Search results for: automated segmentation.
278 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators
Authors: M. A. Okezue, K. L. Clase, S. R. Byrn
Abstract:
The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.
Keywords: Data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516277 E-Service and the Nigerian Banking Sector: A Review of ATM Architecture and Operations
Authors: Bashir A. Yauri, Aliyu R. Yauri
Abstract:
With the introduction of cash-less society policy by the Central Bank of Nigeria, the concept of e-banking services have over the years’ experience a significant improvement. Today quite a number of people are embracing e-banking activities especially ATM, thereby moving away from the conventional banking system. This paper presents a review of the underlying Architectural Layout of Intra-Bank and Inter-Bank ATM connectivity in Nigeria. The paper further investigates and discusses factors affecting the Intra- Bank and Inter-Bank ATM connectivity in Nigeria. In addition, as well possible solutions to these factors affecting ATM Connectivity and Operations are proposed.Keywords: Architectural layout, automated teller machine, e-services, interswitch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419276 On-line Image Mosaicing of Live Stem Cells
Authors: Alessandro Bevilacqua, Alessandro Gherardi, Filippo Piccinini
Abstract:
Image mosaicing is a technique that permits to enlarge the field of view of a camera. For instance, it is employed to achieve panoramas with common cameras or even in scientific applications, to achieve the image of a whole culture in microscopical imaging. Usually, a mosaic of cell cultures is achieved through using automated microscopes. However, this is often performed in batch, through CPU intensive minimization algorithms. In addition, live stem cells are studied in phase contrast, showing a low contrast that cannot be improved further. We present a method to study the flat field from live stem cells images even in case of 100% confluence, this permitting to build accurate mosaics on-line using high performance algorithms.
Keywords: Microscopy, image mosaicing, stem cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508275 The Impact of the Economic Crises over Management Marketing Strategies of Romanian B2B Companies
Authors: S. C. Căescu, I. Dumitru
Abstract:
The main objective of the paper has been represented by the identification of the changes that occurred in the competitive environment and their impact on the strategic marketing management of companies in B2B market. At Romania-s level there has not yet been done a similar research that studies change management in crises on business to business field. In order to answer to the paper-s objectives, a qualitative marketing research (in-depth structured interview) was conducted, within the top management of 27 companies in Romanian business to business field. The main results of the research highlight the necessity of a management of change, as a result of the crises, as follows: changes in the corporate objectives (from development objectives to maintaining objectives), changes market segmentation and in competitive advantages, changes at the level of market strategies and of the marketing mix.Keywords: change management, competitive environment, marketing management strategies, strategic marketing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878274 A Security Analysis for Home Gateway Architectures
Authors: Pierre Parrend, Stephane Frenot
Abstract:
Providing Services at Home has become over the last few years a very dynamic and promising technological domain. It is likely to enable wide dissemination of secure and automated living environments. We propose a methodology for identifying threats to Services at Home Delivery systems, as well as a threat analysis of a multi-provider Home Gateway architecture. This methodology is based on a dichotomous positive/preventive study of the target system: it aims at identifying both what the system must do, and what it must not do. This approach completes existing methods with a synthetic view of potential security flaws, thus enabling suitable measures to be taken into account. Security implications of the evolution of a given system become easier to deal with. A prototype is built based on the conclusions of this analysis.Keywords: Security requirements, Connected Home, OSGi, Sofware Components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608273 Shot Transition Detection with Minimal Decoding of MPEG Video Streams
Authors: Mona A. Fouad, Fatma M. Bayoumi, Hoda M. Onsi, Mohamed G. Darwish
Abstract:
Digital libraries become more and more necessary in order to support users with powerful and easy-to-use tools for searching, browsing and retrieving media information. The starting point for these tasks is the segmentation of video content into shots. To segment MPEG video streams into shots, a fully automatic procedure to detect both abrupt and gradual transitions (dissolve and fade-groups) with minimal decoding in real time is developed in this study. Each was explored through two phases: macro-block type's analysis in B-frames, and on-demand intensity information analysis. The experimental results show remarkable performance in detecting gradual transitions of some kinds of input data and comparable results of the rest of the examined video streams. Almost all abrupt transitions could be detected with very few false positive alarms.Keywords: Adaptive threshold, abrupt transitions, gradual transitions, MPEG video streams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558272 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events
Authors: Jaqueline M. R. Vieira
Abstract:
Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge dataset configurations.
Keywords: Brazil, classifiers, data-mining, Image Segmentation, oil well visualization, classifiers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544271 Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies
Authors: Madhav V. Chitturi, Anshu Manik, Kasthurirangan Gopalakrishnan
Abstract:
The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.Keywords: HMA, dynamic modulus, GA, evolutionarycomputation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571270 Security Strengths and Weaknesses of Blockchain Smart Contract System: A Survey
Authors: Malaw Ndiaye, Karim Konate
Abstract:
Smart contracts are computer protocols that facilitate, verify, and execute the negotiation or execution of a contract, or that render a contractual term unnecessary. Blockchain and smart contracts can be used to facilitate almost any financial transaction. Thanks to these smart contracts, the settlement of dividends and coupons could be automated. Smart contracts have become lucrative and profitable targets for attackers because they can hold a great amount of money. Smart contracts, although widely used in blockchain technology, are far from perfect due to security concerns. Although a series of attacks are listed, there is a lack of discussions and proposals on improving security. This survey takes stock of smart contract security from a more comprehensive perspective by correlating the level of vulnerability and systematic review of security levels in smart contracts.
Keywords: Blockchain, bitcoin, smart Contract, criminal smart contract, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539269 Obstacle Classification Method Based On 2D LIDAR Database
Authors: Moohyun Lee, Soojung Hur, Yongwan Park
Abstract:
We propose obstacle classification method based on 2D LIDAR Database. The existing obstacle classification method based on 2D LIDAR, has an advantage in terms of accuracy and shorter calculation time. However, it was difficult to classifier the type of obstacle and therefore accurate path planning was not possible. In order to overcome this problem, a method of classifying obstacle type based on width data of obstacle was proposed. However, width data was not sufficient to improve accuracy. In this paper, database was established by width and intensity data; the first classification was processed by the width data; the second classification was processed by the intensity data; classification was processed by comparing to database; result of obstacle classification was determined by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that calculation time declined in comparison to 3D LIDAR and it was possible to classify obstacle using single 2D LIDAR.
Keywords: Obstacle, Classification, LIDAR, Segmentation, Width, Intensity, Database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3445268 Manual Testing of Web Software Systems Supported by Direct Guidance of the Tester Based On Design Model
Authors: Karel Frajtak, Miroslav Bures, Ivan Jelinek
Abstract:
Software testing is important stage of software development cycle. Current testing process involves tester and electronic documents with test case scenarios. In this paper we focus on new approach to testing process using automated test case generation and tester guidance through the system based on the model of the system. Test case generation and model-based testing is not possible without proper system model. We aim on providing better feedback from the testing process thus eliminating the unnecessary paper work.
Keywords: Model based testing, test automation, test generating, tester support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959267 Status and Requirements of Counter-Cyberterrorism
Authors: Jeong-Tae Kim, Tchanghee Hyun
Abstract:
The number of intrusions and attacks against critical infrastructures and other information networks is increasing rapidly. While there is no identified evidence that terrorist organizations are currently planning a coordinated attack against the vulnerabilities of computer systems and network connected to critical infrastructure, and origins of the indiscriminate cyber attacks that infect computers on network remain largely unknown. The growing trend toward the use of more automated and menacing attack tools has also overwhelmed some of the current methodologies used for tracking cyber attacks. There is an ample possibility that this kind of cyber attacks can be transform to cyberterrorism caused by illegal purposes. Cyberterrorism is a matter of vital importance to national welfare. Therefore, each countries and organizations have to take a proper measure to meet the situation and consider effective legislation about cyberterrorism.Keywords: Cyberterrorism, cyber attack, information security, legislation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2794266 An Automated High Pressure Differential Thermal Analysis System for Phase Transformation Studies
Authors: T. K. Mondal, N C Shivaprakash
Abstract:
A piston cylinder based high pressure differential thermal analyzer system is developed to investigate phase transformations, melting, glass transitions, crystallization behavior of inorganic materials, glassy systems etc., at ambient to 4 GPa and at room temperature to 1073 K. The pressure is calibrated by the phase transition of bismuth and ytterbium and temperature is calibrated by using thermocouple data chart. The system developed is calibrated using benzoic acid, ammonium nitrate and it has a pressure and temperature control of ± 8.9 x 10 -4 GPa , ± 2 K respectively. The phase transition of Asx Te100-x chalcogenides, ferrous oxide and strontium boride are studied using the indigenously developed system.Keywords: double stage crystallization, Phase transition, Quasi hydrostatic, Rigidity percolation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688265 A New Method for Image Classification Based on Multi-level Neural Networks
Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed
Abstract:
In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648264 Robot Task-Level Programming Language and Simulation
Authors: M. Samaka
Abstract:
This paper presents the development of a software application for Off-line robot task programming and simulation. Such application is designed to assist in robot task planning and to direct manipulator motion on sensor based programmed motion. The concept of the designed programming application is to use the power of the knowledge base for task accumulation. In support of the programming means, an interactive graphical simulation for manipulator kinematics was also developed and integrated into the application as the complimentary factor to the robot programming media. The simulation provides the designer with useful, inexpensive, off-line tools for retain and testing robotics work cells and automated assembly lines for various industrial applications.Keywords: Robot programming, task-level programming, robot languages, robot simulation, robotics software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262263 Role of GIS in Distribution Power Systems
Authors: N. Rezaee, M Nayeripour, A. Roosta, T. Niknam
Abstract:
With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.
Keywords: Geographic information systems (GIS), optimallocation and capacity, power distribution planning, route selection, spatial load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5505262 Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces
Authors: Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet
Abstract:
In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.Keywords: Dropwise condensation, textured surface, image processing, watershed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691261 A General Framework for Modeling Replicated Real-Time Database
Authors: Hala Abdel hameed, Hazem M. El-Bakry, Torky Sultan
Abstract:
There are many issues that affect modeling and designing real-time databases. One of those issues is maintaining consistency between the actual state of the real-time object of the external environment and its images as reflected by all its replicas distributed over multiple nodes. The need to improve the scalability is another important issue. In this paper, we present a general framework to design a replicated real-time database for small to medium scale systems and maintain all timing constrains. In order to extend the idea for modeling a large scale database, we present a general outline that consider improving the scalability by using an existing static segmentation algorithm applied on the whole database, with the intent to lower the degree of replication, enables segments to have individual degrees of replication with the purpose of avoiding excessive resource usage, which all together contribute in solving the scalability problem for DRTDBS.
Keywords: Database modeling, Distributed database, Real time databases, Replication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367260 Automated Knowledge Engineering
Authors: Sandeep Chandana, Rene V. Mayorga, Christine W. Chan
Abstract:
This article outlines conceptualization and implementation of an intelligent system capable of extracting knowledge from databases. Use of hybridized features of both the Rough and Fuzzy Set theory render the developed system flexibility in dealing with discreet as well as continuous datasets. A raw data set provided to the system, is initially transformed in a computer legible format followed by pruning of the data set. The refined data set is then processed through various Rough Set operators which enable discovery of parameter relationships and interdependencies. The discovered knowledge is automatically transformed into a rule base expressed in Fuzzy terms. Two exemplary cancer repository datasets (for Breast and Lung Cancer) have been used to test and implement the proposed framework.Keywords: Knowledge Extraction, Fuzzy Sets, Rough Sets, Neuro–Fuzzy Systems, Databases
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787259 Testing of Electronic Control Unit Communication Interface
Authors: Petr Šimek, Kamil Kostruk
Abstract:
This paper deals with the problem of testing the Electronic Control Unit (ECU) for the specified function validation. Modern ECUs have many functions which need to be tested. This process requires tracking between the test and the specification. The technique discussed in this paper explores the system for automating this process. The paper focuses on the introduction to the problem in general, then it describes the proposed test system concept and its principle. It looks at how the process of the ECU interface specification file for automated interface testing and test tracking works. In the end, the future possible development of the project is discussed.
Keywords: Electronic control unit testing, embedded system, test generate, test automation, process automation, CAN bus, Ethernet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272258 Identification of Arglecins B and C and Actinofuranosin A from a Termite Gut-Associated Streptomyces Species
Authors: Christian A. Romero, Tanja Grkovic, John. R. J. French, D. İpek. Kurtböke, Ronald J. Quinn
Abstract:
A high-throughput and automated 1H NMR metabolic fingerprinting dereplication approach was used to accelerate the discovery of unknown bioactive secondary metabolites. The applied dereplication strategy accelerated the discovery of new natural products, provided rapid and competent identification and quantification of the known secondary metabolites and avoided time-consuming isolation procedures. The effectiveness of the technique was demonstrated by the isolation and elucidation of arglecins B (1), C (2) and actinofuranosin A (3) from a termite-gut associated Streptomyces sp. (USC 597) grown under solid state fermentation. The structures of these compounds were elucidated by extensive interpretation of 1H, 13C and 2D NMR spectroscopic data. These represent the first report of arglecin analogues isolated from a termite gut-associated Streptomyces species.
Keywords: Actinomycetes, actinofuranosin, antibiotics, arglecins, NMR spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222257 Designing AI-Enabled Smart Maintenance Scheduler: Enhancing Object Reliability through Automated Management
Authors: Arun Prasad Jaganathan
Abstract:
In today's rapidly evolving technological landscape, the need for efficient and proactive maintenance management solutions has become increasingly evident across various industries. Traditional approaches often suffer from drawbacks such as reactive strategies, leading to potential downtime, increased costs, and decreased operational efficiency. In response to these challenges, this paper proposes an AI-enabled approach to object-based maintenance management aimed at enhancing reliability and efficiency. The paper contributes to the growing body of research on AI-driven maintenance management systems, highlighting the transformative impact of intelligent technologies on enhancing object reliability and operational efficiency.
Keywords: AI, machine learning, predictive maintenance, object-based maintenance, expert team scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77256 Bug Localization on Single-Line Bugs of Apache Commons Math Library
Authors: Cherry Oo, Hnin Min Oo
Abstract:
Software bug localization is one of the most costly tasks in program repair technique. Therefore, there is a high claim for automated bug localization techniques that can monitor programmers to the locations of bugs, with slight human arbitration. Spectrum-based bug localization aims to help software developers to discover bugs rapidly by investigating abstractions of the program traces to make a ranking list of most possible buggy modules. Using the Apache Commons Math library project, we study the diagnostic accuracy using our spectrum-based bug localization metric. Our outcomes show that the greater performance of a specific similarity coefficient, used to inspect the program spectra, is mostly effective on localizing of single line bugs.Keywords: Software testing, fault localization, program spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147255 Evaluating 8D Reports Using Text-Mining
Authors: Benjamin Kuester, Bjoern Eilert, Malte Stonis, Ludger Overmeyer
Abstract:
Increasing quality requirements make reliable and effective quality management indispensable. This includes the complaint handling in which the 8D method is widely used. The 8D report as a written documentation of the 8D method is one of the key quality documents as it internally secures the quality standards and acts as a communication medium to the customer. In practice, however, the 8D report is mostly faulty and of poor quality. There is no quality control of 8D reports today. This paper describes the use of natural language processing for the automated evaluation of 8D reports. Based on semantic analysis and text-mining algorithms the presented system is able to uncover content and formal quality deficiencies and thus increases the quality of the complaint processing in the long term.
Keywords: 8D report, complaint management, evaluation system, text-mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022254 Event Template Generation for News Articles
Authors: A. Kowcika, E. Umamaheswari, T.V. Geetha
Abstract:
In this paper we focus on event extraction from Tamil news article. This system utilizes a scoring scheme for extracting and grouping event-specific sentences. Using this scoring scheme eventspecific clustering is performed for multiple documents. Events are extracted from each document using a scoring scheme based on feature score and condition score. Similarly event specific sentences are clustered from multiple documents using this scoring scheme. The proposed system builds the Event Template based on user specified query. The templates are filled with event specific details like person, location and timeline extracted from the formed clusters. The proposed system applies these methodologies for Tamil news articles that have been enconverted into UNL graphs using a Tamil to UNL-enconverter. The main intention of this work is to generate an event based template.Keywords: Event Extraction, Score based Clustering, Segmentation, Template Generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699253 Comparative Analysis of Different Page Ranking Algorithms
Authors: S. Prabha, K. Duraiswamy, J. Indhumathi
Abstract:
Search engine plays an important role in internet, to retrieve the relevant documents among the huge number of web pages. However, it retrieves more number of documents, which are all relevant to your search topics. To retrieve the most meaningful documents related to search topics, ranking algorithm is used in information retrieval technique. One of the issues in data miming is ranking the retrieved document. In information retrieval the ranking is one of the practical problems. This paper includes various Page Ranking algorithms, page segmentation algorithms and compares those algorithms used for Information Retrieval. Diverse Page Rank based algorithms like Page Rank (PR), Weighted Page Rank (WPR), Weight Page Content Rank (WPCR), Hyperlink Induced Topic Selection (HITS), Distance Rank, Eigen Rumor, Distance Rank Time Rank, Tag Rank, Relational Based Page Rank and Query Dependent Ranking algorithms are discussed and compared.
Keywords: Information Retrieval, Web Page Ranking, search engine, web mining, page segmentations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4288252 Belief Theory-Based Classifiers Comparison for Static Human Body Postures Recognition in Video
Authors: V. Girondel, L. Bonnaud, A. Caplier, M. Rombaut
Abstract:
This paper presents various classifiers results from a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The three classifiers considered are a naïve one and two based on the belief theory. The belief theory-based classifiers use either a classic or restricted plausibility criterion to make a decision after data fusion. The data come from the people 2D segmentation and from their face localization. Measurements consist in distances relative to a reference posture. The efficiency and the limits of the different classifiers on the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.
Keywords: Belief theory, classifiers comparison, data fusion, human motion analysis, real-time processing, static posture recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516251 Learning Classifier Systems Approach for Automated Discovery of Censored Production Rules
Authors: Suraiya Jabin, Kamal K. Bharadwaj
Abstract:
In the recent past Learning Classifier Systems have been successfully used for data mining. Learning Classifier System (LCS) is basically a machine learning technique which combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. All LCSs models more or less, comprise four main components; a finite population of condition–action rules, called classifiers; the performance component, which governs the interaction with the environment; the credit assignment component, which distributes the reward received from the environment to the classifiers accountable for the rewards obtained; the discovery component, which is responsible for discovering better rules and improving existing ones through a genetic algorithm. The concatenate of the production rules in the LCS form the genotype, and therefore the GA should operate on a population of classifier systems. This approach is known as the 'Pittsburgh' Classifier Systems. Other LCS that perform their GA at the rule level within a population are known as 'Mitchigan' Classifier Systems. The most predominant representation of the discovered knowledge is the standard production rules (PRs) in the form of IF P THEN D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski and Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: IF P THEN D UNLESS C, where Censor C is an exception to the rule. Such rules are employed in situations, in which conditional statement IF P THEN D holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the IF P THEN D part of CPR expresses important information, while the UNLESS C part acts only as a switch and changes the polarity of D to ~D. In this paper Pittsburgh style LCSs approach is used for automated discovery of CPRs. An appropriate encoding scheme is suggested to represent a chromosome consisting of fixed size set of CPRs. Suitable genetic operators are designed for the set of CPRs and individual CPRs and also appropriate fitness function is proposed that incorporates basic constraints on CPR. Experimental results are presented to demonstrate the performance of the proposed learning classifier system.Keywords: Censored Production Rule, Data Mining, GeneticAlgorithm, Learning Classifier System, Machine Learning, PittsburgApproach, , Reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530250 Design Histories for Enhanced Concurrent Structural Design
Authors: Adam Sobey, James Blake, Ajit Shenoi
Abstract:
The leisure boatbuilding industry has tight profit margins that demand that boats are created to a high quality but with low cost. This requirement means reduced design times combined with increased use of design for production can lead to large benefits. The evolutionary nature of the boatbuilding industry can lead to a large usage of previous vessels in new designs. With the increase in automated tools for concurrent engineering within structural design it is important that these tools can reuse this information while subsequently feeding this to designers. The ability to accurately gather this materials and parts data is also a key component to these tools. This paper therefore aims to develop an architecture made up of neural networks and databases to feed information effectively to the designers based on previous design experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170249 Bioprocess Optimization Based On Relevance Vector Regression Models and Evolutionary Programming Technique
Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte
Abstract:
This paper proposes a bioprocess optimization procedure based on Relevance Vector Regression models and evolutionary programming technique. Relevance Vector Regression scheme allows developing a compact and stable data-based process model avoiding time-consuming modeling expenses. The model building and process optimization procedure could be done in a half-automated way and repeated after every new cultivation run. The proposed technique was tested in a simulated mammalian cell cultivation process. The obtained results are promising and could be attractive for optimization of industrial bioprocesses.
Keywords: Bioprocess optimization, Evolutionary programming, Relevance Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194