Search results for: Employee performance
1922 Integrated ACOR/IACOMV-R-SVM Algorithm
Authors: Hiba Basim Alwan, Ku Ruhana Ku-Mahamud
Abstract:
A direction for ACO is to optimize continuous and mixed (discrete and continuous) variables in solving problems with various types of data. Support Vector Machine (SVM), which originates from the statistical approach, is a present day classification technique. The main problems of SVM are selecting feature subset and tuning the parameters. Discretizing the continuous value of the parameters is the most common approach in tuning SVM parameters. This process will result in loss of information which affects the classification accuracy. This paper presents two algorithms that can simultaneously tune SVM parameters and select the feature subset. The first algorithm, ACOR-SVM, will tune SVM parameters, while the second IACOMV-R-SVM algorithm will simultaneously tune SVM parameters and select the feature subset. Three benchmark UCI datasets were used in the experiments to validate the performance of the proposed algorithms. The results show that the proposed algorithms have good performances as compared to other approaches.Keywords: Continuous ant colony optimization, incremental continuous ant colony, simultaneous optimization, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8791921 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique
Authors: Sidhartha Panda, C. Ardil
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8671920 A Comparative Study of P-I, I-P, Fuzzy and Neuro-Fuzzy Controllers for Speed Control of DC Motor Drive
Authors: S.R. Khuntia, K.B. Mohanty, S. Panda, C. Ardil
Abstract:
This paper presents a comparative study of various controllers for the speed control of DC motor. The most commonly used controller for the speed control of dc motor is Proportional- Integral (P-I) controller. However, the P-I controller has some disadvantages such as: the high starting overshoot, sensitivity to controller gains and sluggish response due to sudden disturbance. So, the relatively new Integral-Proportional (I-P) controller is proposed to overcome the disadvantages of the P-I controller. Further, two Fuzzy logic based controllers namely; Fuzzy control and Neuro-fuzzy control are proposed and the performance these controllers are compared with both P-I and I-P controllers. Simulation results are presented and analyzed for all the controllers. It is observed that fuzzy logic based controllers give better responses than the traditional P-I as well as I-P controller for the speed control of dc motor drives.Keywords: Proportional-Integral (P-I) controller, Integral- Proportional (I-P) controller, Fuzzy logic control, Neuro-fuzzy control, Speed control, DC Motor drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12551919 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems
Authors: Belkacem Laimouche
Abstract:
With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.
Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401918 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression
Authors: Wanatchapong Kongkaew
Abstract:
This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.
Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22331917 Local Perspectives on Climate Change Mitigation and Sustainability of Clean Development Mechanism (CDM) Project: A Case Study in Thailand
Authors: S. Kittipongvises, T. Mino, C. Polprasert
Abstract:
Global climate change has become the preeminent threat to human security in the 21st century. From mitigation perspective, this study aims to evaluate the performance of biogas renewable project under clean development mechanism activities (namely Korat-Waste-to-Energy) in Thailand and to assess local perceptions towards the significance of climate change mitigation and sustainability of such project in their community. Questionnaire was developed based on the national sustainable development criteria and was distributed among systematically selected households within project boundaries (n=260). Majority of the respondents strongly agreed with the reduction of odor problems (81%) and air pollution (76%). However, they were unsure about greenhouse gas reduction from such project and ignorant about the key issues of climate change. A lesson learned suggested that there is a need to further investigate the possible socio-psychological barriers may significantly shape public perception and understandings of climate change in the local context.Keywords: Climate Change Mitigation, Local Perspective, Sustainability, Thailand
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16301916 Parallel Vector Processing Using Multi Level Orbital DATA
Authors: Nagi Mekhiel
Abstract:
Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.Keywords: Memory organization, parallel processors, serial code, vector processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10611915 Feature Extraction for Surface Classification – An Approach with Wavelets
Authors: Smriti H. Bhandari, S. M. Deshpande
Abstract:
Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.
Keywords: Dual-tree complex wavelet transform, surface metrology, surface roughness, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22431914 Bin Bloom Filter Using Heuristic Optimization Techniques for Spam Detection
Authors: N. Arulanand, K. Premalatha
Abstract:
Bloom filter is a probabilistic and memory efficient data structure designed to answer rapidly whether an element is present in a set. It tells that the element is definitely not in the set but its presence is with certain probability. The trade-off to use Bloom filter is a certain configurable risk of false positives. The odds of a false positive can be made very low if the number of hash function is sufficiently large. For spam detection, weight is attached to each set of elements. The spam weight for a word is a measure used to rate the e-mail. Each word is assigned to a Bloom filter based on its weight. The proposed work introduces an enhanced concept in Bloom filter called Bin Bloom Filter (BBF). The performance of BBF over conventional Bloom filter is evaluated under various optimization techniques. Real time data set and synthetic data sets are used for experimental analysis and the results are demonstrated for bin sizes 4, 5, 6 and 7. Finally analyzing the results, it is found that the BBF which uses heuristic techniques performs better than the traditional Bloom filter in spam detection.
Keywords: Cuckoo search algorithm, levy’s flight, metaheuristic, optimal weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22601913 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: [email protected]
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.
Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3991912 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning
Authors: K´evin Fernagut, Olivier Flauzac, Erick M. Gallegos R, Florent Nolot
Abstract:
The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-based Virtual Machine (KVM), LinuX Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.
Keywords: Containerization, containers, cyber-security, cyber-attacks, isolation, performance, security, virtualization, virtual machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5631911 Accrual Based Scheduling for Cloud in Single and Multi Resource System: Study of Three Techniques
Authors: R. Santhosh, T. Ravichandran
Abstract:
This paper evaluates the accrual based scheduling for cloud in single and multi-resource system. Numerous organizations benefit from Cloud computing by hosting their applications. The cloud model provides needed access to computing with potentially unlimited resources. Scheduling is tasks and resources mapping to a certain optimal goal principle. Scheduling, schedules tasks to virtual machines in accordance with adaptable time, in sequence under transaction logic constraints. A good scheduling algorithm improves CPU use, turnaround time, and throughput. In this paper, three realtime cloud services scheduling algorithm for single resources and multiple resources are investigated. Experimental results show Resource matching algorithm performance to be superior for both single and multi-resource scheduling when compared to benefit first scheduling, Migration, Checkpoint algorithms.Keywords: Cloud computing, Scheduling, Migration, Checkpoint, Resource Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19171910 Design and Implementation of DC-DC Converter with Inc-Cond Algorithm
Authors: Mustafa Engin Basoğlu, Bekir Çakır
Abstract:
The most important component affecting the efficiency of photovoltaic power systems are solar panels. In other words, efficiency of these systems are significantly affected due to the being low efficiency of solar panel. Thus, solar panels should be operated under maximum power point conditions through a power converter. In this study, design of boost converter has been carried out with maximum power point tracking (MPPT) algorithm which is incremental conductance (Inc-Cond). By using this algorithm, importance of power converter in MPPT hardware design, impacts of MPPT operation have been shown. It is worth noting that initial operation point is the main criteria for determining the MPPT performance. In addition, it is shown that if value of load resistance is lower than critical value, failure operation is realized. For these analyzes, direct duty control is used for simplifying the control.
Keywords: Boost converter, Incremental Conductance (Inc- Cond), MPPT, Solar panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36521909 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force
Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh
Abstract:
This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.Keywords: Frame, grey wolf optimization algorithm, modal residual force, structural damage detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14941908 Design Analysis of a Slotted Microstrip Antenna for Wireless Communication
Authors: Norbahiah Misran, Mohammed N. Shakib, Mohammad T. Islam, Baharudin Yatim
Abstract:
In this paper, a new design technique for enhancing bandwidth that improves the performance of a conventional microstrip patch antenna is proposed. This paper presents a novel wideband probe fed inverted slotted microstrip patch antenna. The design adopts contemporary techniques; coaxial probe feeding, inverted patch structure and slotted patch. The composite effect of integrating these techniques and by introducing the proposed patch, offer a low profile, broadband, high gain, and low cross-polarization level. The results for the VSWR, gain and co-and cross-polarization patterns are presented. The antenna operating the band of 1.80-2.36 GHz shows an impedance bandwidth (2:1 VSWR) of 27% and a gain of 10.18 dBi with a gain variation of 1.12 dBi. Good radiation characteristics, including a cross-polarization level in xz-plane less than -42 dB, have been obtained.Keywords: Slotted antenna, microstrip patch antenna, wideband, coaxial probe fed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28991907 Development of Web-Based Remote Desktop to Provide Adaptive User Interfaces in Cloud Platform
Authors: Shuen-Tai Wang, Hsi-Ya Chang
Abstract:
Cloud virtualization technologies are becoming more and more prevalent, cloud users usually encounter the problem of how to access to the virtualized remote desktops easily over the web without requiring the installation of special clients. To resolve this issue, we took advantage of the HTML5 technology and developed web-based remote desktop. It permits users to access the terminal which running in our cloud platform from anywhere. We implemented a sketch of web interface following the cloud computing concept that seeks to enable collaboration and communication among users for high performance computing. Given the development of remote desktop virtualization, it allows to shift the user’s desktop from the traditional PC environment to the cloud platform, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. This is also made possible by the low administrative costs as well as relatively inexpensive end-user terminals and reduced energy expenses.
Keywords: Virtualization, Remote Desktop, HTML5, Cloud Computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32511906 The Importance of Theatrical Language in the Creativeness of the Actor
Authors: Ordabek Khozhamberdiyev
Abstract:
In this article, some methods are mentioned for developing the theatrical language by giving information of “theatrical language" since the arising of the language in obsolete terms, and today, and also by examining the problems. Being able to talk meaningfully in the theater stage is a skillful art. Maybe, to be able to convey the idea of the poet, his/her world outlook and his/her feelings from the bottom of the heart as such, also conveying the speech norms without breaking them to the ear of audience in a fascinating way in adverse of a repellent way is the most difficult one. Because of this, “the word is the mirror of the idea". The importance of the theatrical language should not be perceived as only a post, it is “as the yarn that the culture carpet is weaved from". Thereby, it is a tool which transposes our culture and our life style from generation to generation. At the time of creativeness, the “word" comes out from the poet, “the word and feeling" art comes out from the actor. If it was not so, the audience could read the texts of the work himself/herself instead of going to the theater in order to see the performance. The fundamental works by the Turkish, Kazakh and English scientists have been taken as a basis for the research done.
Keywords: language, sound, stage, theatrical language, voice
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13451905 A Fast Adaptive Tomlinson-Harashima Precoder for Indoor Wireless Communications
Authors: M. Naresh Kumar, Abhijit Mitra, C. Ardil
Abstract:
A fast adaptive Tomlinson Harashima (T-H) precoder structure is presented for indoor wireless communications, where the channel may vary due to rotation and small movement of the mobile terminal. A frequency-selective slow fading channel which is time-invariant over a frame is assumed. In this adaptive T-H precoder, feedback coefficients are updated at the end of every uplink frame by using system identification technique for channel estimation in contrary with the conventional T-H precoding concept where the channel is estimated during the starting of the uplink frame via Wiener solution. In conventional T-H precoder it is assumed the channel is time-invariant in both uplink and downlink frames. However assuming the channel is time-invariant over only one frame instead of two, the proposed adaptive T-H precoder yields better performance than conventional T-H precoder if the channel is varied in uplink after receiving the training sequence.
Keywords: Tomlinson-Harashima precoder, Adaptive channel estimation, Indoor wireless communication, Bit error rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18121904 Coaching Leadership Traits Preferences of University and College Athletes
Authors: Idou Keinde
Abstract:
This study examined coaching leadership traits as preferred by athletes of universities and colleges of education located in Lagos State, South West Nigeria. Athletes from two universities (n=99) and two colleges of education (n=92) were involved as study sample. The Leadership Trait Preference Questionnaire (LTPQ) was used to measure athletes’ preferences. Mean and Spearman rank order statistics were used to analyze collected data. Results showed that the traits of friendliness and happiness, sense of humour and cheerfulness, and cooperation were most preferred irrespective of type of institution. College of education athletes were found to have higher mean preferences (M=34.54; SD=9.42) of leadership traits than their university counterparts (M=33.64; SD=9.46). A significantly strong relationship (rho=.81;*p<0.05) was found between preferences of university and college of education athletes. It was recommended that coaches as leaders should from time to time exhibit emotive aspects of themselves to inspire athletes to higher performance.
Keywords: Coaching behavior, coach-athlete relationship, interscholastic games, leadership traits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23821903 Quantification of Technology Innovation Usinga Risk-Based Framework
Authors: Gerard E. Sleefe
Abstract:
There is significant interest in achieving technology innovation through new product development activities. It is recognized, however, that traditional project management practices focused only on performance, cost, and schedule attributes, can often lead to risk mitigation strategies that limit new technology innovation. In this paper, a new approach is proposed for formally managing and quantifying technology innovation. This approach uses a risk-based framework that simultaneously optimizes innovation attributes along with traditional project management and system engineering attributes. To demonstrate the efficacy of the new riskbased approach, a comprehensive product development experiment was conducted. This experiment simultaneously managed the innovation risks and the product delivery risks through the proposed risk-based framework. Quantitative metrics for technology innovation were tracked and the experimental results indicate that the risk-based approach can simultaneously achieve both project deliverable and innovation objectives.Keywords: innovation, risk assessment, product development, technology management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15981902 Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review
Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee
Abstract:
Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys.
Keywords: Beta Alloys, Biomedical Applications, Titanium Alloys, Young's Modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77161901 Titanium-Aluminum Oxide Coating on Aluminized Steel
Authors: Fuyan Sun, Guang Wang, Xueyuan Nie
Abstract:
In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviors of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behavior of the coating material.
Keywords: Corrosion, plasma electrolytic oxidation, thermal property, titanium-aluminum oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35811900 Spatial Time Series Models for Rice and Cassava Yields Based On Bayesian Linear Mixed Models
Authors: Panudet Saengseedam, Nanthachai Kantanantha
Abstract:
This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.
Keywords: Bayesian method, Linear mixed model, Multivariate conditional autoregressive model, Spatial time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22461899 Design, Implementation and Testing of Mobile Agent Protection Mechanism for MANETS
Authors: Khaled E. A. Negm
Abstract:
In the current research, we present an operation framework and protection mechanism to facilitate secure environment to protect mobile agents against tampering. The system depends on the presence of an authentication authority. The advantage of the proposed system is that security measures is an integral part of the design, thus common security retrofitting problems do not arise. This is due to the presence of AlGamal encryption mechanism to protect its confidential content and any collected data by the agent from the visited host . So that eavesdropping on information from the agent is no longer possible to reveal any confidential information. Also the inherent security constraints within the framework allow the system to operate as an intrusion detection system for any mobile agent environment. The mechanism is tested for most of the well known severe attacks against agents and networked systems. The scheme proved a promising performance that makes it very much recommended for the types of transactions that needs highly secure environments, e. g., business to business.
Keywords: Mobile agent security, mobile accesses, agent encryption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20371898 Material Characterization and Numerical Simulation of a Rubber Bumper
Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate a FEM model which is accurate and competitive for a future shape optimization task.
Keywords: Rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35831897 On the use of Ionic Liquids for CO2 Capturing
Authors: Emad Ali, Inas Alnashef, Abdelhamid Ajbar, Mohamed HadjKali, Sarwono Mulyono
Abstract:
In this work, ionic liquids (ILs) for CO2 capturing in typical absorption/stripper process are considered. The use of ionic liquids is considered to be cost-effective because it requires less energy for solvent recovery compared to other conventional processes. A mathematical model is developed for the process based on Peng-Robinson (PR) equation of state (EoS) which is validated with experimental data for various solutions involving CO2. The model is utilized to study the sorbent and energy demand for three types of ILs at specific CO2 capturing rates. The energy demand is manifested by the vapor-liquid equilibrium temperature necessary to remove the captured CO2 from the used solvent in the regeneration step. It is found that higher recovery temperature is required for solvents with higher solubility coefficient. For all ILs, the temperature requirement is less than that required by the typical monoethanolamine (MEA) solvent. The effect of the CO2 loading in the sorbent stream on the process performance is also examined.
Keywords: Ionic liquid, CO2 capturing, CO2 solubility, Vaporliquid equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27111896 Development of Mobile EEF Learning System (MEEFLS) for Mobile Learning Implementation in Kolej Poly-Tech MARA (KPTM)
Authors: M. E. Marwan, A. R. Madar, N. Fuad
Abstract:
Mobile learning (m-learning) is a new method in teaching and learning process which combines technology of mobile device with learning materials. It can enhance student's engagement in learning activities and facilitate them to access the learning materials at anytime and anywhere. In Kolej Poly-Tech Mara (KPTM), this method is seen as an important effort in teaching practice and to improve student learning performance. The aim of this paper is to discuss the development of m-learning application called Mobile EEF Learning System (MEEFLS) to be implemented for Electric and Electronic Fundamentals course using Flash, XML (Extensible Markup Language) and J2ME (Java 2 micro edition). System Development Life Cycle (SDLC) was used as an application development approach. It has three modules in this application such as notes or course material, exercises and video. MEELFS development is seen as a tool or a pilot test for m-learning in KPTM.
Keywords: Flash, mobile device, mobile learning, teaching and learning, SDLC, XML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20231895 Performance Comparison between Conventional and Flexible Box Erecting Machines Using Dispatching Rules
Authors: Min Kyu Kim, Eun Young Lee, Dong Woo Son, Yoon Seok Chang
Abstract:
In this paper, we introduce a flexible box erecting machine (BEM) that swiftly and automatically transforms cardboard into a three dimensional box. Recently, the parcel service and home-shopping industries have grown rapidly, and there is an increasing need for various box types to ship various products. However, workers cannot fold thousands of boxes manually in a day. As such, automatic BEMs are garnering greater attention. This study takes equipment operation into consideration as well as mechanical improvements in order to design a BEM that is able to outperform its conventional counterparts. We analyzed six dispatching rules – First In First Out (FIFO), Shortest Processing Time (SPT), Earliest Due Date (EDD), Setup Avoidance, EDD + SPT, and EDD + Setup Avoidance – to determine which one was most suitable for BEM operation. Consequently, SPT and Setup Avoidance were found to be the most critical rules, followed by EDD + Setup Avoidance, EDD + SPT, EDD, and FIFO. This hierarchy was valid for both our conventional BEM and our new flexible BEM from the viewpoint of processing time. We believe that this research can contribute to flexible BEM management, which has the potential to increase productivity and convenience.Keywords: Automation, box erecting machine, dispatching rule, setup time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14951894 Performance Analysis of Proprietary and Non-Proprietary Tools for Regression Testing Using Genetic Algorithm
Authors: K. Hema Shankari, R. Thirumalaiselvi, N. V. Balasubramanian
Abstract:
The present paper addresses to the research in the area of regression testing with emphasis on automated tools as well as prioritization of test cases. The uniqueness of regression testing and its cyclic nature is pointed out. The difference in approach between industry, with business model as basis, and academia, with focus on data mining, is highlighted. Test Metrics are discussed as a prelude to our formula for prioritization; a case study is further discussed to illustrate this methodology. An industrial case study is also described in the paper, where the number of test cases is so large that they have to be grouped as Test Suites. In such situations, a genetic algorithm proposed by us can be used to reconfigure these Test Suites in each cycle of regression testing. The comparison is made between a proprietary tool and an open source tool using the above-mentioned metrics. Our approach is clarified through several tables.Keywords: APFD metric, genetic algorithm, regression testing, RFT tool, test case prioritization, selenium tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9161893 A Heuristics Approach for Fast Detecting Suspicious Money Laundering Cases in an Investment Bank
Authors: Nhien-An Le-Khac, Sammer Markos, M-Tahar Kechadi
Abstract:
Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most international financial institutions have been implementing anti-money laundering solutions (AML) to fight investment fraud. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project for the purpose of developing a new solution for the AML Units in an international investment bank, we proposed a data mining-based solution for AML. In this paper, we present a heuristics approach to improve the performance for this solution. We also show some preliminary results associated with this method on analysing transaction datasets.Keywords: data mining, anti money laundering, clustering, heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3584