Search results for: Coupled multifield
108 Solving Transient Conduction and Radiation Using Finite Volume Method
Authors: Ashok K. Satapathy, Prerana Nashine
Abstract:
Radiative heat transfer in participating medium was carried out using the finite volume method. The radiative transfer equations are formulated for absorbing and anisotropically scattering and emitting medium. The solution strategy is discussed and the conditions for computational stability are conferred. The equations have been solved for transient radiative medium and transient radiation incorporated with transient conduction. Results have been obtained for irradiation and corresponding heat fluxes for both the cases. The solutions can be used to conclude incident energy and surface heat flux. Transient solutions were obtained for a slab of heat conducting in slab and by thermal radiation. The effect of heat conduction during the transient phase is to partially equalize the internal temperature distribution. The solution procedure provides accurate temperature distributions in these regions. A finite volume procedure with variable space and time increments is used to solve the transient radiation equation. The medium in the enclosure absorbs, emits, and anisotropically scatters radiative energy. The incident radiations and the radiative heat fluxes are presented in graphical forms. The phase function anisotropy plays a significant role in the radiation heat transfer when the boundary condition is non-symmetric.
Keywords: Participating media, finite volume method, radiation coupled with conduction, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2959107 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach
Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh
Abstract:
This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.Keywords: River stage-discharge process, LSSVM, discrete wavelet transform (DWT), ensemble empirical decomposition mode (EEMD), multi-station modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664106 Evaluation of Heavy Metal Concentrations of Stem and Seed of Juncus acutus for Grazing Animals and Birds in Kızılırmak Delta
Authors: N. Cetinkaya, F. Erdem
Abstract:
Juncus acutus (Juncaceae) is a perennial wetland plant and it is commonly known as spiny rush or sharp rush. It is the most abundant plant in Kizilirmak grassland, Samsun, Turkey. Heavy metals are significant environmental contaminants in delta and their toxicity is an increasing problem for animals whose natural habitat is delta. The objective of this study was to evaluate heavy metal concentrations mainly As, Cd, Sb, Ba, Pb and Hg in stem and seed of Juncus acutus for grazing animals and birds in delta. The Juncus acutus stem and seed samples were collected from Kizilirmak Delta in July, August and September. Heavy metal concentrations of collected samples were analyzed by Inductively Coupled Plasma – Mass Spectrometer (ICP-MS). The obtained mean values of three months for As, Cd, Sb, Ba, Pb and Hg of stem and seed samples of Juncus acutus were 0.11 and 0.23 mg/kg; 0.07 and 0.11 mg/kg; 0.02 and 0.02 mg/kg; 5.26 and 1.75 mg/kg; 0.05 and not detectable in July respectively. Hg was not detected in both stem and seed of Juncus acutus, Pb concentration was determined only in stem of Juncus acutus but not in seed. There were no significant differences between the values of three months for As, Cd, Sb, Ba, Pb and Hg of stem and seed samples of Juncus acutus. The obtained As, Cd, Sb, Ba, Pb and Hg results of stem and seed of Juncus acutus show that seed and stem of Juncus acutus may be safely consumed for grazing animals and birds regarding to heavy metals contamination in Kizilirmak Delta.
Keywords: Heavy metals, Juncus acutus, Kizilirmak Delta, wetland.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721105 One-DOF Precision Position Control using the Combined Piezo-VCM Actuator
Authors: Yung-Tien Liu, Chun-Chao Wang
Abstract:
This paper presents the control performance of a high-precision positioning device using the hybrid actuator composed of a piezoelectric (PZT) actuator and a voice-coil motor (VCM). The combined piezo-VCM actuator features two main characteristics: a large operation range due to long stroke of the VCM, and high precision and heavy load positioning ability due to PZT impact force. A one-degree-of-freedom (DOF) experimental setup was configured to examine the fundamental characteristics, and the control performance was effectively demonstrated by using a switching controller. In rough positioning state, an integral variable structure controller (IVSC) was used for the VCM to conduct long range of operation; in precision positioning state, an impact force controller (IFC) for the PZT actuator coupled with presliding states of the sliding table was used to obtain high-precision position control and achieve both forward and backward actuations. The experimental results showed that the sliding table having a mass of 881g and with a preload of 10 N was successfully positioned within the positioning accuracy of 10 nm in both forward and backward position controls.
Keywords: Integral variable structure controller (IVSC), impact force, precision positioning, presliding, PZT actuator, voice-coil motor (VCM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937104 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media
Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh
Abstract:
In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.
Keywords: Micro-polar theory, Galerkin method, MEMS, micro-fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655103 Haemocompatibility of Surface Modified AISI 316L Austenitic Stainless Steel Tested in Artificial Plasma
Authors: W. Walke, J. Przondziono, K. Nowińska
Abstract:
The study comprises evaluation of suitability of passive layer created on the surface of AISI 316L stainless steel for products that are intended to have contact with blood. For that purpose, prior to and after chemical passivation, samples were subject to 7 day exposure in artificial plasma at the temperature of T=37°C. Next, tests of metallic ions infiltration from the surface to the solution were performed. The tests were performed with application of spectrometer JY 2000, by Yobin – Yvon, employing Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). In order to characterize physical and chemical features of electrochemical processes taking place during exposure of samples to artificial plasma, tests with application of electrochemical impedance spectroscopy were suggested. The tests were performed with application of measuring unit equipped with potentiostat PGSTAT 302n with an attachment for impedance tests FRA2. Measurements were made in the environment simulating human blood at the temperature of T=37°C. Performed tests proved that application of chemical passivation process for AISI 316L stainless steel used for production of goods intended to have contact with blood is well-grounded and useful in order to improve safety of their usage.
Keywords: AISI 316L stainless steel, chemical passivation, artificial plasma, ions infiltration, EIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097102 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study
Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed
Abstract:
This paper compares the substructure and direct approaches for soil-structure interaction (SSI) analysis in the time domain. In the substructure approach, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the coupled soil-structure system. To explore the potential limitations of the substructure modeling process, a two-dimensional (2D) reinforced concrete frame structure is modeled and analyzed using the direct and substructure approaches. The results show discrepancy between the simulated responses of the direct and substructure models. It is concluded that the main source of discrepancy is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall alternatively be developed. This refined impedance function is expected to improve the simulation accuracy of the substructure approach.
Keywords: Direct approach, impedance function, massless rigid foundation, soil-structure interaction, substructure approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 468101 Performance Assessment of Computational Gridon Weather Indices from HOAPS Data
Authors: Madhuri Bhavsar, Anupam K Singh, Shrikant Pradhan
Abstract:
Long term rainfall analysis and prediction is a challenging task especially in the modern world where the impact of global warming is creating complications in environmental issues. These factors which are data intensive require high performance computational modeling for accurate prediction. This research paper describes a prototype which is designed and developed on grid environment using a number of coupled software infrastructural building blocks. This grid enabled system provides the demanding computational power, efficiency, resources, user-friendly interface, secured job submission and high throughput. The results obtained using sequential execution and grid enabled execution shows that computational performance has enhanced among 36% to 75%, for decade of climate parameters. Large variation in performance can be attributed to varying degree of computational resources available for job execution. Grid Computing enables the dynamic runtime selection, sharing and aggregation of distributed and autonomous resources which plays an important role not only in business, but also in scientific implications and social surroundings. This research paper attempts to explore the grid enabled computing capabilities on weather indices from HOAPS data for climate impact modeling and change detection.Keywords: Climate model, Computational Grid, GridApplication, Heterogeneous Grid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443100 Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour during Closing Manoeuvring Operation of a Butterfly Valve
Authors: M. Ezkurra, J. A. Esnaola, M. Martinez-Agirre, U. Etxeberria, U. Lertxundi, L. Colomo, M. Begiristain, I. Zurutuza
Abstract:
Butterfly valves are widely used industrial piping components as on-off and flow controlling devices. The main challenge in the design process of this type of valves is the correct dimensioning to ensure proper mechanical performance as well as to minimise flow losses that affect the efficiency of the system. Butterfly valves are typically dimensioned in a closed position based on mechanical approaches considering uniform hydrostatic pressure, whereas the flow losses are analysed by means of CFD simulations. The main limitation of these approaches is that they do not consider either the influence of the dynamics of the manoeuvring stage or coupled phenomena. Recent works have included the influence of the flow on the mechanical behaviour for different opening angles by means of one-way FSI approach. However, these works consider steady-state flow for the selected angles, not capturing the effect of the transient flow evolution during the manoeuvring stage. Two-way FSI modelling approach could allow overcoming such limitations providing more accurate results. Nevertheless, the use of this technique is limited due to the increase in the computational cost. In the present work, the applicability of FSI one-way and two-way approaches is evaluated for the analysis of butterfly valves, showing that not considering fluid-structure coupling involves not capturing the most critical situation for the valve disc.
Keywords: Butterfly valves, fluid-structure interaction, one-way approach, two-way approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159899 Lagrangian Flow Skeletons Captured in the Wake of a Swimming Nematode C. elegans Using an Immersed Boundary Fluid-Structure Interaction Approach
Authors: Arash Taheri
Abstract:
In this paper, Lagrangian coherent structure (LCS) concept is applied to wake flows generated in the up/down-stream of a swimming nematode C. elegans in an intermediate Re number range, i.e., 250-1200. It materializes Lagrangian hidden structures depicting flow transport barriers. To pursue the goals, nematode swimming in a quiescent fluid flow environment is numerically simulated by a two-way fluid-structure interaction (FSI) approach with the aid of immersed boundary method (IBM). In this regard, incompressible Navier-Stokes equations, fully-coupled with Lagrangian deformation equations for the immersed body, are solved using IB2d code. For all simulations, nematode’s body is modeled with a parametrized spring-fiber built-in case available in the computational code. Reverse von-Kármán vortex street formation and vortex shedding characteristics are studied and discussed in details via LCS approach, including grid resolution, integration time and Reynolds number effects. Results unveil presence of different flow regions with distinct fluid particle fates in the swimming animal’s wake and formation of so-called ‘mushroom-shaped’ structures in attracting LCS identities.
Keywords: Lagrangian coherent structure, nematode swimming, fluid-structure interaction, immersed boundary method, bionics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99598 A Robust Salient Region Extraction Based on Color and Texture Features
Authors: Mingxin Zhang, Zhaogan Lu, Junyi Shen
Abstract:
In current common research reports, salient regions are usually defined as those regions that could present the main meaningful or semantic contents. However, there are no uniform saliency metrics that could describe the saliency of implicit image regions. Most common metrics take those regions as salient regions, which have many abrupt changes or some unpredictable characteristics. But, this metric will fail to detect those salient useful regions with flat textures. In fact, according to human semantic perceptions, color and texture distinctions are the main characteristics that could distinct different regions. Thus, we present a novel saliency metric coupled with color and texture features, and its corresponding salient region extraction methods. In order to evaluate the corresponding saliency values of implicit regions in one image, three main colors and multi-resolution Gabor features are respectively used for color and texture features. For each region, its saliency value is actually to evaluate the total sum of its Euclidean distances for other regions in the color and texture spaces. A special synthesized image and several practical images with main salient regions are used to evaluate the performance of the proposed saliency metric and other several common metrics, i.e., scale saliency, wavelet transform modulus maxima point density, and important index based metrics. Experiment results verified that the proposed saliency metric could achieve more robust performance than those common saliency metrics.Keywords: salient regions, color and texture features, image segmentation, saliency metric
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156797 Influence of Seasons on Honeybee Wooden Hives Attack by Termites in Port Harcourt, Nigeria
Authors: A. A. Aiyeloja, G.A. Adedeji, S. L. Larinde
Abstract:
Termites have been observed as major pre-colonisation and post-colonisation pest insect of honeybees’ wooden hives in Nigeria. However, pest situation studies in modern beekeeping have been largely directed towards those pests that affect honeybees rather than the biological structure (wood) which houses the honeybees and the influence of seasons on the pests’ activities against the hives. This study, therefore, investigated the influence of seasons on the intensity of hives attacks by termites for 2 years in University of Port Harcourt, Rivers State using visual inspection. The Experimental Apiary was established with 15 Kenyan’s top bar hives made of Triplochiton scleroxylon wood that were strategically placed and observed within the Department of Forestry and Wildlife Management arboretum. The colonies hives consistently showed comparatively lower termite’s infestation levels in the dry season and, consequently, also lower attacks on the colonized hives. The result indicated raining season as a distinct period for more destructive activities of termites on the hives and strongly associated with dryness of the hives. Since previous study and observations have linked colonization with dry season coupled with minimal attacked on colonized hives; the non-colonised hives should be removed from the field at the onset of raining season and returned two weeks prior to dry season to reduce hives degradation by pests.
Keywords: Attack, hives degradation, Nigeria, seasons, termites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282496 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network
Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir
Abstract:
The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.Keywords: MPPT, active power filter, PV array, perturb and observe algorithm, PWM-control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75495 Dynamic Behavior of Brain Tissue under Transient Loading
Authors: Y. J. Zhou, G. Lu
Abstract:
In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.
Keywords: Analytical method, mechanical responses, spherical wave propagation, traumatic brain injury.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226194 An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminium Alloy
Authors: Lakshman Singh, Rajeshwar Singh, Naveen Kumar Singh, Davinder Singh, Pargat Singh
Abstract:
Tungsten Inert Gas (TIG) welding is a high quality welding process used to weld the thin metals and their alloy. 5083 Aluminium alloys play an important role in engineering and metallurgy field because of excellent corrosion properties, ease of fabrication and high specific strength coupled with best combination of toughness and formability.
TIG welding technique is one of the precise and fastest processes used in aerospace, ship and marine industries. TIG welding process is used to analyze the data and evaluate the influence of input parameters on tensile strength of 5083 Al-alloy specimens with dimensions of 100mm long x 15mm wide x 5mm thick. Welding current (I), gas flow rate (G) and welding speed (S) are the input parameters which effect tensile strength of 5083 Al-alloy welded joints. As welding speed increased, tensile strength increases first till optimum value and after that both decreases by increasing welding speed further. Results of the study show that maximum tensile strength of 129 MPa of weld joint are obtained at welding current of 240 Amps, gas flow rate of 7 Lt/min and welding speed of 98 mm/min. These values are the optimum values of input parameters which help to produce efficient weld joint that have good mechanical properties as a tensile strength.
Keywords: 5083 Aluminium alloy, Gas flow rate, TIG welding, Welding current, Welding speed and Tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 408593 GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK
Authors: Zahid O. Alibrahim, Craig D. Williams, Clive L. Roberts
Abstract:
The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.
Keywords: Heavy metals, GIS, multivariate analysis, geoaccumulation index, enrichment factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124192 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model
Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth
Abstract:
This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215991 Design and Development of iLON Smart Server Based Remote Monitoring System for Induction Motors
Authors: G. S. Ayyappan, M. Raja Raghavan, R. Poonthalir, Kota Srinivas, B. Ramesh Babu
Abstract:
Electrical energy demand in the World and particularly in India, is increasing drastically more than its production over a period of time. In order to reduce the demand-supply gap, conserving energy becomes mandatory. Induction motors are the main driving force in the industries and contributes to about half of the total plant energy consumption. By effective monitoring and control of induction motors, huge electricity can be saved. This paper deals about the design and development of such a system, which employs iLON Smart Server and motor performance monitoring nodes. These nodes will monitor the performance of induction motors on-line, on-site and in-situ in the industries. The node monitors the performance of motors by simply measuring the electrical power input and motor shaft speed; coupled to genetic algorithm to estimate motor efficiency. The nodes are connected to the iLON Server through RS485 network. The web server collects the motor performance data from nodes, displays online, logs periodically, analyzes, alerts, and generates reports. The system could be effectively used to operate the motor around its Best Operating Point (BOP) as well as to perform the Life Cycle Assessment of Induction motors used in the industries in continuous operation.
Keywords: Best operating point, iLON smart server, motor asset management, LONWORKS, Modbus RTU, motor performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72190 Tide Contribution in the Flood Event of Jeddah City: Mathematical Modelling and Different Field Measurements of the Groundwater Rise
Authors: Aïssa Rezzoug
Abstract:
This paper is aimed to bring new elements that demonstrate the tide caused the groundwater to rise in the shoreline band, on which the urban areas occurs, especially in the western coastal cities of the Kingdom of Saudi Arabia like Jeddah. The reason for the last events of Jeddah inundation was the groundwater rise in the city coupled at the same time to a strong precipitation event. This paper will illustrate the tide participation in increasing the groundwater level significantly. It shows that the reason for internal groundwater recharge within the urban area is not only the excess of the water supply coming from surrounding areas, due to the human activity, with lack of sufficient and efficient sewage system, but also due to tide effect. The research study follows a quantitative method to assess groundwater level rise risks through many in-situ measurements and mathematical modelling. The proposed approach highlights groundwater level, in the urban areas of the city on the shoreline band, reaching the high tide level without considering any input from precipitation. Despite the small tide in the Red Sea compared to other oceanic coasts, the groundwater level is considerably enhanced by the tide from the seaside and by the freshwater table from the landside of the city. In these conditions, the groundwater level becomes high in the city and prevents the soil to evacuate quickly enough the surface flow caused by the storm event, as it was observed in the last historical flood catastrophe of Jeddah in 2009.
Keywords: Flood, groundwater rise, Jeddah, tide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50089 Effect of Biomass Feedstocks on the Production of Hydrogenated Biodiesel
Authors: Panatcha Bovornseripatai, Siriporn Jongpatiwut, Somchai Osuwan, Suchada Butnark
Abstract:
Hydrogenated biodiesel is one of the most promising renewable fuels. It has many advantages over conventional biodiesel, including higher cetane number, higher heating value, lower viscosity, and lower corrosiveness due to its absence of oxygen. From previous work, Pd/TiO2 gave high conversion and selectivity in hydrogenated biodiesel. In this work, the effect of biomass feedstocks (i.e. beef fat, chicken fat, pork fat, and jatropha oil) on the production of hydrogenated biodiesel over Pd/TiO2 has been studied. Biomass feedstocks were analyzed by ICP-OES (inductively coupled plasma optical emission spectrometry) to identify the content of impurities (i.e. P, K, Ca, Na, and Mg). The deoxygenation catalyst, Pd/TiO2, was prepared by incipient wetness impregnation (IWI) and tested in a continuous flow packed-bed reactor at 500 psig, 325°C, H2/feed molar ratio of 30, and LHSV of 4 h-1 for its catalytic activity and selectivity in hydrodeoxygenation. All feedstocks gave high selectivity in diesel specification range hydrocarbons and the main hydrocarbons were n-pentadecane (n-C15) and n-heptadecane (n- C17), resulting from the decarbonylation/decarboxylation reaction. Intermediates such as oleic acid, stearic acid, palmitic acid, and esters were also detected in minor amount. The conversion of triglycerides in jatropha oil is higher than those of chicken fat, pork fat, and beef fat, respectively. The higher concentration of metal impurities in feedstock, the lower conversion of feedstock.Keywords: Hydrogenated biodiesel, hydrodeoxygenation, Pd/TiO2, biomass feedstock
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196988 Finite Volume Method for Flow Prediction Using Unstructured Meshes
Authors: Juhee Lee, Yongjun Lee
Abstract:
In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.
Keywords: Finite volume method, fluid flow, laminar flow, unstructured grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184687 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method
Authors: Michael G. Pantelyat
Abstract:
Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.Keywords: Electromagnetic devices, multiphysics, numerical analysis, simulation and design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172286 A Comparative Analysis of Solid Waste Treatment Technologies on Cost and Environmental Basis
Authors: Nesli Aydin
Abstract:
Waste management decision making in developing countries has moved towards being more pragmatic, transparent, sustainable and comprehensive. Turkey is required to make its waste related legislation compatible with European Legislation as it is a candidate country of the European Union. Improper Turkish practices such as open burning and open dumping practices must be abandoned urgently, and robust waste management systems have to be structured. The determination of an optimum waste management system in any region requires a comprehensive analysis in which many criteria are taken into account by stakeholders. In conducting this sort of analysis, there are two main criteria which are evaluated by waste management analysts; economic viability and environmentally friendliness. From an analytical point of view, a central characteristic of sustainable development is an economic-ecological integration. It is predicted that building a robust waste management system will need significant effort and cooperation between the stakeholders in developing countries such as Turkey. In this regard, this study aims to provide data regarding the cost and environmental burdens of waste treatment technologies such as an incinerator, an autoclave (with different capacities), a hydroclave and a microwave coupled with updated information on calculation methods, and a framework for comparing any proposed scenario performances on a cost and environmental basis.
Keywords: Decision making, economic viability, environmentally friendliness, stakeholder, waste management systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128985 Use of Data of the Remote Sensing for Spatiotemporal Analysis Land Use Changes in the Eastern Aurès (Algeria)
Authors: A. Bouzekri, H. Benmassaud
Abstract:
Aurèsregion is one of the arid and semi-arid areas that have suffered climate crises and overexploitation of natural resources they have led to significant land degradation. The use of remote sensing data allowed us to analyze the land and its spatiotemporal changes in the Aurès between 1987 and 2013, for this work, we adopted a method of analysis based on the exploitation of the images satellite Landsat TM 1987 and Landsat OLI 2013, from the supervised classification likelihood coupled with field surveys of the mission of May and September of 2013. Using ENVI EX software by the superposition of the ground cover maps from 1987 and 2013, one can extract a spatial map change of different land cover units. The results show that between 1987 and 2013 vegetation has suffered negative changes are the significant degradation of forests and steppe rangelands, and sandy soils and bare land recorded a considerable increase. The spatial change map land cover units between 1987 and 2013 allows us to understand the extensive or regressive orientation of vegetation and soil, this map shows that dense forests give his place to clear forests and steppe vegetation develops from a degraded forest vegetation and bare, sandy soils earn big steppe surfaces that explain its remarkable extension. The analysis of remote sensing data highlights the profound changes in our environment over time and quantitative monitoring of the risk of desertification.Keywords: Aurès, Land use, remote sensing, spatiotemporal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 503284 Robust Integrated Design for a Mechatronic Feed Drive System of Machine Tools
Authors: Chin-Yin Chen, Chi-Cheng Cheng
Abstract:
This paper aims at to develop a robust optimization methodology for the mechatronic modules of machine tools by considering all important characteristics from all structural and control domains in one single process. The relationship between these two domains is strongly coupled. In order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the concurrent integrated design method Design For Control (DFC), will be employed in this paper. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. Pro/Engineer and AnSys are first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. In addition, the robust controller,based on Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Finally, the technology of design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved.
Keywords: Machine tools, integrated structure and control design, design for control, multilevel decomposition, quantitative feedback theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194883 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings
Authors: A. W. J. Wong, I. H. Ibrahim
Abstract:
Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.Keywords: Buildings, CFD simulation, natural ventilation, urban airflow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130382 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application
Authors: Hailu Dessalegn, T. Srinivas
Abstract:
We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974nm with a flat top pass band at 1dB of 0.5205nm and free spectral range of about 14.9nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54pm/Keywords: Optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201181 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions
Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant
Abstract:
The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.Keywords: Complex terrain, cross-ventilation, wind driven ventilation, Computational Fluid Dynamics (CFD), wind resource.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89480 Micromechanics Modeling of 3D Network Smart Orthotropic Structures
Authors: E. M. Hassan, A. L. Kalamkarov
Abstract:
Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.
Keywords: Asymptotic Homogenization Method, Effective Piezothermoelastic Coefficients, Finite Element Analysis, 3D Smart Network Composite Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209979 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions
Authors: Cheng-Chi Yu, Chi-Shiun Chiou
Abstract:
This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.Keywords: Plug-in hybrid power system, fuel economy, performance, continuous variable transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289