Search results for: PI control tuning
3438 Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor
Authors: Mehdi Karbalaye Zadeh, Ehsan M. Siavashi
Abstract:
The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.Keywords: PMSM, Electric Vehicle, Optimal control, Traction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17733437 A Variable Stiffness Approach to Vibration Control
Authors: S. A. Alotaibi, M. A. Al-Ajmi
Abstract:
This work introduces a new concept for controlling the mechanical vibrations via variable stiffness coil spring. The concept relies on fitting a screw though the spring to change the number of active spring coils. A prototype has been built and tested with promising results toward an innovation in the field of vibration control.
Keywords: Variable stiffness, coil spring, vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21113436 Adaptive PID Control of Wind Energy Conversion Systems Using RASP1 Mother Wavelet Basis Function Networks
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
In this paper a PID control strategy using neural network adaptive RASP1 wavelet for WECS-s control is proposed. It is based on single layer feedforward neural networks with hidden nodes of adaptive RASP1 wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. This particular neuro PID controller assumes a certain model structure to approximately identify the system dynamics of the unknown plant (WECS-s) and generate the control signal. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.Keywords: Adaptive PID Control, RASP1 Wavelets, WindEnergy Conversion Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20083435 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger
Authors: Hanan Rizk
Abstract:
Heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques, and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed the proportional–integral–derivative (PID) controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.
Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7143434 Overload Control in a SIP Signaling Network
Authors: Masataka Ohta
Abstract:
The Internet telephony employs a new type of Internet communication on which a mutual communication is realized by establishing sessions. Session Initiation Protocol (SIP) is used to establish sessions between end-users. For unreliable transmission (UDP), SIP message should be retransmitted when it is lost. The retransmissions increase a load of the SIP signaling network, and sometimes lead to performance degradation when a network is overloaded. The paper proposes an overload control for a SIP signaling network to protect from a performance degradation. Introducing two thresholds in a queue of a SIP proxy server, the SIP proxy server detects a congestion. Once congestion is detected, a SIP signaling network restricts to make new calls. The proposed overload control is evaluated using the network simulator (ns-2). With simulation results, the paper shows the proposed overload control works well.
Keywords: SIP signalling congestion overload control retransmission throughput simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17633433 Design Neural Network Controller for Mechatronic System
Authors: Ismail Algelli Sassi Ehtiwesh, Mohamed Ali Elhaj
Abstract:
The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the neural network control strategy that may be used for the control of the mechatronic system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy of neural network control using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with other kinds of control.
Keywords: Neural-Network controller, Mechatronic, electrohydraulic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21883432 Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model
Authors: T. H. Lee, J. H. Park, S. M. Lee, S. C. Lee
Abstract:
In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of load current is the significant one of these for good performance of the SOFC system. In order to keep the constant stack terminal voltage by changing load current, the nonlinear model predictive control (MPC) is proposed in this paper. After primary control method is designed to guarantee the fuel utilization as a proper constant, a nonlinear model predictive control based on the Wiener model is developed to control the stack terminal voltage of the SOFC system. Simulation results verify the possibility of the proposed Wiener model and MPC method to control of SOFC system.
Keywords: SOFC, model predictive control, Wiener model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20753431 A Study of the Lighting Control System for a Daylit Office
Authors: Chih-Jian Hu, Chung-Chih Cheng, Hsiao-Yuan Wu., Nien-Tzu Chao
Abstract:
Increasing user comfort and reducing operation costs have always been primary objectives of lighting control strategies in a building. This paper proposes an architecture of the lighting control system for a daylit office. The system consists of the lighting controller, A/D & D/A converter, dimmable LED lights, and the lighting management software. Verification tests are conducted using the proposed system specialized for the interior lighting of a open-plan office. The results showed the proposed architecture of the lighting system would improve the overall system reliability, lower the system cost, and provide ease of installation and maintenance.Keywords: control, dimming, LED, lighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18963430 Design and Control of DC-DC Converter for the Military Application Fuel Cell
Authors: Tae-Yeong Lee, Eun-Ju Yoo, Won-Yeong Choi, Young-Woo Park
Abstract:
This paper presents a 24 watts SEPIC converter design and control using microprocessor. SEPIC converter has advantages of a wide input range and miniaturization caused by the low stress at elements. There is also an advantage that the input and output are isolated in MOSFET-off state. This paper presents the PID control through the SEPIC converter transfer function using a DSP and the protective circuit for fuel cell from the over-current and inverse-voltage by using the characteristic of SEPIC converter. Then it derives them through the experiments.Keywords: DC-DC Converter, Fuel-Cell, Microprocessor Control, Military Converter, SEPIC Converter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23393429 The Effect of Response Feedback on Performance of Active Controlled Nonlinear Frames
Authors: M. Mohebbi, K. Shakeri
Abstract:
The effect of different combinations of response feedback on the performance of active control system on nonlinear frames has been studied in this paper. To this end different feedback combinations including displacement, velocity, acceleration and full response feedback have been utilized in controlling the response of an eight story bilinear hysteretic frame which has been subjected to a white noise excitation and controlled by eight actuators which could fully control the frame. For active control of nonlinear frame Newmark nonlinear instantaneous optimal control algorithm has been used which a diagonal matrix has been selected for weighting matrices in performance index. For optimal design of active control system while the objective has been to reduce the maximum drift to below the yielding level, Distributed Genetic Algorithm (DGA) has been used to determine the proper set of weighting matrices. The criteria to assess the effect of each combination of response feedback have been the minimum required control force to reduce the maximum drift to below the yielding drift. The results of numerical simulation show that the performance of active control system is dependent on the type of response feedback where the velocity feedback is more effective in designing optimal control system in comparison with displacement and acceleration feedback. Also using full feedback of response in controller design leads to minimum control force amongst other combinations. Also the distributed genetic algorithm shows acceptable convergence speed in solving the optimization problem of designing active control systems.Keywords: Active control, Distributed genetic algorithms, Response feedback, Weighting matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14113428 Extended Minimal Controller Synthesis for Voltage-Fed Induction Motor Based on the Hyperstability Theory
Authors: A. Ramdane, F.Naceri, S. Ramdane
Abstract:
in this work, we present a new strategy of direct adaptive control denoted: Extended minimal controller synthesis (EMCS). This algorithm is designed for an induction motor, which includes both electrical and mechanical dynamics under the assumptions of linear magnetic circuits. The main motivation of the EMCS control is to enhance the robustness of the MRAC algorithms, i.e. the rejection of bounded effects of rapidly varying external disturbances.
Keywords: Adaptive Control, Simple model reference adaptive control (SMRAC), Extended Minimal Controller synthesis (EMCS), Induction Motor (IM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16473427 Robust Stability in Multivariable Neural Network Control using Harmonic Analysis
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco, I. Garcia-Moral
Abstract:
Robust stability and performance are the two most basic features of feedback control systems. The harmonic balance analysis technique enables to analyze the stability of limit cycles arising from a neural network control based system operating over nonlinear plants. In this work a robust stability analysis based on the harmonic balance is presented and applied to a neural based control of a non-linear binary distillation column with unstructured uncertainty. We develop ways to describe uncertainty in the form of neglected nonlinear dynamics and high harmonics for the plant and controller respectively. Finally, conclusions about the performance of the neural control system are discussed using the Nyquist stability margin together with the structured singular values of the uncertainty as a robustness measure.Keywords: Robust stability, neural network control, unstructured uncertainty, singular values, distillation column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16373426 A Strategy to Optimize the SPC Scheme for Mass Production of HDD Arm with ClusteringTechnique and Three-Way Control Chart
Authors: W. Chattinnawat
Abstract:
Consider a mass production of HDD arms where hundreds of CNC machines are used to manufacturer the HDD arms. According to an overwhelming number of machines and models of arm, construction of separate control chart for monitoring each HDD arm model by each machine is not feasible. This research proposed a strategy to optimize the SPC management on shop floor. The procedure started from identifying the clusters of the machine with similar manufacturing performance using clustering technique. The three way control chart ( I - MR - R ) is then applied to each clustered group of machine. This proposed research has advantageous to the manufacturer in terms of not only better performance of the SPC but also the quality management paradigm.Keywords: Three way control chart. I - MR - R , between/within variation, HDD arm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16413425 Optimal Control of Viscoelastic Melt Spinning Processes
Authors: Shyam S.N. Perera
Abstract:
The optimal control problem for the viscoelastic melt spinning process has not been reported yet in the literature. In this study, an optimal control problem for a mathematical model of a viscoelastic melt spinning process is considered. Maxwell-Oldroyd model is used to describe the rheology of the polymeric material, the fiber is made of. The extrusion velocity of the polymer at the spinneret as well as the velocity and the temperature of the quench air and the fiber length serve as control variables. A constrained optimization problem is derived and the first–order optimality system is set up to obtain the adjoint equations. Numerical solutions are carried out using a steepest descent algorithm. A computer program in MATLAB is developed for simulations.Keywords: Fiber spinning, Maxwell-Oldroyd, Optimal control, First-order optimality system, Adjoint system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18953424 Nonlinear Fuzzy Tracking Real-time-based Control of Drying Parameters
Authors: Marco Soares dos Santos, Camila Nicola Boeri, Jorge Augusto Ferreira, Fernando Neto da Silva
Abstract:
The highly nonlinear characteristics of drying processes have prompted researchers to seek new nonlinear control solutions. However, the relation between the implementation complexity, on-line processing complexity, reliability control structure and controller-s performance is not well established. The present paper proposes high performance nonlinear fuzzy controllers for a real-time operation of a drying machine, being developed under a consistent match between those issues. A PCI-6025E data acquisition device from National Instruments® was used, and the control system was fully designed with MATLAB® / SIMULINK language. Drying parameters, namely relative humidity and temperature, were controlled through MIMOs Hybrid Bang-bang+PI (BPI) and Four-dimensional Fuzzy Logic (FLC) real-time-based controllers to perform drying tests on biological materials. The performance of the drying strategies was compared through several criteria, which are reported without controllers- retuning. Controllers- performance analysis has showed much better performance of FLC than BPI controller. The absolute errors were lower than 8,85 % for Fuzzy Logic Controller, about three times lower than the experimental results with BPI control.Keywords: Drying control, Fuzzy logic control, Intelligent temperature-humidity control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23483423 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems
Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer
Abstract:
This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.Keywords: Cascade control, multi-loop control systems, multi-objective optimization, optimal control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9343422 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle
Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He
Abstract:
According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.
Keywords: Differential assisted steering, control strategy, distributed drive electric vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22683421 T-DOF PID Controller Design using Characteristic Ratio Assignment Method for Quadruple Tank Process
Authors: Tianchai Suksri, U-thai Sritheeravirojana, Arjin Numsomran, Viriya Kongrattana, Thongchai Werataweemart
Abstract:
A control system design with Characteristic Ratio Assignment (CRA) is proven that effective for SISO control design. But the control system design for MIMO via CRA is not concrete procedure. In this paper presents the control system design method for quadruple-tank process via CRA. By using the decentralized method for both minimum phase and non-minimum phase are made. The results from PI and PID controller design via CRA can be illustrated the validity of our approach by MATLAB.Keywords: CRA, Quadruple-Tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15933420 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN
Authors: M. P. Nanda Kumar, K. Dheeraj
Abstract:
The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.
Keywords: Inverse Optimal Control, Radial basis function neural network, Controller Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22973419 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes
Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi
Abstract:
Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.
Keywords: Back stepping, Bergman Model, Nonlinear control, Sliding mode control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35423418 Active Control for Reduction of Noise Passing through Enclosure and Optimization of Microphone Position
Authors: Han-wool Lee, Chin-suk Hong, Weui-bong Jung
Abstract:
In this study, noise characteristics of structure were analyzed in an effort to reduce noise passing through an opening of an enclosure surrounding the structure that generates noise. Enclosures are essential measure to protect noise propagation from operating machinery. Access openings of the enclosures are important path of noise leakage. First, noise characteristics of structure were analyzed and feed-forward noise control was performed using simulation in order to reduce noise passing through the opening of enclosure, which surrounds a structure generating noise. We then implemented a feed-forward controller to actively control the acoustic power through the opening. Finally, we conducted optimization of placement of the reference sensors for several cases of the number of sensors. Good control performances were achieved using the minimum number of microphones arranged an optimal placement.Keywords: Active Noise Control, Feed-forward Control, Noise Attenuation, Position Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16523417 Study of Single Network Adjustment Using QOCA Software in Korea
Authors: Seongchan Kang, Hongsik Yun, Hyukgil Kim, Minwoo Park
Abstract:
For this study, this researcher conducted a precision network adjustment with QOCA, the precision network adjustment software developed by Jet Propulsion Laboratory, to perform an integrated network adjustment on the Unified Control Points managed by the National Geographic Information Institute. Towards this end, 275 Unified Control Points observed in 2008 were selected before a network adjustment is performed on those 275 Unified Control Points. The RMSE on the discrepancies of coordinates as compared to the results of GLOBK was ±6.07mm along the N axis, ±2.68mm along the E axis and ±6.49mm along the U axis.Keywords: Network adjustment, QOCA, unified control point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18593416 Role-based Access Control Model in Home Network Environments
Authors: Do-Woo Kim, Geon Woo Kim, Jun-Ho Lee, Jong-Wook Han
Abstract:
The home in these days has not one computer connected to the Internet but rather a network of many devices within the home, and that network might be connected to the Internet. In such an environment, the potential for attacks is greatly increased. The general security technology can not apply because of the use of various wired and wireless network, middleware and protocol in digital home environment and a restricted system resource of home information appliances. To offer secure home services home network environments have need of access control for various home devices and information when users want to access. Therefore home network access control for user authorization is a very important issue. In this paper we propose access control model using RBAC in home network environments to provide home users with secure home services.
Keywords: Home network, access control, RBAC, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19223415 Motion Planning and Control of a Swarm of Boids in a 3-Dimensional Space
Authors: Bibhya Sharma, Jito Vanualailai, Jai Raj
Abstract:
In this paper, we propose a solution to the motion planning and control problem for a swarm of three-dimensional boids. The swarm exhibit collective emergent behaviors within the vicinity of the workspace. The capability of biological systems to autonomously maneuver, track and pursue evasive targets in a cluttered environment is vastly superior to any engineered system. It is considered an emergent behavior arising from simple rules that are followed by individuals and may not involve any central coordination. A generalized, yet scalable algorithm for attraction to the centroid and inter-individual swarm avoidance is proposed. We present a set of new continuous time-invariant velocity control laws, formulated via the Lyapunov-based control scheme for target attraction and collision avoidance. The controllers provide a collision-free trajectory. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the control laws is demonstrated via computer simulations.
Keywords: Swarm, Practical stability, Motion planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19183414 Robust Control Synthesis for an Unmanned Underwater Vehicle
Authors: A. Budiyono
Abstract:
The control design for unmanned underwater vehicles (UUVs) is challenging due to the uncertainties in the complex dynamic modeling of the vehicle as well as its unstructured operational environment. To cope with these difficulties, a practical robust control is therefore desirable. The paper deals with the application of coefficient diagram method (CDM) for a robust control design of an autonomous underwater vehicle. The CDM is an algebraic approach in which the characteristic polynomial and the controller are synthesized simultaneously. Particularly, a coefficient diagram (comparable to Bode diagram) is used effectively to convey pertinent design information and as a measure of trade-off between stability, response speed and robustness. In the polynomial ring, Kharitonov polynomials are employed to analyze the robustness of the controller due to parametric uncertainties.
Keywords: coefficient diagram method, robust control, Kharitonov polynomials, unmanned underwater vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20973413 MOSFET Based ADC for Accurate Positioning of Control Valves in Industry
Authors: K. Diwakar, N. Vasudevan, C. Senthilpari
Abstract:
This paper presents MOSFET based analog to digital converter which is simple in design, has high resolution, and conversion rate better than dual slope ADC. It has no DAC which will limit the performance, no error in conversion, can operate for wide range of inputs and never become unstable. One of the industrial applications, where the proposed high resolution MOSFET ADC can be used is, for the positioning of control valves in a multi channel data acquisition and control system (DACS), using stepper motors as actuators of control valves. It is observed that in a DACS having ten control valves, 0.02% of positional accuracy of control valves can be achieved with the data update period of 250ms and with stepper motors of maximum pulse rate 20 Kpulses per sec. and minimum pulse width of 2.5 μsec. The reported accuracy so far by other authors is 0.2%, with update period of 255 ms and with 8 bit DAC. The accuracy in the proposed configuration is limited by the available precision stepper motor and not by the MOSFET based ADC.
Keywords: MOSFET based ADC, Actuators, Positional accuracy, Stepper Motors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26193412 High Performance Direct Torque Control for Induction Motor Drive Fed from Photovoltaic System
Authors: E. E. El-Kholy, Ahamed Kalas, Mahmoud Fauzy, M. El-Shahat Dessouki, Abdou. M. El-Refay, Mohammed El-Zefery
Abstract:
Direct Torque Control (DTC) is an AC drive control method especially designed to provide fast and robust responses. In this paper a progressive algorithm for direct torque control of threephase induction drive system supplied by photovoltaic arrays using voltage source inverter to control motor torque and flux with maximum power point tracking at different level of insolation is presented. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented. Simulation and experimental results confirm that the proposed system gives quick, robust torque and speed responses at constant switching frequencies.
Keywords: Photovoltaic (PV) array, direct torque control (DTC), constant switching frequency, induction motor, maximum power point tracking (MPPT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22633411 Comparison of Evolutionary Algorithms and their Hybrids Applied to MarioAI
Authors: Hidehiko Okada, Yuki Fujii
Abstract:
Researchers have been applying artificial/ computational intelligence (AI/CI) methods to computer games. In this research field, further researchesare required to compare AI/CI methods with respect to each game application. In thispaper, we report our experimental result on the comparison of evolution strategy, genetic algorithm and their hybrids, applied to evolving controller agents for MarioAI. GA revealed its advantage in our experiment, whereas the expected ability of ES in exploiting (fine-tuning) solutions was not clearly observed. The blend crossover operator and the mutation operator of GA might contribute well to explore the vast search space.
Keywords: Evolutionary algorithm, autonomous game controller agent, neuroevolutions, MarioAI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17273410 Digital Control Algorithm Based on Delta-Operator for High-Frequency DC-DC Switching Converters
Authors: Renkai Wang, Tingcun Wei
Abstract:
In this paper, a digital control algorithm based on delta-operator is presented for high-frequency digitally-controlled DC-DC switching converters. The stability and the controlling accuracy of the DC-DC switching converters are improved by using the digital control algorithm based on delta-operator without increasing the hardware circuit scale. The design method of voltage compensator in delta-domain using PID (Proportion-Integration- Differentiation) control is given in this paper, and the simulation results based on Simulink platform are provided, which have verified the theoretical analysis results very well. It can be concluded that, the presented control algorithm based on delta-operator has better stability and controlling accuracy, and easier hardware implementation than the existed control algorithms based on z-operator, therefore it can be used for the voltage compensator design in high-frequency digitally- controlled DC-DC switching converters.
Keywords: Digitally-controlled DC-DC switching converter, finite word length, control algorithm based on delta-operator, high-frequency, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12723409 Monitoring Patents Using the Statistical Process Control
Authors: Stephanie Russo Fabris, Edmara Thays Neres Menezes, Ruirogeres dos Santos Cruz, Lucio Leonardo Siqueira Santos, Suzana Leitao Russo
Abstract:
The statistical process control (SPC) is one of the most powerful tools developed to assist ineffective control of quality, involves collecting, organizing and interpreting data during production. This article aims to show how the use of CEP industries can control and continuously improve product quality through monitoring of production that can detect deviations of parameters representing the process by reducing the amount of off-specification products and thus the costs of production. This study aimed to conduct a technological forecasting in order to characterize the research being done related to the CEP. The survey was conducted in the databases Spacenet, WIPO and the National Institute of Industrial Property (INPI). Among the largest are the United States depositors and deposits via PCT, the classification section that was presented in greater abundance to F.
Keywords: Statistical Process Control, Industries
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542