

Abstract—Mutation testing is the art of generating syntactic

variations of a base program and checking whether a candidate test
suite can identify all the mutants that are not semantically equivalent
to the base; this technique can be used to assess the quality of test suite.
One of the main obstacles to the widespread use of mutation testing is
cost, as even small programs (a few dozen lines of code) can give rise
to a large number of mutants (up to hundreds); this has created an
incentive to seek to reduce the number of mutants while preserving
their collective effectiveness. Two criteria have been used to reduce
the size of mutant sets: equivalence, which aims to partition the set of
mutants into equivalence classes modulo semantic equivalence, and
selecting one representative per class; and, subsumption, which aims
to define a partial ordering among mutants that ranks mutants by
effectiveness and seeks to select maximal elements in this ordering. In
this paper, we analyze these two policies using analytical and empirical
criteria.

Keywords—Mutation testing, mutant sets, mutant equivalence,

mutant subsumption, mutant set minimization.

I. INTRODUCTION: MINIMIZING MUTANT SETS

UTATION testing is a reliable way to assess the
effectiveness of test suites, but it is also an expensive

proposition. As a consequence, it is sensible to try to reduce the
size of mutant sets, without loss of effectiveness. To the best of
our knowledge, two broad families of criteria are used for the
purpose of minimizing mutant sets:
 Subsumption [1]-[7]: A mutant M is said to subsume a

mutant M' if and only if any test that kills M also kills M',
and there exists a test that kills M. The subsumption
criterion provides that if M subsumes M' then M' can be
removed from the set of mutants.

 Equivalence [8]: In [8], Marsit et al. consider the
equivalence relation of semantic equivalence between
mutants and resolve to derive a minimal set of mutants as
a set that includes one element from each equivalence
class.

In this paper, we consider these two policies of mutant set
minimization and compare them analytically and empirically.
While subsumption is defined as an ordering relation between
individual mutants, we argue that it is best viewed as an
ordering relation between equivalence classes of mutants
(modulo semantic equivalence). Indeed, if M subsumes M' and
10 mutants are equivalent to M and 10 are equivalent to M', we
are still looking at a single instance of the ordering relation, not
100 instances. The implication of this remark is that
subsumption ought not be applied as an alternative to

Samia Alblwi is with New Jersey Institute of Technology, Newark NJ, USA

(e-mail: sma225@njit.edu).

equivalence, but rather alongside equivalence. We must first
identify equivalence classes of mutants modulo semantic
equivalence, then identify which equivalence classes are
maximal by subsumption, and select a representative from each
maximal equivalence class. This raises the question: if we have
reduced a set of mutants to one representative per equivalence
class, how much more reduction do we achieve by applying the
criterion of subsumption? As a corollary of this question, it is
also legitimate to ask: is the extra reduction in the set of mutants
commensurate with the effort and risk of subsumption? Another
aspect to consider is that, in [8], Marsit et al. derive the minimal
set of mutants without analyzing all the mutants; rather, they
estimate the amount of redundancy in the base program, and use
a regression model to estimate the number of equivalence
classes in the set of mutants. Knowing this number, we can
shorten the search of equivalence classes significantly, as
shown in [8].

Both criteria of mutant set minimization fail to explicitly
specify a constraint under which the minimization is attempted.
Indeed, all optimization problems aim to maximize or minimize
an objective function under some constraints: The Knapsack
Problem aims to maximize some benefit function under the
constraint that the capacity of the knapsack is bounded; the
Linear Programming problem aims to maximize some linear
objective function under some affine constraints on the system
parameters; and, the Maximum Flow problem aims to
maximize the flow through a flow network subject to the
topology of the network and the constraint that each are has a
limited capacity. etc. Of course, we consider that the
minimization of mutant sets assumes implicitly that discarded
mutants do not reduce the effectiveness of the mutant set; but,
in the absence of an explicit definition of what the effectiveness
of a mutant set is and how to quantify it, it is difficult to make
the case that the minimization algorithms are sound.

Another question that is raised by the use of subsumption as
a criterion for mutant set minimization is the fact that the
definition of subsumption is based on the outcome of programs
and mutants being different. In order to give a precise meaning
to this definition, we must agree on what is the outcome of a
program, and when do we say that two outcomes are identical
or distinct. This is less clear-cut than it may appear:
 What is a program's outcome? If a program or a mutant

fails to terminate, due to an infinite loop, or a division by
zero, or an array reference out of bound, do we consider
these to be legitimate outcomes? Or do we define the
outcome of a program only when the program's execution

Amani Ayad is with Kean University, Union NJ, USA (e-mail:
amanayad@kean.edu).

Minimizing Mutant Sets by Equivalence and
Subsumption
Samia Alblwi, Amani Ayad

M

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

21International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

4.
pd

f

terminates normally?
 Also, even when a program does terminate normally, it is

not always clear what we consider to be its outcome: Is it
its final state or the output that the program delivers as a
projection of the final state? For example, if a program
permutes two variables x and y using an auxiliary variable
z, what is the outcome of the program? Is it the final values
of x, y and z, or just the final values of x and y?

 When do we say that two outcomes are identical? If two
programs terminate normally for some common input, then
(assuming we agree what variables represent the program`s
outcome) we can tell whether they have the same outcome.
But what about if one of them converges and the other fails
to converge? Do we assume that they have distinct
outcomes, or that their outcomes cannot be compared?
What about the case when two programs fail to converge,
do we consider that they have the same outcome (failure to
converge) or that their outcomes are incomparable?

This matter will be discussed in Section IV, and subsumption
will be (re)defined accordingly. In Section II, we introduce
some elements of relational mathematics which we use in
Section III to discuss differentiator sets and detector sets. In
Section IV, we use the concept of differentiator sets to
generalize the definition of mutant subsumption, and in Section
V, we conduct an experiment in which we compare the results
of minimizing a set of mutants by equivalence and by
subsumption. In Section VI, we summarize our results, critique
them, and sketch directions of future research.

II. MATHEMATICS FOR PROGRAM ANALYSIS

In this paper, we use relations and functions [3] to capture
program specifications and program semantics. For the sake of
simplicity, and without loss of generality, we consider
homogenous relations on sets represented by program-like
declarations. Modeling the program behavior by homogenous
relations encompasses the case where we want to model it by a
relation from inputs to outputs: It suffices to add an input stream
and an output stream as state variables. We, generally, denote
sets (referred to as spaces) by S, and elements of S (referred to
as states) by lower case s, specifications (binary relations on S)
by R and programs (functions on S) by P, Q. We denote the
domain of a relation R (or a function P) by dom(R) (dom(P)).
Because we model programs and specifications by homogenous
relations/functions, we usually talk about initial states and final
states; we may talk about inputs to refer to the initial value of
the input stream and outputs to refer to the final value of the
output stream. A specification R includes all the (initial state,
final state) pairs that the specifier considers correct: hence the
domain of a specification R (dom(R)) includes all the initial
states for which candidate programs must make provisions. A
program P includes all the initial state/final state pairs (s, s')
such that if P starts execution in initial states, it terminates
normally (i.e., after a finite number of steps, without raising an
exception) in state s'. From this definition, it stems that the
domain of program P (dom(P)) is the set of initial states s such
that execution of P on s terminates after a finite number of steps
and does not raise an exception (such as an overflow.

underflow, division by zero, array reference out of bounds,
etc.). Whenever a program P fails to terminate or raises an
exception for initial state s, we say that it diverges on s; else we
say that it terminates normally (or that it converges) on s.

III. DIFFERENTIATORS AND DETECTORS

A. Differentiator Sets

Given a base program P and a mutant M, a differentiator set
of M with respect to P is the set of initial states for which
execution of P and M yield different outcomes. This concept is
inspired from [9] and the definition we adopt in this paper is
due to [10]. Following [10], we consider three different
definitions of a differentiator set, depending on what we
consider to be the outcome of an execution, under what
condition we consider that two outcomes are comparable, and
if they are, under what condition we consider them to be
identical. Even though in this paper we use differentiator sets
only in reference to a base program (say, P) and its mutant (say,
M), our definitions talk about two arbitrary programs P and Q,
regardless of what syntactic relation holds between them.
 Basic Interpretation: We assume that programs P and Q

converge (terminate normally) for all initial states in S, and
their outcome is their final state (or the final value of their
output stream). Their differentiator set (which we denote
by δ0(P, Q)) is the set of initial states for which their
outcomes are distinct.

 Strict Interpretation: We do not assume that P and Q
converge for all initial states, but we restrict their
differentiator set to those initial states for which they both
converge and produce distinct outcomes; we denote this
differentiator set by δ1(P, Q).

 Broad Interpretation: We do not assume that P and Q
converge for all initial states, but we restrict their
differentiator set to those initial states for which they both
converge and produce distinct outcomes or only one of
them converges (we assume that a program that diverges
has a different outcome from a program that converges,
regardless of the final state of the latter); we denote this
differentiator set by δ2(P,Q).

The following definition gives explicit formulas of
differentiator sets under the three interpretations given above.
To understand these definitions, it suffices to note the
following:
• The set of initial states for which program P (resp. Q)

converges is dom(P) (resp. dom(Q)).
• The set of initial states for which the final states of P and Q

are identical is dom(P ∩ Q).
• The following inequality holds by set theory: dom(P ∩Q)

⊆ dom(P) ∩ dom(Q).
Definition1: The definition of a differentiator set of two
programs P and Q depends on how we define the outcome of a
program, under what condition we consider that two outcomes
are comparable, and under what condition we consider that two
comparable outcomes are identical.
 Under the basic interpretation, the differentiator set of two

programs P and Q is denoted by δ0(P, Q) and defined as:

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

22International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

4.
pd

f

δ0 (P, Q) = 𝑑𝑜𝑚 (𝑃 ∩ 𝑄).

 Under the strict interpretation, the differentiator set of two
programs P and Q is denoted by δ1(P, Q) and defined as:

δ1 (P, Q) = 𝑑𝑜𝑚(𝑃) ∩ 𝑑𝑜𝑚(𝑄) ∩ 𝑑𝑜𝑚 (𝑃 ∩ 𝑄).

 Under the broad interpretation, the differentiator set of two

programs P and Q is denoted by δ2(P, Q) and defined as:

δ2(P, Q) = (𝑑𝑜𝑚(𝑃) ∪ 𝑑𝑜𝑚(𝑄)) ∩ 𝑑𝑜𝑚 (𝑃 ∩ 𝑄).

For the basic interpretation of program outcomes and
outcome comparison, imagine that dom(P) and dom(Q) are both
equal to (all of) S. Whenever we want to refer to a differentiator
set of programs P and Q without specifying the interpretation,
we use the notation 𝛿(𝑃, 𝑄). For illustration of differentiator sets
under the basic interpretation, we consider space S defined by
a single integer variable, and we consider two programs that
converge for all initial states:

P: {s=pow(s,4) +35*s*s+24;} Q: {s=10*pow(s,3) +50*s;}

The functions of these programs are:

P = {(s, s′) |s′ = s4 + 35s2 + 24}.

Q = {(s, s′) |s′ = 10s3 + 50s}.

Their intersection is:

𝑃 ∩ 𝑄 = {(𝑠, 𝑠′) |𝑠4 + 35𝑠2 + 24 = 10𝑠3 + 50𝑠 ∧ 𝑠′ = 𝑠4 +

35𝑠2 + 24}.

The domain of their intersection is:

𝑑𝑜𝑚(𝑃 ∩ 𝑄) = {𝑠|𝑠4 + 35𝑠 2 + 24 = 10𝑠3 + 50𝑠}.

Solving this equation in the fourth degree, we find:

𝑑𝑜𝑚(𝑃 ∩ 𝑄) = {𝑠|1 ≤ 𝑠 ≤ 4}.

Taking the complement, we find:

δ0 (P, Q) = 𝑑𝑜𝑚(𝑃, 𝑄) = {s|s < 1 ∨ s > 4}.

For illustration of differentiator sets under the strict and
broad interpretation, we consider the following programs P and
Q on space S defined by an integer variable s:

P: {if (s<0) {while (s! =0) {s=s-1;}} else {s=pow(s,4)

+35*s*s+24;}}

Q: {if (s>5) {while (s! =5) {s=s+1;}} else {s=10*pow(s,3)
+50*s;}}

Note that P fails to converge for all s less than zero (since it

enters an infinite loop) and Q fails to converge for all s greater

than 5 (for the same reason). The functions of these programs
are:

𝑃 = {(𝑠, 𝑠′)|𝑠 ≥ 0 ∧ 𝑠′ = 𝑠44 + 35𝑠2 + 24}.

𝑄 = {(𝑠, 𝑠′)|𝑠 ≤ 5 ∧ 𝑠′ = 10𝑠3 + 50𝑠}.

From these definitions, we compute the following

parameters:

𝑑𝑜𝑚(𝑃) = {𝑠|𝑠 ≥ 0}.

𝑑𝑜𝑚(𝑄) = {𝑠|𝑠 ≤ 5}.

P ∩ Q = {(s, s′) |0 ≤ s ≤ 5 ∧ s4 + 35s2 + 24 =10s3 + 50s ∧ s′ =
10s3 + 50s}.

𝑑𝑜𝑚 (𝑃 ∩ 𝑄) = {s|0 ≤ s ≤ 5 ∧ s4 + 35s2 + 24 =10s3 + 50s}.

By solving the equation (s4 + 35s2 + 24 = 10s3 + 50s), we can

simplify the formula of dom (P∩ Q) as:

𝑑𝑜𝑚 (𝑃 ∩ 𝑄) = {𝑠|1 ≤ 𝑠 ≤ 4}.

Whence we find the following results for the strict
differentiator set and the broad differentiator set of programs P
and Q:

𝛿1(𝑃, 𝑄) = {0, 5}.

𝛿2(𝑃, 𝑄) = {𝑠|𝑠 ≤ 0 ∨ 𝑠 ≥ 5}.

Interpretation:

 Strict Differentiator Set: The set of initial states that expose
the difference between P and Q is {0, 5} because the
interval [0...5] includes all the initial states where both P
and Q are defined (dom(P) ∩ dom(Q)), and programs P and
Q return the same results for initial states in the interval
[1...4] (dom (P ∩ Q)).

 Broad Differentiator Set: Any initial state outside the
interval [1..4] exposes the difference between P and Q,
either because they are both defined but give different
results (if the initial state is 0 or 5) or because one of them
terminates normally while the other diverges (for s greater
than 5, P terminates normally but Q does not; for s
negative, Q terminates normally but P does not).

B. Detector Sets

An ideal test suite is one that we can rely on to prove
correctness: If program P runs successfully on test suite T, we
want to be able to infer that P is correct; equivalently, we want
that if P is incorrect, then testing P on test suite T ought to
expose a failure of P. This leads us to the concept of detector
set, i.e., the set of all the initial states on which program P
violates its specification. This set is important because it
enables us to characterize ideal test suites: ideal test suites are
supersets of the program’s detector set. This concept also
enables us to compare (at least theoretically) test suites; a better

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

23International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

4.
pd

f

test suite is one that has a larger intersection with the detector
set. But before we define detector sets, we must consider that
there are two definitions of correctness, and these yield two
distinct interpretations of what it means for a program to fall
short of the standard of correctness; therefore, there are two
possible definitions of detector sets, depending on what
standard of correctness we adopt. We consider two definitions
of program correctness: total correctness [11], [12] and partial
correctness [13].
Definition2: According to [14], given a program P on space S
and a specification (relation) R on S, P is said to be totally
correct with respect to R if and only if:

𝑑𝑜𝑚(𝑅) = 𝑑𝑜𝑚 (𝑅 ∩ 𝑃).

According to [15], given a program P on space S and a

specification(relation) R on S, P is said to be partially correct
with respect to R if and only if:

𝑑𝑜𝑚(𝑅) ∩ 𝑑𝑜𝑚(𝑃) = 𝑑𝑜𝑚 (𝑅 ∩ 𝑃).

These definitions are equivalent, to the traditional definitions

of total and partial correctness [11]-[13]. The domain of (R ∩
P) is the set of initial states on which P satisfies R; we refer to
it as the competence domain of P with respect to R. Since total
correctness is a stronger property than (logically implies) partial
correctness, we expect the set of tests that disprove the former
to be superset of the set of tests that disprove the latter. We
adopt the definitions of detector sets given in [15]; hence, we
content ourselves in this paper with introducing these
definitions and briefly commenting on them.
Definition3: According to [15], given a program P on space S
and a specification R on S, the total detector set of P with
respect to R is the set denoted by 𝜃𝑇 (𝑃, 𝑅) and defined as the
set of initial states on which execution of P produces an
outcome that disproves the total correctness of P with respect to
R (either the execution fails to converges or it does converge
but produces a final state s′ such that (s, s′) ∉R). Given a
program P on space S and a specification R on S, the partial
detector set of P with respect to R is the set denoted by 𝜃𝑃(𝑃, 𝑅)
and defined as the set of initial states on which execution of P
produces an outcome that disproves the partial correctness of P
with respect to R (the execution converges but produces a final
state s′ such that (s, s′) ∉R).

When we want to refer to a detector set and do not wish to
specify to which one we refer, we use the notation (P,R). The
following proposition, according to [15], gives explicit
expressions of the detector sets.
Proposition1: Given a program P on space S and a specification
R on S, the total detector set and the partial detector set of P
with respect to R are given by the following formulas:

𝜃𝑇 (𝑃, 𝑅) = 𝑑𝑜𝑚(𝑅) ∩ 𝑑𝑜𝑚(𝑃 ∩ 𝑅).

𝜃𝑃 (𝑃, 𝑅) = 𝑑𝑜𝑚(𝑃) ∩ 𝑑𝑜𝑚(𝑅) ∩ 𝑑𝑜𝑚(𝑃 ∩ 𝑅).

A test suite T disproves the total (respectively, partial)

correctness of P with respect to R if and only if (respectively):

𝑇 ∩ ∅𝑇 (𝑅, 𝑃) ≠ ∅.

𝑇 ∩ ∅𝑃 (𝑅, 𝑃) ≠ ∅.

If a test suite T disproves a correctness property, then so does
any superset thereof.
Proposition2: A program P is totally (resp. partially) correct
with respect to a specification R if and only if its total (resp.
partial) detector set is empty, see Fig. 1.

Fig. 1 Test data to expose behavior difference

IV. REVISITING SUBSUMPTION

In this section, we use differentiator sets to characterize the
subsumption relation.

A. Subsumption of Convergent Programs

We consider a program P on space S and two mutants M and
M′ of P, and we assume that P, M and M′ converge for all s in
S. According to [10], [11], mutant subsumption is defined as
follows:
Definition4: Given a program P on space S and two mutants M
and M′ of P, we say that M subsumes M′ with respect to P if
and only if:
• There exists an initial state s in S such that P and M

compute different outcomes.
• For all initial states s in S, if M computes a different

outcome from P on s, then so does M′.
The following proposition gives a simple characterization of

mutant subsumption, using differentiator sets.
Proposition3: Given a program P on space S and two mutants
M and M′, M subsumes M′ with respect to P if and only if:

∅ ⊂ 𝛿0 𝑃, 𝑀 ⊆ 𝛿0 𝑃, 𝑀′ .

Proof. The statement 𝑃 𝑠 𝑀 𝑠 is equivalent to 𝑠 ∉ 𝑑𝑜𝑚 𝑃
∩ 𝑀 ; this, in turn, is equivalent to 𝑠 ∈ 𝑑𝑜𝑚 𝑃 ∩ 𝑀 , which is
equivalent to 𝑠 ∈ 𝛿0 𝑃, 𝑀 . The existence of such an s means
that 𝛿0 (P, M) is not the empty set.

The second condition of the definition of subsumption can be

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

24International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

4.
pd

f

written as:

∀𝑠 ∶ 𝑃(𝑠) ≠ 𝑀(𝑠) ⇒ 𝑃(𝑠) ≠ 𝑀′(𝑠).

This is equivalent to:

∀𝑠 ∶ 𝑠 ∈ 𝑑𝑜𝑚(𝑃 ∩ 𝑀) ⇒ 𝑠 ∈ 𝑑𝑜𝑚(𝑃 ∩ 𝑀′).

By the definition of basic differentiator set, we rewrite this
as:

∀𝑠 ∶ 𝑠 ∈ 𝛿0(𝑃, 𝑀) ⇒ 𝑠 ∈ 𝛿0(𝑃, 𝑀′).

By set theory, this can be rewritten as:

𝛿0 (𝑃, 𝑀) ⊆ 𝛿0 (𝑃, 𝑀′).

B. Considering Divergence

Failure to converge is a condition that arises often, not least
in mutation testing; for example, if we have a loop that visits all
the cells of an array between indices 0 and N − 1 using the
condition while (i < N), and we change the condition of the loop
from < to ≤ (a common mutation operator), the mutant we
generate will raise an exception (array reference out of bound)
and fail to terminate normally. Hence, it is sensible to (re)define
subsumption in a way that makes provisions for the possibility
that the program or its mutants may diverge for some initial
states. To this effect, we use the more general definitions of
differentiator sets, namely 𝛿1(𝑃, 𝑀) and 𝛿2(𝑃, 𝑀).
Definition5. Given a program P on space S and two mutants M
and M′ of P, we say that M subsumes M′ with respect to P if
and only if:

∅ ⊆ 𝛿(𝑃, 𝑀) ⊆ 𝛿(𝑃, 𝑀′).

We use 𝛿 (,) as a surrogate for any of the differentiator sets
we have introduced in Section III: 𝛿0(,), 𝛿1(,), 𝛿2(,). A user
may select a function among these depending on their
interpretation of program outcomes. Note that even though we
define subsumption as if it were a relation between individual
mutants, we really refer to classes of equivalence of mutants
modulo semantic equivalence. Since we are taking a semantic
approach, we do not distinguish between mutants that compute
the same function on S, even if they are syntactically distinct.

V. MINIMIZING A MUTANT SET FOR JTERMINAL

We consider the Java benchmark program of jTerminal, an
open-source software product routinely used in mutation testing
experiments [5]. We apply the mutant generation tool
LittleDarwin in conjunction with a test generation and
deployment class that includes 35 test cases [5]. All our
analyses of mutant equivalence, mutant redundancy, mutant
survival, etc. are based on the outcomes of programs and
mutants on this test suite (and carefully selected subsets
thereof). For differentiator sets, we adopt the broad definition
𝛿2(𝑃, 𝑀); hence, we consider that failure to converge is a
legitimate execution outcome, and that failure to converge is
comparable to a normal outcome, and is distinct therefrom. In

other words, when the program fails to converge on some input
x, we consider that execution of the program on x does have an
outcome, and that this outcome is distinct from the outcome of
a program that converges, regardless of the output generated by
the convergent execution. Execution of LittleDarwin on
jTermanal yields 94 mutants, numbered m1 to m94; the test of
these mutants against the original using the selected test suite
kills 48 mutants. For the sake of documentation, we list them
below:

𝑚1, 𝑚2, 𝑚7, 𝑚8, 𝑚9, 𝑚10, 𝑚11, 𝑚12, 𝑚13, 𝑚14, 𝑚15,

𝑚16, 𝑚17, 𝑚18, 𝑚19, 𝑚21, 𝑚22,
𝑚23, 𝑚24, 𝑚25, 𝑚26, 𝑚27, 𝑚28, 𝑚44, 𝑚45, 𝑚46, 𝑚48,

𝑚49, 𝑚50, 𝑚51, 𝑚52, 𝑚53, 𝑚54,
𝑚55, 𝑚56, 𝑚57, 𝑚58, 𝑚59, 𝑚60, 𝑚61, 𝑚62, 𝑚63, 𝑚83,

𝑚88, 𝑚89, 𝑚90, 𝑚92, 𝑚93.

The remaining 46 mutants are semantically equivalent to the

pre-restriction of jTerminal to the selected test suite. In this
section, we generate a minimal mutant set out of the 48 mutants
using respectively the criterion of equivalence and the criterion
of subsumption.

A. Minimal Mutant Set by Equivalence

The procedure for generating a minimal mutant set outlined
in [8] provides the following steps for executing:
 Parse the source code of jTerminal to compute its

redundancy metrics: State redundancy (SRI, SRF);
functional redundancy (FR); Non Injectivity (NI).

 Use the redundancy metrics to estimate the REM (Rate of
Equivalent Mutants) of jTerminal: 𝑅𝐸𝑀 = 𝑓 (𝑆𝑅𝐼, 𝑆𝑅𝐹,
𝐹𝑅, 𝑁𝐼).

 Use the REM of jTerminal to estimate the number of
equivalence classes of the set of mutants modulo semantic
equivalence: 𝐾 = 𝑁𝐸𝐶(𝑁, 𝑅𝐸𝑀), where N is the number of
(killed) mutants.

 Using K and N, estimate the expected number of mutants
that we must inspect (among N) before we encounter K
distinct mutants: 𝐻 = 𝑁𝑂𝐼(𝑁, 𝐾).

 Inspect the mutants one by one, comparing them against
previously inspected mutants, until we find K distinct
mutants, or we inspect H mutants in total.

 We adopt the resulting set of distinct mutants as a minimal
set of mutants that preserves (approximately) the same
functionality as the original set of N mutants.

Because in this case the number of mutants is not very large,
and because we want to obviate the uncertainties that stem from
estimating the redundancy metrics, then REM, then K, then H,
we resolve to inspect all 48 mutants and compare them to each
other to find K distinct mutants. We find that out of the 48
mutants under consideration, the following 30 are distinct from
each other. We find μE =

𝑚1, 𝑚2, 𝑚7, 𝑚11, 𝑚13, 𝑚15, 𝑚19, 𝑚21, 𝑚22, 𝑚23, 𝑚24,

𝑚25, 𝑚27, 𝑚28, 𝑚44, 𝑚45,
𝑚46, 𝑚48, 𝑚49, 𝑚50, 𝑚51, 𝑚52, 𝑚53, 𝑚55, 𝑚56, 𝑚57,

𝑚60, 𝑚63, 𝑚92, 𝑚93.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

25International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

4.
pd

f

We compute the detector set of each of these 30 mutants,
which we use to derive minimal test suites that kill all the
mutants. To this effect, we record the detector sets on a two-
dimensional array where the mutants are represented in
columns and the test data are represented in rows. We iterate
through the following two steps until the array is empty.
 We select the test data that kill the most mutants.
 We remove the row that corresponds to the selected data,

as well as the columns of all the mutants that the data kills.
Because there are several instances where more than one

rows have the same maximal number of mutants, we may (and
typically do) generate several minimal test suites. We list 10
minimal test suites generated according to this procedure; the
numbers refer to the line of code where the data are generated
in the original test class. For our purposes, these numbers
uniquely identify the test data. Interestingly, all these sets have
exactly 11 elements. We find:

𝑇𝐸1 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 𝑡215,
𝑡239, 𝑡280}.

𝑇𝐸2 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209,
𝑡239, 𝑡280}.

𝑇𝐸3 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209,
𝑡241, 𝑡284}.

𝑇𝐸4 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡207, 𝑡215,
𝑡239, 𝑡280}.

𝑇𝐸5 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡203, 𝑡209,
𝑡239, 𝑡280}.

𝑇𝐸6 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 𝑡215,
𝑡239, 𝑡280}.

𝑇𝐸7 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209,
𝑡241, 𝑡284}.

𝑇𝐸8 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡203, 𝑡207,
𝑡239, 𝑡284}.

𝑇𝐸9 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209,
𝑡241, 𝑡280}.

𝑇𝐸10 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 𝑡215,
𝑡241, 𝑡284}.

By construction, this test suite kills the 30 mutants of the
minimal mutant set. Because the mutants outside the minimal
mutant set are semantically equivalent to mutants of the set, the
test suites above also kill the 48 killable mutants.

We notice that 𝑇𝐸1 and 𝑇𝐸6 are identical different selections
made when two or more test data kill the same member of
mutants may ultimately yield the same minimal test suite.

B. Minimal Mutant Set by Subsumption

To apply the subsumption criterion, we consider a
representative from each of the 30 equivalence classes of the 48
killable mutants and test them pairwise by comparing their
broad differentiator sets (𝛿2 (P, M)). Then, we isolate the
maximal mutants, i.e., those that are not subsumed by any other
mutants.

We find the following minimal set of mutants:

𝜇𝑆 = 𝑚1, 𝑚19, 𝑚23, 𝑚24, 𝑚25, 𝑚27, 𝑚44, 𝑚45, 𝑚48, 𝑚51, 𝑚60.

We compute the broad detector sets of these mutants, which
are (by construction) much smaller than those of the mutants
selected by equivalence; and, we apply the same procedure as
above to derive minimal test suites that kill all these mutants.
We find:

𝑇𝑆1 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡207,

𝑡239, 𝑡284}.
𝑇𝑆2 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209,

𝑡239, 𝑡280}.
𝑇𝑆3 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡207, 𝑡215,

𝑡239, 𝑡280}.
𝑇𝑆4 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 𝑡215,

𝑡241, 𝑡280}.
𝑇𝑆5 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡207, 𝑡215,

𝑡239, 𝑡280}.
𝑇𝑆6 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡203, 𝑡209,

𝑡241, 𝑡284}.
𝑇𝑆7 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡203, 𝑡207,

𝑡239, 𝑡280}.
𝑇𝑆8 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡207,

𝑡241, 𝑡280}.
𝑇𝑆9 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209,

𝑡239, 𝑡280}.
𝑇𝑆10 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡203, 𝑡207,

𝑡241, 𝑡284}.

A cursory inspection of the minimal test suites generated

from the minimal mutant set derived by equivalence and the
minimal mutant set derived by subsumption reveal that some of
the test suites are identical. For example, TE2 is identical to
TS2; and TE4 is identical to TS3. It is possible, even likely, that
the set of all the minimal test suites that kill all the mutants of
μE is the same as the set of all the minimal test suites that kill
all the mutants of μS. To be certain, we need to generate all the
minimal test suites for each mutant set; this is currently under
investigation.

VI. CONCLUDING REMARKS

In this paper, we have considered two policies for
minimizing a set of mutants and tried to analyze and compare
them using analytical and empirical arguments. Some of the
premises of our comparative study include the following:
 Subsumption is not a relation between individual mutants;

rather it is a relation between equivalence classes of
mutants, modulo semantic equivalence.

 As a consequence of this premise, the subsumption policy
is not orthogonal to the equivalence policy; rather it must
be mindful/cognizant of the equivalence relation and must
identify equivalence classes prior to identifying
subsumption relations between classes.

 If we quantify the effectiveness of a mutant set by the
minimal test suites that it vets, then the empirical study of
Section V is a resounding endorsement of subsumption,
since it appears to vet the same test suites with one third the
size (nine mutants vs. 30) and the test suites it vets kills all

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

26International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

4.
pd

f

(48) of the killable mutants of the base program.
 The results of Section V, to the extent that they are valid,

may also be interpreted to mean that if the set μE vets the
same minimal test suites as μS, then it may be sufficient to
generate μE.

Among the contributions of this paper, we mention:
 A reformulation of subsumption using differentiator sets,

and a generalization of subsumption to take into
consideration the possibility that the base program or the
mutants fail to converge.

 The observation that maximal mutants by subsumption
feature minimal detector sets and are in fact what Yao et al.
[16] refer to as stubborn mutants.

 A generalization of subsumption to apply, not to
equivalence classes of mutants, but to sets thereof. This
comes about naturally by generalizing the concept of
detector sets to sets of (equivalence classes of) mutants.

Future research prospects include completing the experiment
of Section V by computing all the minimal test suites of μE and
μS and comparing them. Also, we envision to apply the
generalized definition of subsumption that ranks sets of mutants
rather than individual (equivalence classes of) mutants: it would
be interesting to see whether this generalized formula enables
us to reduce further the minimal set of mutants while preserving
its effectiveness.

REFERENCES
[1] M. A. Guimaraes, L. Fernandes, M. Ribeiro, M. D’Amorim, and R. Gheyi,

“Optimizing Mutation Testing by Discovering Dynamic Mutant
Subsumption Relations,” 2020. doi: 10.1109/ICST46399.2020.00029.

[2] Y. Jia and M. Harman, “Constructing subtle faults using Higher Order
mutation testing,” 2008. doi: 10.1109/SCAM.2008.36.

[3] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng, “Mutant
subsumption graphs,” 2014. doi: 10.1109/ICSTW.2014.20.

[4] X. LI, Y. WANG, and H. LIN, “Coverage-Based Dynamic Mutant
Subsumption Graph,” DEStech Transactions on Computer Science and
Engineering, no. mmsta, 2018, doi: 10.12783/dtcse/mmsta2017/19661.

[5] A. Parsai and S. Demeyer, “Dynamic mutant subsumption analysis using
little darwin,” 2017. doi: 10.1145/3121245.3121249.

[6] B. Souza, “Identifying Mutation Subsumption Relations,” 2020. doi:
10.1145/3324884.3418921.

[7] M. C. Tenório, R. V. V. Lopes, J. Fechine, T. Marinho, and E. Costa,
“Subsumption in mutation testing: An automated model based on genetic
algorithm,” in Advances in Intelligent Systems and Computing, 2019, vol.
800 Part F1. doi: 10.1007/978-3-030-14070-0_24.

[8] I. Marsit et al., “The ratio of equivalent mutants: A key to analyzing
mutation equivalence,” Journal of Systems and Software, vol. 181, 2021,
doi: 10.1016/j.jss.2021.111039.

[9] D. Shin, S. Yoo, and D. H. Bae, “A Theoretical and Empirical Study of
Diversity-Aware Mutation Adequacy Criterion,” IEEE Transactions on
Software Engineering, vol. 44, no. 10, 2018, doi:
10.1109/TSE.2017.2732347.

[10] A. Mili, “Differentiators and detectors,” Information Processing Letters,
vol. 169, 2021, doi: 10.1016/j.ipl.2021.106111.

[11] D. Gries, The Science of Programming. 1981. doi: 10.1007/978-1-4612-
59831.

[12] A. Blikle, “Zohar Manna. Mathematical theory of computation. McGraw-
Hill Book Company, New York etc. 1974, x + 448 pp.,” Journal of
Symbolic Logic, vol. 44, no. 1, 1979, doi: 10.2307/2273714.

[13] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun ACM, vol. 12, no. 10, 1969, doi: 10.1145/363235.363259.

[14] R. G. H. V. R. B. J. D. G. by Harlan D. Mills, Principles of Computer
Programming: A Mathematical Approach. Allyn & Bacon, 1986.

[15] M. Ali and T. Fairouz, Software Testing Concepts and Operations, vol.
XXXIII, no. 2. 2015.

[16] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn

mutation operators using human analysis of equivalence,” in Proceedings
International Conference on Software Engineering, 2014, no. 1. doi:
10.1145/2568225.2568265.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

27International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

4.
pd

f

