
A System for Performance Evaluation of
Embedded Software

Yong-Yoon Cho, Jong-Bae Moon, and Young-Chul Kim

Abstract—Developers need to evaluate software’s performance to
make software efficient. This paper suggests a performance evaluation
system for embedded software. The suggested system consists of code
analyzer, testing agents, data analyzer, and report viewer. The code
analyzer inserts additional code dependent on target system into
source code and compiles the source code. The testing agents execute
performance test. The data analyzer translates raw-level results data to
class-level APIs for reporting viewer. The report viewer offers users
graphical report views by using the APIs. We hope that the suggested
tool will be useful for embedded-related software development,
because developers can easily and intuitively analyze software’s
performance and resource utilization.

Keywords—Embedded Software, Performance Evaluation
System, Testing Agents, Report Generator

I. INTRODUCTION

ccording as embedded system has become increasingly
sophisticated and user’s requirement for embedded

software has become complicated, developing efficient
embedded software against the restricted resource has become
much more difficult and important. Because embedded system
generally offers less computing resource than general-purpose
computer system does, embedded software that is so poor in
quality or performance wastes the scarce resources [3][4].
Developers want to improve the quality of their embedded
software and make it to have always a good performance in
resource usage. To do this, developers occasionally use
embedded software evaluation system to decrease time and
increase efficiency in developing embedded. The evaluation
system is useful for developers, because they know whether
developed software is efficiently optimized in the embedded
system’s restricted resource. By using evaluation system,
developers can execute embedded software on target system
during the development process, test its performance in
advance, and know what must be fixed to make it more efficient.
But, because the testing results are text-based string, developers
have to analyze the raw-level data to find software’s portion
where they has to revise. It is often very tiresome and

time-consuming work. The evaluation system needs
occasionally additional hardware that exists between host
computer and target board and executes such functions as
software’s performance testing and result analyzing. But, that
may impose heavy burden on developers, because they have to
pay additional cost and study how to use the instrument. In this
paper, we suggest graphic-based evaluation system to test and
analyze embedded software’s performance. Because the
suggested evaluation system is based on pure software without
any additional hardware, developers don’t have to spend a lot
of time studying about how to operate additional equipment.
The suggested evaluation system involves a graphic report
viewer, which reports various results and shows them
graphically and according to such test items as memory usage,
code coverage, and function call times. By using the viewer,
developers can analyze software’s performance at a glance and
find easily what is fixed to make software more efficient. As a
result, developers can improve development efficiency of
embedded-related software, because they can have opportunity
to analyze software’s performance instantly and intuitively
through the graphical report viewer. The paper is organized as
follows. Section II reviews works related in embedded software
evaluation system. Section III describes the proposed
evaluation system and graphic report viewer. Section IV
conducts a testing and presents the results. Finally, Section V
states our conclusions and presents a summary of our research.

Manuscript received November 30, 2004.
Yong-Yoon Cho is with the Department of Computing, Soongsil University,

Seoul, CO 156743 Korea (corresponding author to provide phone:
+82-02-824-3862; fax: +82-02-824-3862; e-mail: sslabyycho@hotmail.com).

Jong-Bae Moon is with the Department of Computing, Soongsil University,
Seoul, CO 156743 Korea (e-mail: comdoct@ss.ssu.ac.kr).

Young-Chul Kim is with the Department of Computing, Soongsil University,
Seoul, CO 156743 Korea (e-mail: yckim@ss.ssu.ac.kr).

II. RELATED WORKS

Telelogic’s Tau TTCN Suite is a system to test telecom and
datacom equipment ranging from built-in communication chips
to huge switches and intelligent network services. It includes
various tools such as script editor, compiler and simulator. But,
it is not suitable for testing embedded software because it is test
system for telecommunication vendor. It also is very expensive
because it is mostly additional hardware equipment to test
telecom system.

AstonLinux’s CodeMaker is IDE(Integrated Development
Equipment) to develop embedded software based on linux in
Windows. It supports remote debugging and source-level
debugging. But, it doesn’t offer function to test and analyze
embedded software’s performance, because it is only IDE for
specific RTOS/chip vendor. It is also suitable for testing
general-purpose target system, because it uses linux-based
utilities.

TestQuest Pro is automated test solution for embedded

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:1, 2007

164International Scholarly and Scientific Research & Innovation 1(1) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

1,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

19
61

.p
df

systems with sophisticated human interfaces. It is automated
test solution for virtually any application and device ranging
from cell phones, PDAs and tablets to devices with embedded
technologies, including wireless enterprise systems, smart
appliances and automobiles. It offers functions related in
debugging and simulating embedded software’s source code
but doesn’t proffer information for software’s performance in
usage of resource.

Rational’s TestRealTime is target-based evaluation system
for embedded software’s performance. It proffers various result
views that users can easily analyze software’s performance. It
can also execute various performance testing ranging from
memory usage, memory leak, cpu usage to code coverage. But,
The result view is somewhat complicated to understand result’s
meaning at a glance.

III. PROPOSED PERFORMANCE EVALUATION SYSTEM

In this paper, we suggest system for testing embedded
software’s performance that consists of pure software without
additional hardware equipment and offers such various
performance testing as memory, code coverage, code trace and
function performance [1]-[7]. The evaluation system proffers
users graphical report views that they can easily and intuitively
analyze the test result. Fig. 1 is the proposed architecture for a
performance evaluation system.

T a rg e t-S id e

 H o s t-S id e

H o s tA g e n t

T a rg e tA g e n t

R e p o rt V ie w e r

T e s t C o d e w ith
In s tru m e n te d C o d e

T e s t C o d e

T e s tin g
C o n tro lle r

R e s u lt
H a n d le r

T e s t C o d e
H a n d le r

R e s u lt
H a n d le r

U s e r

T e s tin g
M o d u le

A P I fo r R e s u lt

R e s u lt
A n a ly ze r

R e s u lt
S e p e ra to r

R e s u lt
T ra n s la to r

C o d e A n a ly z e r

In s tru m e n to rC ro s s -
C o m p ile r

R a w -le v e l
R e s u lt

A P I

R e p o rt G e n e ra to r

R a w -le v e l
R e s u lt

Fig. 1. A Proposed Architecture of Performance Evaluation System

In Fig. 1, the proposed evaluation system is composed with

GUI, host/target-side agents, code analyzer, result analyzer,
and report viewer. The code analyzer consists of instrumentor
to insert additional code into source code and cross compiler to
create target-execute file for the source code. The evaluation
system is a client/server model based in host-target architecture.
Because embedded system offers insufficient memory and
inconvenient user interface, the suggested tool places agent not
only on host-side to proffer users convenient GUI but also on
target-side to execute software’s performance testing in target
board. The agents keep a communication connection to deliver
source file and test result to each other. Firstly host-side agent
transfers inputted source to target-side agent through serial
cable or wireless network. Then, target-side agent executes
testing process, gains results from the test events, and send the
results to its host-side counterpart. Consequently, host-side
agent stores the raw-level result received from target-side one
into result DB. Generally, embedded software must use
minimum process and memory resources [3][4]. To meet the
requirement, the suggested tool tests software’s performance
for the 4 items described in Table I [5][6].

TABLE I
UNITS FOR MAGNETIC PROPERTIES

Testing Items Function

Trace Profiling
Tracing software’s runtime execution in UML
sequence diagram

Memory Profiling Profiling software’s resource usage related memory.

Performance Profiling
Profiling function or method’s execution
performance.

Code Coverage Profiling Separating and Profiling code block [8].

Through trace profiling, users can trace what functions are
executed according to software’s execution process and find
what functions are unnecessarily called. Report viewer shows
result for trace profiling as UML sequence diagram [9][10].
Through memory profiling, users can know information about
memory allocation/de-allocation, memory leak, and code
sections frequently to use memory. Users can use performance
profiling to estimate how much time it takes to execute the
whole or part of embedded software and confirms whether it
becomes optimized in embedded system. Code coverage
profiling offers users information about used or not used code
section, and frequently or not frequently code section. Users
can make embedded software more efficient by using
information profiled according to the 4 items. Usually result
created from profiling software exists in raw-level strings. It is
difficult and tiresome for users to analyzing software
performance with it.

Result analyzer classifies raw-level result according to the
items referred in Table I and converts it into refined data type. It
contains result separator and result translator. The result
separator classifies raw-level result into different data type in
accordance with the profiling items. The result translator

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:1, 2007

165International Scholarly and Scientific Research & Innovation 1(1) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

1,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

19
61

.p
df

converts the classified result into API classes or XML files that
report generator can use to make a report view for user’s
requirement. The API or XML produced by the result analyzer
is stored into API DB.

Table II describes a part of memory-related API class that
raw-level result created through memory profiling is converted
into.

TABLE II
A PART OF API CLASS FOR MEMORY-RELATED RAW-LEVEL RESULT

public class DataConverter {
private CInstrumentationTable instrumentations;
public instrumentations(CInstrumentationTable instrumentations){
this. instrumentations = instrumentations;
}
public static IMemoryElement convertingMemoryElement(IEvent

event){
/* Read the symbol from raw-level result produced according to

memory profile test event and convert it into * /
 return new MemoryElement();
 }

Report generator makes graphical report view by using result
APIs, when users select one of report views in evaluation
system’s menu. The suggested evaluation system includes
report viewer, through that users can see selected report view.

IV. TESTING AND RESULTS

The suggested evaluation system is implemented in Java and
its testing environment is embedded board launched strong
ARM chip and embedded Linux. To evaluate performance for
example C source program, we use a calculator program in C
language as input source code. The source’s code size is about
520 lines. It consists of three modules. We test them against the
4 items appeared in Table I and shows graphical report views
for the results through report viewer.

Fig. 2 shows the evaluation system’s initial screen to test
calculator program.

Fig. 2. The suggested evaluation system's initial screen for testing

After cross-compiling by code analyzer, the source code
includes additional code that is dependent on target system.
Then the evaluation system takes connection with target system
to transfer source code to target system through host/target

agents. After testing in target system, raw-level test result in
string type is outputted. Table III shows a part of raw-level test
result related in memory performance of the test source code
appeared in Fig. 2.

TABLE III
A RAW-LEVEL TEST RESULT

index % time self children called name
95000 func1 <cycle 1> [3]

[2] 0.0 0.00 0.00 95000 func2 <cycle 1> [2]
900 func1 <cycle 1> [3]

 900 func2 <cycle 1> [2]
0.00 0.00 1000/1000 main [13]

[3] 0.0 0.00 0.00 1900 func1 <cycle 1> [3]
95000 func2 <cycle 1> [2]

Index by function name
[3] func1 [2] func2 [1] <cycle 1>
@ <Location>:(Called function + Called Location)[Instruction
Location] +/- Address Size= Start
@ ./ex-n:(mtrace+0x169)[0x80484e9] + 0x804a378
0x12@ ./ex-n:[0x8048596] - 0x804a378

But, it is difficult for users to analyze the meanings. So, the
evaluation system offers users graphical result views through
data analyzer, report generator, and report viewer. Fig. 3 shows
a graphical report view that report generator and report viewer
make with API to that data analyzer translates raw-level trace
result after testing the source in Fig. 2.

Fig. 3. Trace profiling view for raw-level test result

With the view showed in Fig. 2, we can know each
function’s execution time and its call order. So, developers can
find a function that take a lot of time to process its processing,
and can re-write source program to distribute a burden of works
to others. Then, we can obtain other report views for test result
of the test source in Fig. 2. Fig. 4 shows memory report view
related in memory performance of the test result.

In Fig. 4, we can know information about software’s
memory usage such as memory allocation, freed memory, or a
maximum of byte used at the same times through the memory
report view.

So, developers can find a portion of source code that cause

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:1, 2007

166International Scholarly and Scientific Research & Innovation 1(1) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

1,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

19
61

.p
df

memory extravagance and dismiss it.

Fig. 4. Memory report view

Fig. 5 shows code coverage and performance report views.
In Fig. 5, through the code coverage report view, we can also
know whether some function was executed or not and get
information about execution rates of code blocks in function.
And, with the performance report view, we can find
information about each function’s call times and execution
time.

Fig. 5. Code coverage and Performance report views

So, we can get information about code blocks and make
balance among code blocks. So, we can get information about
each function’s execution efficiency and tune it.

V. CONCLUSION

In this paper, we suggested a graphic-based system to easily
evaluate embedded software’s performance and intuitively to
analyze results through graphic report views. The suggested
evaluation system has adopted a client-server model based in
agents. It is for the purpose of supporting development
environment of embedded software based in cross-platform.
The system adopts data analyzer to refine initial raw-level test
result into API, which is class type. Developers can easily reuse
API in various tools to evaluate embedded software’s
performance [12]. As a evaluation tool using API, the
suggested system offers developers a report viewer. In test, we
tested C source code and showed the results graphically
through report viewer. Through the suggested tool, developers
can clearly know what must be fixed in software’s source code
and can improve development efficiency of embedded
software.

For the future, we will study method to automate a test case
and to develop an internet-based testing system for embedded
system by translating test data as XML document [13][14].

REFERENCES

[1] Roper, Marc, Software Testing, London, McGraw-Hill Book Company,
1994.

[2] Boris Beizer, Software Testing Techniques 2nd edition, New York: Van

Nostrand Reinhold, 1990
[3] Bart Broekman and Edwin Notenboom, Testing Embedded Software,

Addisson-wesley, Dec. 2002
[4] Dr. Neal Stollon, Rick Leatherman and Bruce Ableidinger, Multi-Core

Embedded Debug for Structured ASIC Systems, proceedings of

DesignCon 2004, Feb, 2004.
[5] David B. Stewart, Gaurav Arora, A Tool for Analyzing and Fine Tuning

the Real-Time Properties of an Embedded System. IEEE Trans. Software
Eng., Vol.TSE-29, No.4, April 2003, pp.311-326.

[6] Ichiro Satoh, A Testing Framework for Mobile Computing Software.
IEEE Trans. Software Eng., Vol.TSE-29, No.12, December 2003,
pp.1112-1121.

[7] Paul Anderson, Thomas W. Reps, Tim Teitelbaum, Design and

Implementation of a Fine-Grained Software Inspection Tool. IEEE Trans.
Software Eng., Vol.TSE-29, No.8, August 2003, pp.721-733.

[8] John Joseph Chilenski and Steven P. Miller, Applicability of Modified

Condition/Decision Coverage to Software Testing, Software Engineering
Journal, September 1994, Vol. 9, No. 5, pp. 193-200.

[9] Robert B. France, Dae-Kyoo Kim, Sudipto Ghosh, Eunjee Song, A

UML-Based Pattern Specification Technique, IEEE Trans. Software Eng.,
Vol.TSE-30, No.4, April 2004, pp. 193-206.

[10] Ludovic Apvrille, Jean-Pierre Courtiat, Christophe Lohr, Pierre de
Saqui-Sannes, TURTLE: A Real-Time UML Profile Supported by a

Formal Validation Toolkit. IEEE Trans. Software Eng., Vol.TSE-30,
No.7, July 2004, pp. 473-487.

[11] William E. Howden, Weak Mutation Testing and Completeness of Test

Sets, IEEE Trans. Software Eng., Vol.SE-8, No.4, July 1982, pp.371-379.
[12] Brad Long, Daniel Hoffman, Paul A. Strooper, Tool Support for Testing

Concurrent Java Components. IEEE Trans. Software Eng., Vol.TSE-29,
No.6, June 2003, pp.555-566.

[13] Morell, Larry, A Theory of Fault-Based Testing, IEEE Trans. Software
Eng., Vol.16, No.8, August 1990, pp.844-857.

[14] John P. Kearns, Carol J. Meier and Mary Lou Soffa, The Performance

Evaluation of Control Implementations. IEEE Trans. Software Eng.,
Vol.SE-8, No.2, February 1982, pp.89-96.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:1, 2007

167International Scholarly and Scientific Research & Innovation 1(1) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

1,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

19
61

.p
df

