
 

 
Abstract—Mutation testing is the art of generating syntactic 

variations of a base program and checking whether a candidate test 
suite can identify all the mutants that are not semantically equivalent 
to the base; this technique can be used to assess the quality of test suite. 
One of the main obstacles to the widespread use of mutation testing is 
cost, as even small programs (a few dozen lines of code) can give rise 
to a large number of mutants (up to hundreds); this has created an 
incentive to seek to reduce the number of mutants while preserving 
their collective effectiveness. Two criteria have been used to reduce 
the size of mutant sets: equivalence, which aims to partition the set of 
mutants into equivalence classes modulo semantic equivalence, and 
selecting one representative per class; and, subsumption, which aims 
to define a partial ordering among mutants that ranks mutants by 
effectiveness and seeks to select maximal elements in this ordering. In 
this paper, we analyze these two policies using analytical and empirical 
criteria. 

 
Keywords—Mutation testing, mutant sets, mutant equivalence, 

mutant subsumption, mutant set minimization. 

I. INTRODUCTION: MINIMIZING MUTANT SETS 

UTATION testing is a reliable way to assess the 
effectiveness of test suites, but it is also an expensive 

proposition. As a consequence, it is sensible to try to reduce the 
size of mutant sets, without loss of effectiveness. To the best of 
our knowledge, two broad families of criteria are used for the 
purpose of minimizing mutant sets: 
 Subsumption [1]-[7]: A mutant M is said to subsume a 

mutant M' if and only if any test that kills M also kills M', 
and there exists a test that kills M. The subsumption 
criterion provides that if M subsumes M' then M' can be 
removed from the set of mutants. 

 Equivalence [8]: In [8], Marsit et al. consider the 
equivalence relation of semantic equivalence between 
mutants and resolve to derive a minimal set of mutants as 
a set that includes one element from each equivalence 
class. 

In this paper, we consider these two policies of mutant set 
minimization and compare them analytically and empirically. 
While subsumption is defined as an ordering relation between 
individual mutants, we argue that it is best viewed as an 
ordering relation between equivalence classes of mutants 
(modulo semantic equivalence). Indeed, if M subsumes M' and 
10 mutants are equivalent to M and 10 are equivalent to M', we 
are still looking at a single instance of the ordering relation, not 
100 instances. The implication of this remark is that 
subsumption ought not be applied as an alternative to 
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equivalence, but rather alongside equivalence. We must first 
identify equivalence classes of mutants modulo semantic 
equivalence, then identify which equivalence classes are 
maximal by subsumption, and select a representative from each 
maximal equivalence class. This raises the question: if we have 
reduced a set of mutants to one representative per equivalence 
class, how much more reduction do we achieve by applying the 
criterion of subsumption? As a corollary of this question, it is 
also legitimate to ask: is the extra reduction in the set of mutants 
commensurate with the effort and risk of subsumption? Another 
aspect to consider is that, in [8], Marsit et al. derive the minimal 
set of mutants without analyzing all the mutants; rather, they 
estimate the amount of redundancy in the base program, and use 
a regression model to estimate the number of equivalence 
classes in the set of mutants. Knowing this number, we can 
shorten the search of equivalence classes significantly, as 
shown in [8]. 

Both criteria of mutant set minimization fail to explicitly 
specify a constraint under which the minimization is attempted. 
Indeed, all optimization problems aim to maximize or minimize 
an objective function under some constraints: The Knapsack 
Problem aims to maximize some benefit function under the 
constraint that the capacity of the knapsack is bounded; the 
Linear Programming problem aims to maximize some linear 
objective function under some affine constraints on the system 
parameters; and, the Maximum Flow problem aims to 
maximize the flow through a flow network subject to the 
topology of the network and the constraint that each are has a 
limited capacity. etc. Of course, we consider that the 
minimization of mutant sets assumes implicitly that discarded 
mutants do not reduce the effectiveness of the mutant set; but, 
in the absence of an explicit definition of what the effectiveness 
of a mutant set is and how to quantify it, it is difficult to make 
the case that the minimization algorithms are sound. 

Another question that is raised by the use of subsumption as 
a criterion for mutant set minimization is the fact that the 
definition of subsumption is based on the outcome of programs 
and mutants being different. In order to give a precise meaning 
to this definition, we must agree on what is the outcome of a 
program, and when do we say that two outcomes are identical 
or distinct. This is less clear-cut than it may appear: 
 What is a program's outcome? If a program or a mutant 

fails to terminate, due to an infinite loop, or a division by 
zero, or an array reference out of bound, do we consider 
these to be legitimate outcomes? Or do we define the 
outcome of a program only when the program's execution 
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terminates normally? 
 Also, even when a program does terminate normally, it is 

not always clear what we consider to be its outcome: Is it 
its final state or the output that the program delivers as a 
projection of the final state? For example, if a program 
permutes two variables x and y using an auxiliary variable 
z, what is the outcome of the program? Is it the final values 
of x, y and z, or just the final values of x and y? 

 When do we say that two outcomes are identical? If two 
programs terminate normally for some common input, then 
(assuming we agree what variables represent the program`s 
outcome) we can tell whether they have the same outcome. 
But what about if one of them converges and the other fails 
to converge? Do we assume that they have distinct 
outcomes, or that their outcomes cannot be compared? 
What about the case when two programs fail to converge, 
do we consider that they have the same outcome (failure to 
converge) or that their outcomes are incomparable? 

This matter will be discussed in Section IV, and subsumption 
will be (re)defined accordingly. In Section II, we introduce 
some elements of relational mathematics which we use in 
Section III to discuss differentiator sets and detector sets. In 
Section IV, we use the concept of differentiator sets to 
generalize the definition of mutant subsumption, and in Section 
V, we conduct an experiment in which we compare the results 
of minimizing a set of mutants by equivalence and by 
subsumption. In Section VI, we summarize our results, critique 
them, and sketch directions of future research. 

II. MATHEMATICS FOR PROGRAM ANALYSIS 

In this paper, we use relations and functions [3] to capture 
program specifications and program semantics. For the sake of 
simplicity, and without loss of generality, we consider 
homogenous relations on sets represented by program-like 
declarations. Modeling the program behavior by homogenous 
relations encompasses the case where we want to model it by a 
relation from inputs to outputs: It suffices to add an input stream 
and an output stream as state variables. We, generally, denote 
sets (referred to as spaces) by S, and elements of S (referred to 
as states) by lower case s, specifications (binary relations on S) 
by R and programs (functions on S) by P, Q. We denote the 
domain of a relation R (or a function P) by dom(R) (dom(P)). 
Because we model programs and specifications by homogenous 
relations/functions, we usually talk about initial states and final 
states; we may talk about inputs to refer to the initial value of 
the input stream and outputs to refer to the final value of the 
output stream. A specification R includes all the (initial state, 
final state) pairs that the specifier considers correct: hence the 
domain of a specification R (dom(R)) includes all the initial 
states for which candidate programs must make provisions. A 
program P includes all the initial state/final state pairs (s, s') 
such that if P starts execution in initial states, it terminates 
normally (i.e., after a finite number of steps, without raising an 
exception) in state s'. From this definition, it stems that the 
domain of program P (dom(P)) is the set of initial states s such 
that execution of P on s terminates after a finite number of steps 
and does not raise an exception (such as an overflow. 

underflow, division by zero, array reference out of bounds, 
etc.). Whenever a program P fails to terminate or raises an 
exception for initial state s, we say that it diverges on s; else we 
say that it terminates normally (or that it converges) on s. 

III. DIFFERENTIATORS AND DETECTORS 

A. Differentiator Sets 

Given a base program P and a mutant M, a differentiator set 
of M with respect to P is the set of initial states for which 
execution of P and M yield different outcomes. This concept is 
inspired from [9] and the definition we adopt in this paper is 
due to [10]. Following [10], we consider three different 
definitions of a differentiator set, depending on what we 
consider to be the outcome of an execution, under what 
condition we consider that two outcomes are comparable, and 
if they are, under what condition we consider them to be 
identical. Even though in this paper we use differentiator sets 
only in reference to a base program (say, P) and its mutant (say, 
M), our definitions talk about two arbitrary programs P and Q, 
regardless of what syntactic relation holds between them. 
 Basic Interpretation: We assume that programs P and Q 

converge (terminate normally) for all initial states in S, and 
their outcome is their final state (or the final value of their 
output stream). Their differentiator set (which we denote 
by δ0(P, Q)) is the set of initial states for which their 
outcomes are distinct. 

 Strict Interpretation: We do not assume that P and Q 
converge for all initial states, but we restrict their 
differentiator set to those initial states for which they both 
converge and produce distinct outcomes; we denote this 
differentiator set by δ1(P, Q). 

 Broad Interpretation: We do not assume that P and Q 
converge for all initial states, but we restrict their 
differentiator set to those initial states for which they both 
converge and produce distinct outcomes or only one of 
them converges (we assume that a program that diverges 
has a different outcome from a program that converges, 
regardless of the final state of the latter); we denote this 
differentiator set by δ2(P,Q). 

The following definition gives explicit formulas of 
differentiator sets under the three interpretations given above. 
To understand these definitions, it suffices to note the 
following: 
• The set of initial states for which program P (resp. Q) 

converges is dom(P) (resp. dom(Q)). 
• The set of initial states for which the final states of P and Q 

are identical is dom(P ∩ Q). 
• The following inequality holds by set theory: dom(P ∩Q) 

⊆ dom(P) ∩ dom(Q). 
Definition1: The definition of a differentiator set of two 
programs P and Q depends on how we define the outcome of a 
program, under what condition we consider that two outcomes 
are comparable, and under what condition we consider that two 
comparable outcomes are identical. 
 Under the basic interpretation, the differentiator set of two 

programs P and Q is denoted by δ0(P, Q) and defined as: 
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δ0 (P, Q) = 𝑑𝑜𝑚 (𝑃 ∩ 𝑄). 
 

 Under the strict interpretation, the differentiator set of two 
programs P and Q is denoted by δ1(P, Q) and defined as: 

 
δ1 (P, Q) = 𝑑𝑜𝑚(𝑃) ∩ 𝑑𝑜𝑚(𝑄) ∩ 𝑑𝑜𝑚 (𝑃 ∩ 𝑄). 

 
 Under the broad interpretation, the differentiator set of two 

programs P and Q is denoted by δ2(P, Q) and defined as: 
 

δ2(P, Q) = (𝑑𝑜𝑚(𝑃) ∪ 𝑑𝑜𝑚(𝑄)) ∩ 𝑑𝑜𝑚 (𝑃 ∩ 𝑄). 
 

For the basic interpretation of program outcomes and 
outcome comparison, imagine that dom(P) and dom(Q) are both 
equal to (all of) S. Whenever we want to refer to a differentiator 
set of programs P and Q without specifying the interpretation, 
we use the notation 𝛿(𝑃, 𝑄). For illustration of differentiator sets 
under the basic interpretation, we consider space S defined by 
a single integer variable, and we consider two programs that 
converge for all initial states: 

 
P: {s=pow(s,4) +35*s*s+24;} Q: {s=10*pow(s,3) +50*s;} 

 
The functions of these programs are: 
 

P = {(s, s′) |s′ = s4 + 35s2 + 24}. 
 

Q = {(s, s′) |s′ = 10s3 + 50s}. 
 

Their intersection is: 
 
𝑃 ∩ 𝑄 = {(𝑠, 𝑠′) |𝑠4 + 35𝑠2 + 24 = 10𝑠3 + 50𝑠 ∧ 𝑠′ = 𝑠4 + 

35𝑠2 + 24}. 
 

The domain of their intersection is: 
 

𝑑𝑜𝑚(𝑃 ∩ 𝑄) = {𝑠|𝑠4 + 35𝑠 2 + 24 = 10𝑠3 + 50𝑠}. 
 

Solving this equation in the fourth degree, we find: 
 

𝑑𝑜𝑚(𝑃 ∩ 𝑄) = {𝑠|1 ≤ 𝑠 ≤ 4}. 
 

Taking the complement, we find: 
 

δ0 (P, Q) = 𝑑𝑜𝑚(𝑃, 𝑄) = {s|s < 1 ∨ s > 4}. 
 

For illustration of differentiator sets under the strict and 
broad interpretation, we consider the following programs P and 
Q on space S defined by an integer variable s: 

 
P: {if (s<0) {while (s! =0) {s=s-1;}} else {s=pow(s,4) 

+35*s*s+24;}} 
 

Q: {if (s>5) {while (s! =5) {s=s+1;}} else {s=10*pow(s,3) 
+50*s;}} 

 
Note that P fails to converge for all s less than zero (since it 

enters an infinite loop) and Q fails to converge for all s greater 

than 5 (for the same reason). The functions of these programs 
are: 

 
𝑃 = {(𝑠, 𝑠′)|𝑠 ≥ 0 ∧ 𝑠′ = 𝑠44 + 35𝑠2 + 24}. 

 
𝑄 = {(𝑠, 𝑠′)|𝑠 ≤ 5 ∧ 𝑠′ = 10𝑠3 + 50𝑠}. 

 
From these definitions, we compute the following 

parameters: 
 

𝑑𝑜𝑚(𝑃) = {𝑠|𝑠 ≥ 0}. 
 

𝑑𝑜𝑚(𝑄) = {𝑠|𝑠 ≤ 5}. 
 

P ∩ Q = {(s, s′) |0 ≤ s ≤ 5 ∧ s4 + 35s2 + 24 =10s3 + 50s ∧ s′ = 
10s3 + 50s}. 

 
𝑑𝑜𝑚 (𝑃 ∩ 𝑄) = {s|0 ≤ s ≤ 5 ∧ s4 + 35s2 + 24 =10s3 + 50s}. 

 
By solving the equation (s4 + 35s2 + 24 = 10s3 + 50s), we can 

simplify the formula of dom (P∩ Q) as: 
 

𝑑𝑜𝑚 (𝑃 ∩ 𝑄) = {𝑠|1 ≤ 𝑠 ≤ 4}. 
 

Whence we find the following results for the strict 
differentiator set and the broad differentiator set of programs P 
and Q: 

 
𝛿1(𝑃, 𝑄) = {0, 5}. 

 
𝛿2(𝑃, 𝑄) = {𝑠|𝑠 ≤ 0 ∨ 𝑠 ≥ 5}. 

 
Interpretation: 

 Strict Differentiator Set: The set of initial states that expose 
the difference between P and Q is {0, 5} because the 
interval [0...5] includes all the initial states where both P 
and Q are defined (dom(P) ∩ dom(Q)), and programs P and 
Q return the same results for initial states in the interval 
[1...4] (dom (P ∩ Q)). 

 Broad Differentiator Set: Any initial state outside the 
interval [1..4] exposes the difference between P and Q, 
either because they are both defined but give different 
results (if the initial state is 0 or 5) or because one of them 
terminates normally while the other diverges (for s greater 
than 5, P terminates normally but Q does not; for s 
negative, Q terminates normally but P does not). 

B. Detector Sets 

An ideal test suite is one that we can rely on to prove 
correctness: If program P runs successfully on test suite T, we 
want to be able to infer that P is correct; equivalently, we want 
that if P is incorrect, then testing P on test suite T ought to 
expose a failure of P. This leads us to the concept of detector 
set, i.e., the set of all the initial states on which program P 
violates its specification. This set is important because it 
enables us to characterize ideal test suites: ideal test suites are 
supersets of the program’s detector set. This concept also 
enables us to compare (at least theoretically) test suites; a better 
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test suite is one that has a larger intersection with the detector 
set. But before we define detector sets, we must consider that 
there are two definitions of correctness, and these yield two 
distinct interpretations of what it means for a program to fall 
short of the standard of correctness; therefore, there are two 
possible definitions of detector sets, depending on what 
standard of correctness we adopt. We consider two definitions 
of program correctness: total correctness [11], [12] and partial 
correctness [13]. 
Definition2: According to [14], given a program P on space S 
and a specification (relation) R on S, P is said to be totally 
correct with respect to R if and only if: 

 
𝑑𝑜𝑚(𝑅) = 𝑑𝑜𝑚 (𝑅 ∩ 𝑃). 

 
According to [15], given a program P on space S and a 

specification(relation) R on S, P is said to be partially correct 
with respect to R if and only if: 

 
𝑑𝑜𝑚(𝑅) ∩ 𝑑𝑜𝑚(𝑃) = 𝑑𝑜𝑚 (𝑅 ∩ 𝑃). 

 
These definitions are equivalent, to the traditional definitions 

of total and partial correctness [11]-[13]. The domain of (R ∩ 
P) is the set of initial states on which P satisfies R; we refer to 
it as the competence domain of P with respect to R. Since total 
correctness is a stronger property than (logically implies) partial 
correctness, we expect the set of tests that disprove the former 
to be superset of the set of tests that disprove the latter. We 
adopt the definitions of detector sets given in [15]; hence, we 
content ourselves in this paper with introducing these 
definitions and briefly commenting on them. 
Definition3: According to [15], given a program P on space S 
and a specification R on S, the total detector set of P with 
respect to R is the set denoted by 𝜃𝑇 (𝑃, 𝑅) and defined as the 
set of initial states on which execution of P produces an 
outcome that disproves the total correctness of P with respect to 
R (either the execution fails to converges or it does converge 
but produces a final state s′ such that (s, s′) ∉R). Given a 
program P on space S and a specification R on S, the partial 
detector set of P with respect to R is the set denoted by 𝜃𝑃(𝑃, 𝑅) 
and defined as the set of initial states on which execution of P 
produces an outcome that disproves the partial correctness of P 
with respect to R (the execution converges but produces a final 
state s′ such that (s, s′) ∉R). 

When we want to refer to a detector set and do not wish to 
specify to which one we refer, we use the notation (P,R). The 
following proposition, according to [15], gives explicit 
expressions of the detector sets. 
Proposition1: Given a program P on space S and a specification 
R on S, the total detector set and the partial detector set of P 
with respect to R are given by the following formulas: 

 
𝜃𝑇 (𝑃, 𝑅) = 𝑑𝑜𝑚(𝑅) ∩ 𝑑𝑜𝑚(𝑃 ∩ 𝑅). 

 
𝜃𝑃 (𝑃, 𝑅) = 𝑑𝑜𝑚(𝑃) ∩ 𝑑𝑜𝑚(𝑅) ∩ 𝑑𝑜𝑚(𝑃 ∩ 𝑅). 

 
A test suite T disproves the total (respectively, partial) 

correctness of P with respect to R if and only if (respectively): 
 

𝑇 ∩ ∅𝑇 (𝑅, 𝑃) ≠ ∅. 
 

𝑇 ∩ ∅𝑃 (𝑅, 𝑃) ≠ ∅. 
 

If a test suite T disproves a correctness property, then so does 
any superset thereof. 
Proposition2: A program P is totally (resp. partially) correct 
with respect to a specification R if and only if its total (resp. 
partial) detector set is empty, see Fig. 1. 

 

 

Fig. 1 Test data to expose behavior difference 

IV. REVISITING SUBSUMPTION 

In this section, we use differentiator sets to characterize the 
subsumption relation. 

A. Subsumption of Convergent Programs 

We consider a program P on space S and two mutants M and 
M′ of P, and we assume that P, M and M′ converge for all s in 
S. According to [10], [11], mutant subsumption is defined as 
follows: 
Definition4: Given a program P on space S and two mutants M 
and M′ of P, we say that M subsumes M′ with respect to P if 
and only if: 
• There exists an initial state s in S such that P and M 

compute different outcomes. 
• For all initial states s in S, if M computes a different 

outcome from P on s, then so does M′. 
The following proposition gives a simple characterization of 

mutant subsumption, using differentiator sets. 
Proposition3: Given a program P on space S and two mutants 
M and M′, M subsumes M′ with respect to P if and only if: 

 
∅ ⊂ 𝛿0 𝑃, 𝑀  ⊆ 𝛿0 𝑃, 𝑀′ . 

 
Proof. The statement 𝑃 𝑠   𝑀 𝑠  is equivalent to 𝑠 ∉ 𝑑𝑜𝑚 𝑃 
∩ 𝑀 ; this, in turn, is equivalent to 𝑠 ∈ 𝑑𝑜𝑚 𝑃 ∩ 𝑀 , which is 
equivalent to 𝑠 ∈ 𝛿0 𝑃, 𝑀 . The existence of such an s means 
that 𝛿0 (P, M) is not the empty set. 

The second condition of the definition of subsumption can be 
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written as: 
 

∀𝑠 ∶ 𝑃(𝑠) ≠ 𝑀(𝑠) ⇒ 𝑃(𝑠) ≠ 𝑀′(𝑠). 
 

This is equivalent to: 
 

∀𝑠 ∶ 𝑠 ∈ 𝑑𝑜𝑚(𝑃 ∩ 𝑀) ⇒ 𝑠 ∈ 𝑑𝑜𝑚(𝑃 ∩ 𝑀′). 
 

By the definition of basic differentiator set, we rewrite this 
as: 

 
∀𝑠 ∶ 𝑠 ∈ 𝛿0(𝑃, 𝑀) ⇒ 𝑠 ∈ 𝛿0(𝑃, 𝑀′). 

 
By set theory, this can be rewritten as: 
 

𝛿0 (𝑃, 𝑀) ⊆ 𝛿0 (𝑃, 𝑀′). 

B. Considering Divergence 

Failure to converge is a condition that arises often, not least 
in mutation testing; for example, if we have a loop that visits all 
the cells of an array between indices 0 and N − 1 using the 
condition while (i < N), and we change the condition of the loop 
from < to ≤ (a common mutation operator), the mutant we 
generate will raise an exception (array reference out of bound) 
and fail to terminate normally. Hence, it is sensible to (re)define 
subsumption in a way that makes provisions for the possibility 
that the program or its mutants may diverge for some initial 
states. To this effect, we use the more general definitions of 
differentiator sets, namely 𝛿1(𝑃, 𝑀) and 𝛿2(𝑃, 𝑀). 
Definition5. Given a program P on space S and two mutants M 
and M′ of P, we say that M subsumes M′ with respect to P if 
and only if: 
 

∅ ⊆ 𝛿(𝑃, 𝑀) ⊆ 𝛿(𝑃, 𝑀′). 
 

We use 𝛿 (,) as a surrogate for any of the differentiator sets 
we have introduced in Section III: 𝛿0(, ), 𝛿1(, ), 𝛿2(, ). A user 
may select a function among these depending on their 
interpretation of program outcomes. Note that even though we 
define subsumption as if it were a relation between individual 
mutants, we really refer to classes of equivalence of mutants 
modulo semantic equivalence. Since we are taking a semantic 
approach, we do not distinguish between mutants that compute 
the same function on S, even if they are syntactically distinct. 

V. MINIMIZING A MUTANT SET FOR JTERMINAL 

We consider the Java benchmark program of jTerminal, an 
open-source software product routinely used in mutation testing 
experiments [5]. We apply the mutant generation tool 
LittleDarwin in conjunction with a test generation and 
deployment class that includes 35 test cases [5]. All our 
analyses of mutant equivalence, mutant redundancy, mutant 
survival, etc. are based on the outcomes of programs and 
mutants on this test suite (and carefully selected subsets 
thereof). For differentiator sets, we adopt the broad definition 
𝛿2(𝑃, 𝑀); hence, we consider that failure to converge is a 
legitimate execution outcome, and that failure to converge is 
comparable to a normal outcome, and is distinct therefrom. In 

other words, when the program fails to converge on some input 
x, we consider that execution of the program on x does have an 
outcome, and that this outcome is distinct from the outcome of 
a program that converges, regardless of the output generated by 
the convergent execution. Execution of LittleDarwin on 
jTermanal yields 94 mutants, numbered m1 to m94; the test of 
these mutants against the original using the selected test suite 
kills 48 mutants. For the sake of documentation, we list them 
below: 

 
𝑚1, 𝑚2, 𝑚7, 𝑚8, 𝑚9, 𝑚10, 𝑚11, 𝑚12, 𝑚13, 𝑚14, 𝑚15, 

𝑚16, 𝑚17, 𝑚18, 𝑚19, 𝑚21, 𝑚22, 
𝑚23, 𝑚24, 𝑚25, 𝑚26, 𝑚27, 𝑚28, 𝑚44, 𝑚45, 𝑚46, 𝑚48, 

𝑚49, 𝑚50, 𝑚51, 𝑚52, 𝑚53, 𝑚54, 
𝑚55, 𝑚56, 𝑚57, 𝑚58, 𝑚59, 𝑚60, 𝑚61, 𝑚62, 𝑚63, 𝑚83, 

𝑚88, 𝑚89, 𝑚90, 𝑚92, 𝑚93. 
 
The remaining 46 mutants are semantically equivalent to the 

pre-restriction of jTerminal to the selected test suite. In this 
section, we generate a minimal mutant set out of the 48 mutants 
using respectively the criterion of equivalence and the criterion 
of subsumption. 

A. Minimal Mutant Set by Equivalence 

The procedure for generating a minimal mutant set outlined 
in [8] provides the following steps for executing: 
 Parse the source code of jTerminal to compute its 

redundancy metrics: State redundancy (SRI, SRF); 
functional redundancy (FR); Non Injectivity (NI). 

 Use the redundancy metrics to estimate the REM (Rate of 
Equivalent Mutants) of jTerminal: 𝑅𝐸𝑀 = 𝑓 (𝑆𝑅𝐼, 𝑆𝑅𝐹, 
𝐹𝑅, 𝑁𝐼). 

 Use the REM of jTerminal to estimate the number of 
equivalence classes of the set of mutants modulo semantic 
equivalence: 𝐾 = 𝑁𝐸𝐶(𝑁, 𝑅𝐸𝑀), where N is the number of 
(killed) mutants. 

 Using K and N, estimate the expected number of mutants 
that we must inspect (among N) before we encounter K 
distinct mutants: 𝐻 = 𝑁𝑂𝐼(𝑁, 𝐾). 

 Inspect the mutants one by one, comparing them against 
previously inspected mutants, until we find K distinct 
mutants, or we inspect H mutants in total. 

 We adopt the resulting set of distinct mutants as a minimal 
set of mutants that preserves (approximately) the same 
functionality as the original set of N mutants. 

Because in this case the number of mutants is not very large, 
and because we want to obviate the uncertainties that stem from 
estimating the redundancy metrics, then REM, then K, then H, 
we resolve to inspect all 48 mutants and compare them to each 
other to find K distinct mutants. We find that out of the 48 
mutants under consideration, the following 30 are distinct from 
each other. We find μE = 

 
𝑚1, 𝑚2, 𝑚7, 𝑚11, 𝑚13, 𝑚15, 𝑚19, 𝑚21, 𝑚22, 𝑚23, 𝑚24, 

𝑚25, 𝑚27, 𝑚28, 𝑚44, 𝑚45, 
𝑚46, 𝑚48, 𝑚49, 𝑚50, 𝑚51, 𝑚52, 𝑚53, 𝑚55, 𝑚56, 𝑚57, 

𝑚60, 𝑚63, 𝑚92, 𝑚93. 
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We compute the detector set of each of these 30 mutants, 
which we use to derive minimal test suites that kill all the 
mutants. To this effect, we record the detector sets on a two-
dimensional array where the mutants are represented in 
columns and the test data are represented in rows. We iterate 
through the following two steps until the array is empty. 
 We select the test data that kill the most mutants. 
 We remove the row that corresponds to the selected data, 

as well as the columns of all the mutants that the data kills. 
Because there are several instances where more than one 

rows have the same maximal number of mutants, we may (and 
typically do) generate several minimal test suites. We list 10 
minimal test suites generated according to this procedure; the 
numbers refer to the line of code where the data are generated 
in the original test class. For our purposes, these numbers 
uniquely identify the test data. Interestingly, all these sets have 
exactly 11 elements. We find: 

 

𝑇𝐸1 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 𝑡215, 
𝑡239, 𝑡280}. 

𝑇𝐸2 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 
𝑡239, 𝑡280}. 

𝑇𝐸3 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 
𝑡241, 𝑡284}. 

𝑇𝐸4 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡207, 𝑡215, 
𝑡239, 𝑡280}. 

𝑇𝐸5 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡203, 𝑡209, 
𝑡239, 𝑡280}. 

𝑇𝐸6 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 𝑡215, 
𝑡239, 𝑡280}. 

𝑇𝐸7 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 
𝑡241, 𝑡284}. 

𝑇𝐸8 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡203, 𝑡207, 
𝑡239, 𝑡284}. 

𝑇𝐸9 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 
𝑡241, 𝑡280}. 

𝑇𝐸10 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 𝑡215, 
𝑡241, 𝑡284}. 

 

By construction, this test suite kills the 30 mutants of the 
minimal mutant set. Because the mutants outside the minimal 
mutant set are semantically equivalent to mutants of the set, the 
test suites above also kill the 48 killable mutants. 

We notice that 𝑇𝐸1 and 𝑇𝐸6 are identical different selections 
made when two or more test data kill the same member of 
mutants may ultimately yield the same minimal test suite. 

B. Minimal Mutant Set by Subsumption 

To apply the subsumption criterion, we consider a 
representative from each of the 30 equivalence classes of the 48 
killable mutants and test them pairwise by comparing their 
broad differentiator sets (𝛿2 (P, M)). Then, we isolate the 
maximal mutants, i.e., those that are not subsumed by any other 
mutants. 

We find the following minimal set of mutants: 
 

𝜇𝑆 = 𝑚1, 𝑚19, 𝑚23, 𝑚24, 𝑚25, 𝑚27, 𝑚44, 𝑚45, 𝑚48, 𝑚51, 𝑚60. 

We compute the broad detector sets of these mutants, which 
are (by construction) much smaller than those of the mutants 
selected by equivalence; and, we apply the same procedure as 
above to derive minimal test suites that kill all these mutants. 
We find: 

 
𝑇𝑆1 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡207, 

𝑡239, 𝑡284}. 
𝑇𝑆2 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 

𝑡239, 𝑡280}. 
𝑇𝑆3 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡207, 𝑡215, 

𝑡239, 𝑡280}. 
𝑇𝑆4 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 𝑡215, 

𝑡241, 𝑡280}. 
𝑇𝑆5 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡207, 𝑡215, 

𝑡239, 𝑡280}. 
𝑇𝑆6 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡203, 𝑡209, 

𝑡241, 𝑡284}. 
𝑇𝑆7 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡203, 𝑡207, 

𝑡239, 𝑡280}. 
𝑇𝑆8 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡207, 

𝑡241, 𝑡280}. 
𝑇𝑆9 = {𝑡90, 𝑡114, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡209, 

𝑡239, 𝑡280}. 
𝑇𝑆10 = {𝑡90, 𝑡118, 𝑡133, 𝑡168, 𝑡185, 𝑡189, 𝑡191, 𝑡203, 𝑡207, 

𝑡241, 𝑡284}. 
 
A cursory inspection of the minimal test suites generated 

from the minimal mutant set derived by equivalence and the 
minimal mutant set derived by subsumption reveal that some of 
the test suites are identical. For example, TE2 is identical to 
TS2; and TE4 is identical to TS3. It is possible, even likely, that 
the set of all the minimal test suites that kill all the mutants of 
μE is the same as the set of all the minimal test suites that kill 
all the mutants of μS. To be certain, we need to generate all the 
minimal test suites for each mutant set; this is currently under 
investigation. 

VI. CONCLUDING REMARKS 

In this paper, we have considered two policies for 
minimizing a set of mutants and tried to analyze and compare 
them using analytical and empirical arguments. Some of the 
premises of our comparative study include the following: 
 Subsumption is not a relation between individual mutants; 

rather it is a relation between equivalence classes of 
mutants, modulo semantic equivalence. 

 As a consequence of this premise, the subsumption policy 
is not orthogonal to the equivalence policy; rather it must 
be mindful/cognizant of the equivalence relation and must 
identify equivalence classes prior to identifying 
subsumption relations between classes. 

 If we quantify the effectiveness of a mutant set by the 
minimal test suites that it vets, then the empirical study of 
Section V is a resounding endorsement of subsumption, 
since it appears to vet the same test suites with one third the 
size (nine mutants vs. 30) and the test suites it vets kills all 
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(48) of the killable mutants of the base program. 
 The results of Section V, to the extent that they are valid, 

may also be interpreted to mean that if the set μE vets the 
same minimal test suites as μS, then it may be sufficient to 
generate μE. 

Among the contributions of this paper, we mention: 
 A reformulation of subsumption using differentiator sets, 

and a generalization of subsumption to take into 
consideration the possibility that the base program or the 
mutants fail to converge. 

 The observation that maximal mutants by subsumption 
feature minimal detector sets and are in fact what Yao et al. 
[16] refer to as stubborn mutants. 

 A generalization of subsumption to apply, not to 
equivalence classes of mutants, but to sets thereof. This 
comes about naturally by generalizing the concept of 
detector sets to sets of (equivalence classes of) mutants. 

Future research prospects include completing the experiment 
of Section V by computing all the minimal test suites of μE and 
μS and comparing them. Also, we envision to apply the 
generalized definition of subsumption that ranks sets of mutants 
rather than individual (equivalence classes of) mutants: it would 
be interesting to see whether this generalized formula enables 
us to reduce further the minimal set of mutants while preserving 
its effectiveness. 
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