated Annealing, Software Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
1954 Machine Learning Methods for Environmental Monitoring and Flood Protection

Authors: Alexander L. Pyayt, Ilya I. Mokhov, Bernhard Lang, Valeria V. Krzhizhanovskaya, Robert J. Meijer

Abstract:

More and more natural disasters are happening every year: floods, earthquakes, volcanic eruptions, etc. In order to reduce the risk of possible damages, governments all around the world are investing into development of Early Warning Systems (EWS) for environmental applications. The most important task of the EWS is identification of the onset of critical situations affecting environment and population, early enough to inform the authorities and general public. This paper describes an approach for monitoring of flood protections systems based on machine learning methods. An Artificial Intelligence (AI) component has been developed for detection of abnormal dike behaviour. The AI module has been integrated into an EWS platform of the UrbanFlood project (EU Seventh Framework Programme) and validated on real-time measurements from the sensors installed in a dike.

Keywords: Early Warning System, intelligent environmentalmonitoring, machine learning, flood protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4084
1953 A System for Performance Evaluation of Embedded Software

Authors: Yong-Yoon Cho, Jong-Bae Moon, Young-Chul Kim

Abstract:

Developers need to evaluate software's performance to make software efficient. This paper suggests a performance evaluation system for embedded software. The suggested system consists of code analyzer, testing agents, data analyzer, and report viewer. The code analyzer inserts additional code dependent on target system into source code and compiles the source code. The testing agents execute performance test. The data analyzer translates raw-level results data to class-level APIs for reporting viewer. The report viewer offers users graphical report views by using the APIs. We hope that the suggested tool will be useful for embedded-related software development,because developers can easily and intuitively analyze software's performance and resource utilization.

Keywords: Embedded Software, Performance EvaluationSystem, Testing Agents, Report Generator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880
1952 An Experimental Study and Influence of BHF and Die Radius in Deep Drawing Process on the Springback

Authors: A. Soualem

Abstract:

A lot of research made during these last 15 years showed that the quantification of the springback has a significant role in the industry of sheet metal forming. These studies were made with the objective of finding techniques and methods to minimize or completely avoid this permanent physical variation. Moreover, the use of steel and aluminum alloys in the car industry and aviation poses every day the problem of the springback. The determination in advance of the quantity of the springback allows consequently the design and manufacture of the tool. The aim of this paper is to study experimentally the influence of the blank holder force BHF and the radius of curvature of the die on the springback and their influence on the strain in various zone of specimen. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback according to displacement.

Keywords: Blank holder force, Deep-Drawing, Die radius, Forming, Springback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1951 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346
1950 Aerodynamic Analysis and Design of Banners for Remote-Controlled Aircraft

Authors: Peyman Honarmandi, Mazen Alhirsh

Abstract:

Banner towing is a major form of advertisement. It consists of a banner showing a logo or a selection of words or letters being towed by an aircraft. Traditionally bush planes have been used to tow banners given their high thrust capabilities, however, with the development of Remote-Controlled (RC) aircraft, they could be a good replacement as RC planes mitigate the risk of human life and can be easier to operate. This paper studies the best banner design to be towed by an RC aircraft. This is done by conducting wind tunnel testing on an array of banners with different materials and designs. A pull gauge is used to record the drag force during testing which is then used to calculate the coefficient of drag, Cd. The testing results show that the best banner design would be a hybrid design with a solid and mesh material. The design with the lowest Cd of 0.082 was a half ripstop nylon half polyester mesh design. On the other hand, the design with highest Cd of 0.305 involved incorporating a tail chute to decrease fluttering.

Keywords: Aerodynamics of banner, banner design, banner towing, drag coefficients of banner, RC aircraft banner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572
1949 Effect of Progressive Type-I Right Censoring on Bayesian Statistical Inference of Simple Step–Stress Acceleration Life Testing Plan under Weibull Life Distribution

Authors: Saleem Z. Ramadan

Abstract:

This paper discusses the effects of using progressive Type-I right censoring on the design of the Simple Step Accelerated Life testing using Bayesian approach for Weibull life products under the assumption of cumulative exposure model. The optimization criterion used in this paper is to minimize the expected pre-posterior variance of the Pth percentile time of failures. The model variables are the stress changing time and the stress value for the first step. A comparison between the conventional and the progressive Type-I right censoring is provided. The results have shown that the progressive Type-I right censoring reduces the cost of testing on the expense of the test precision when the sample size is small. Moreover, the results have shown that using strong priors or large sample size reduces the sensitivity of the test precision to the censoring proportion. Hence, the progressive Type-I right censoring is recommended in these cases as progressive Type-I right censoring reduces the cost of the test and doesn't affect the precision of the test a lot. Moreover, the results have shown that using direct or indirect priors affects the precision of the test.

Keywords: Reliability, Accelerated life testing, Cumulative exposure model, Bayesian estimation, Progressive Type-I censoring, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
1948 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: Big data, bus headway prediction, machine learning, public transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
1947 Selection the Optimum Cooling Scheme for Generators based on the Electro-Thermal Analysis

Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi

Abstract:

Optimal selection of electrical insulations in electrical machinery insures reliability during operation. From the insulation studies of view for electrical machines, stator is the most important part. This fact reveals the requirement for inspection of the electrical machine insulation along with the electro-thermal stresses. In the first step of the study, a part of the whole structure of machine in which covers the general characteristics of the machine is chosen, then based on the electromagnetic analysis (finite element method), the machine operation is simulated. In the simulation results, the temperature distribution of the total structure is presented simultaneously by using electro-thermal analysis. The results of electro-thermal analysis can be used for designing an optimal cooling system. In order to design, review and comparing the cooling systems, four wiring structures in the slots of Stator are presented. The structures are compared to each other in terms of electrical, thermal distribution and remaining life of insulation by using Finite Element analysis. According to the steps of the study, an optimization algorithm has been presented for selection of appropriate structure.

Keywords: Electrical field, field distribution, insulation, winding, finite element method, electro thermal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
1946 An Evaluation Method for Two-Dimensional Position Errors and Assembly Errors of a Rotational Table on a 4 Axis Machine Tool

Authors: Jooho Hwang, Chang-Kyu Song, Chun-Hong Park

Abstract:

This paper describes a method to measure and compensate a 4 axes ultra-precision machine tool that generates micro patterns on the large surfaces. The grooving machine is usually used for making a micro mold for many electrical parts such as a light guide plate for LCD and fuel cells. The ultra precision machine tool has three linear axes and one rotational table. Shaping is usually used to generate micro patterns. In the case of 50 μm pitch and 25 μm height pyramid pattern machining with a 90° wedge angle bite, one of linear axis is used for long stroke motion for high cutting speed and other linear axis are used for feeding. The triangular patterns can be generated with many times of long stroke of one axis. Then 90° rotation of work piece is needed to make pyramid patterns with superposition of machined two triangular patterns. To make a two dimensional positioning error, straightness of two axes in out of plane, squareness between the each axis are important. Positioning errors, straightness and squarness were measured by laser interferometer system. Those were compensated and confirmed by ISO230-6. One of difficult problem to measure the error motions is squareness or parallelism of axis between the rotational table and linear axis. It was investigated by simultaneous moving of rotary table and XY axes. This compensation method is introduced in this paper.

Keywords: Ultra-precision machine tool, muti-axis errors, squraness, positioning errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
1945 Unified Fusion Approach with Application to SLAM

Authors: Xinde Li, Xinhan Huang, Min Wang

Abstract:

In this paper, we propose the pre-processor based on the Evidence Supporting Measure of Similarity (ESMS) filter and also propose the unified fusion approach (UFA) based on the general fusion machine coupled with ESMS filter, which improve the correctness and precision of information fusion in any fields of application. Here we mainly apply the new approach to Simultaneous Localization And Mapping (SLAM) of Pioneer II mobile robots. A simulation experiment was performed, where an autonomous virtual mobile robot with sonar sensors evolves in a virtual world map with obstacles. By comparing the result of building map according to the general fusion machine (here DSmT-based fusing machine and PCR5-based conflict redistributor considereded) coupling with ESMS filter and without ESMS filter, it shows the benefit of the selection of the sources as a prerequisite for improvement of the information fusion, and also testifies the superiority of the UFA in dealing with SLAM.

Keywords: DSmT, ESMS filter, SLAM, UFA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
1944 Envelope-Wavelet Packet Transform for Machine Condition Monitoring

Authors: M. F. Yaqub, I. Gondal, J. Kamruzzaman

Abstract:

Wavelet transform has been extensively used in machine fault diagnosis and prognosis owing to its strength to deal with non-stationary signals. The existing Wavelet transform based schemes for fault diagnosis employ wavelet decomposition of the entire vibration frequency which not only involve huge computational overhead in extracting the features but also increases the dimensionality of the feature vector. This increase in the dimensionality has the tendency to 'over-fit' the training data and could mislead the fault diagnostic model. In this paper a novel technique, envelope wavelet packet transform (EWPT) is proposed in which features are extracted based on wavelet packet transform of the filtered envelope signal rather than the overall vibration signal. It not only reduces the computational overhead in terms of reduced number of wavelet decomposition levels and features but also improves the fault detection accuracy. Analytical expressions are provided for the optimal frequency resolution and decomposition level selection in EWPT. Experimental results with both actual and simulated machine fault data demonstrate significant gain in fault detection ability by EWPT at reduced complexity compared to existing techniques.

Keywords: Envelope Detection, Wavelet Transform, Bearing Faults, Machine Health Monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
1943 Mouse Pointer Tracking with Eyes

Authors: H. Mhamdi, N. Hamrouni, A. Temimi, M. Bouhlel

Abstract:

In this article, we expose our research work in Human-machine Interaction. The research consists in manipulating the workspace by eyes. We present some of our results, in particular the detection of eyes and the mouse actions recognition. Indeed, the handicaped user becomes able to interact with the machine in a more intuitive way in diverse applications and contexts. To test our application we have chooses to work in real time on videos captured by a camera placed in front of the user.

Keywords: Computer vision, Face and Eyes Detection, Mouse pointer recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
1942 Virtual Machines Cooperation for Impatient Jobs under Cloud Paradigm

Authors: Nawfal A. Mehdi, Ali Mamat, Hamidah Ibrahim, Shamala K. Syrmabn

Abstract:

The increase on the demand of IT resources diverts the enterprises to use the cloud as a cheap and scalable solution. Cloud computing promises achieved by using the virtual machine as a basic unite of computation. However, the virtual machine pre-defined settings might be not enough to handle jobs QoS requirements. This paper addresses the problem of mapping jobs have critical start deadlines to virtual machines that have predefined specifications. These virtual machines hosted by physical machines and shared a fixed amount of bandwidth. This paper proposed an algorithm that uses the idle virtual machines bandwidth to increase the quote of other virtual machines nominated as executors to urgent jobs. An algorithm with empirical study have been given to evaluate the impact of the proposed model on impatient jobs. The results show the importance of dynamic bandwidth allocation in virtualized environment and its affect on throughput metric.

Keywords: Insufficient bandwidth, virtual machine, cloudprovider, impatient jobs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1941 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach

Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian

Abstract:

The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.

Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
1940 On the Efficiency of a Double-Cone Gravitational Motor and Generator

Authors: Barenten Suciu, Akio Miyamura

Abstract:

In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called translational efficiency and rotational efficiency, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency.

Keywords: Truncated double-cone, friction, rolling and sliding, efficiency, gravitational motor and generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
1939 A Dirty Page Migration Method in Process of Memory Migration Based on Pre-copy Technology

Authors: Kang Zijian, Zhang Tingyu, Burra Venkata Durga Kumar

Abstract:

This article investigates the challenges in memory migration during the live migration of virtual machines. We found three challenges probably existing in pre-copy technology. One of the main challenges is the challenge of downtime migration. Decreasing the downtime could promise the normal work for a virtual machine. Although pre-copy technology is greatly decreasing the downtime, we still need to shut down the machine in order to finish the last round of data transfer. This paper provides an optimization scheme for the problems existing in pro-copy technology, mainly the optimization of the dirty page migration mechanism. The typical pre-copy technology copies n-1th’s dirty pages in nth turn. However, our idea is to create a double iteration method to solve this problem.

Keywords: Virtual machine, pre-copy technology, memory migration process, downtime, dirty pages migration method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171
1938 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification

Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde

Abstract:

The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.

Keywords: ATM, ATM Fraud, E-banking, Prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
1937 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
1936 Minimizing Mutant Sets by Equivalence and Subsumption

Authors: Samia Alblwi, Amani Ayad

Abstract:

Mutation testing is the art of generating syntactic variations of a base program and checking whether a candidate test suite can identify all the mutants that are not semantically equivalent to the base; this technique can be used to assess the quality of test suite. One of the main obstacles to the widespread use of mutation testing is cost, as even small programs (a few dozen lines of code) can give rise to a large number of mutants (up to hundreds); this has created an incentive to seek to reduce the number of mutants while preserving their collective effectiveness. Two criteria have been used to reduce the size of mutant sets: equivalence, which aims to partition the set of mutants into equivalence classes modulo semantic equivalence, and selecting one representative per class; and, subsumption, which aims to define a partial ordering among mutants that ranks mutants by effectiveness and seeks to select maximal elements in this ordering. In this paper, we analyze these two policies using analytical and empirical criteria.

Keywords: Mutation testing, mutant sets, mutant equivalence, mutant subsumption, mutant set minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193
1935 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1934 Transient Stability Improvement in Multi-Machine System Using Power System Stabilizer (PSS) and Static Var Compensator (SVC)

Authors: Khoshnaw Khalid Hama Saleh, Ergun Ercelebi

Abstract:

Increasingly complex modern power systems require stability, especially for transient and small disturbances. Transient stability plays a major role in stability during fault and large disturbance. This paper compares a power system stabilizer (PSS) and static Var compensator (SVC) to improve damping oscillation and enhance transient stability. The effectiveness of a PSS connected to the exciter and/or governor in damping electromechanical oscillations of isolated synchronous generator was tested. The SVC device is a member of the shunt FACTS (flexible alternating current transmission system) family, utilized in power transmission systems. The designed model was tested with a multi-machine system consisting of four machines six bus, using MATLAB/SIMULINK software. The results obtained indicate that SVC solutions are better than PSS.

Keywords: FACTS, MATLAB/SIMULINK, multi-machine system, PSS, SVC, transient stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3380