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Abstract—The adoption of modern lightweight virtualization often
comes with new threats and network vulnerabilities. This paper seeks
to assess this with a different approach studying the behavior of a
testbed built with tools such as Kernel-based Virtual Machine (KVM),
LinuX Containers (LXC) and Docker, by performing stress tests
within a platform where students experiment simultaneously with
cyber-attacks, and thus observe the impact on the campus network
and also find the best solution for cyber-security learning. Interesting
outcomes can be found in the literature comparing these technologies.
It is, however, difficult to find results of the effects on the global
network where experiments are carried out. Our work shows that
other physical hosts and the faculty network were impacted while
performing these trials. The problems found are discussed, as well
as security solutions and the adoption of new network policies.
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I. INTRODUCTION

HE great success of classic virtualization has decreased

in recent years due to the growing limitations and
deficiencies in performance and resource management on a
large scale. Despite being a milestone during the last decades
offering a high degree of security reducing network impact,
costs and improving user experience; researchers and computer
experts are leaning towards new lightweight solutions such
as containers and Unikernel-type systems in order to reduce
heavy virtualization overhead. However, containers are known
to be less secure than virtual machines (VMs), and the
provision of cloud computing services where millions of users
are given access, requires an approach that is imperatively
oriented towards security, isolation and performance. The
majority of studies in the literature focus on analysing
virtualization solutions in fixed environments, but not the
impact these can have on the network in which they are
being tested while someone else is running tests on other
machines. Workload tests carried out on a shared environment
can have an important impact not only on the interconnections
of VMs [1], the testbed itself or the technology used, but
also on other physical equipment and the global network.
Therefore, in this paper, we carried out stress tests on a
virtualization platform called Remotelabz, used by students at
the University to find the most suitable solution for teaching
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cyber-security by comparing and determining the limits of
VMs and containers put under pressure, as well as observing
the impact on the campus network, finding possible problems
and allowing the enhancement and implementation of new
policies within the IT department for an access to more secure
physical and virtual environments. Hence in Section II, we
present the state of the art and the related work along with
a description of existing virtualization solutions technologies
and tools. In Section III, our experimental testbed and protocol
is described. In Section IV. the details and results of a first
set of stress tests are developed. Section V presents multiple
stress tests performed in a scenario closer to reality and their
results. In Section VI, the problems found during testing are
discussed and different solutions are proposed. In Section VII,
we present our conclusions and perspectives for future works.

II. STATE OF THE ART

With the growing number of users accessing services online,
big companies found themselves in the need to make sure
their infrastructure was capable and scalable enough to provide
uninterrupted availability. To achieve this, they relied on
hardware and resources that were becoming expensive to
maintain for a single service. Semnanian et al. [2] mention in
their work how hardware was built on the basis of running a
single application, squandering most of the resources available.
This led to the use of virtualization technologies.

A. Virtualization

Virtualization is a widely used technology in a lot of
domains such as education, high performance computing
(HPC) [3], research and cloud computing services by using an
abstraction of processes or a complete system known as VMs
[4]. These can switch from one device to another, eliminating
the concern that, in the event of a device failure, a network
or a system can continue to function. The main objective
is to facilitate the construction of new systems without the
constraints of traditional hardware and software, enhancing
performance, reducing network impact, costs and providing
isolation with different methods and levels of security, making
them less prone to events that may make them irreplaceable.
In other words, it simplifies complex systems by maintaining
their essence and functionality, transforming a physical object
into an ideal abstract object. However, its complexity goes
beyond depending on the level of abstraction. In [5], Smith
et al. describe the taxonomy of VMs and unify their different
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concepts and architectures. Understanding how virtualization
works, can help reduce considerably the complexity and help
define better interfaces. Roy et al. [6] point out the need
for accurate emulation and that working with fixed network
resources on a controlled testbed can limit the tests, and impact
the accuracy of results, hiding potential problems that can only
be found on a large scale.
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Fig. 1 Difference between virtual machines and containers

B. Containerization

Despite being more secure as a result of their complete
isolation the main problem with classic VMs is the resources
required to emulate software and hardware which are in turn
independent on real hardware capabilities, so the number of
instances on a host are limited to the resources available.
This is where containers come into play, which are close
to VMs, but instead they do not emulate hardware or use
a complete OS inside of a container. Pahl et al. [7] make
an extensive review and taxonomically describe, classify and
compare containers and their orchestration. Contrary to VMs
(Fig. 1), a container uses multiple isolated processes on the
host’s OS instead of installing one for each container, reducing
overhead by encapsulating applications and dependencies.
The main purpose is to isolate applications with different
methods and levels of security to perform specific tasks
limiting the use of resources and preventing the impact on
the main system and the network where the container is
hosted. Simply put, they can allow changes to the applications
they hold without affecting their surrounding environment. In
[8], the authors compare multilevel virtualization impact and
performance in cloud computing, but they conclude that using
different levels of virtualization configurations performance
did not decrease significantly. In contrast, Joy [9] compares the
performance and scalability of VMs against containers using
macro benchmarks showing that containers do a better job than
VMs, but when it comes to handling critical business data the
latter are better. However this work only shows the impact
on the testbed itself and not the surrounding infrastructure.
Nevertheless, this exposes the downside with containers on
their dependency on a normal OS and the fact that a non-secure
container with root privileges can be an access point in
an insecure infrastructure, by privilege escalation, or DOS
attacks to saturate a container and consequently the host and
the network itself. The degree of elasticity that can make
virtualization easier to adapt to what is needed and provide
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resources quickly and efficiently resides on the right choice of
tools described in Subsection C.

C. Virtualization Tools

Building a proper secure testbed, which is an environment
in which we can test, develop and play with different features,
generally combines different technologies, making them fast
and precise depending on what is being used. In [10], it is
concluded that some technologies performed better depending
on what is the purpose and what is being observed on the
system. Testbeds can be shared, but they are usually difficult
to configure if the user does not know the proper technology to
be used. In [11], Huang et al. review different technologies and
cover the requirements of network testbeds describing different
possible attacks and the importance of security no matter what
modern virtualization tool is introduced, still being vulnerable
to security attacks.

Among the wide range of virtualization and containerization
tools existing out there, these can be regrouped into different
categories: simulators, emulators, hypervisors, containers and
unikernels. A simulator as its name suggests, only simulates
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Fig. 2 (A) Single OVS with VLANs; (B) Dual OVS without VLANs

the behavior and functions of an object. This makes its
features useless if real behavior is needed, often requiring
code modification and usually known to be slow. Some
examples of simulators are GNS3/Dynamips/Dynagen, Cisco
Packet Tracer, NetSim, QualNet. In [12], Siraj et al. study
the main features, advantages and disadvantages of these
tools. Emulators are an exact copy of real hardware or
software but depend largely on hardware resources. Emulators
examples are Open vSwitch (OvS), OpenDaylight, CORE,
NetEm, EVE-NG, Cisco VIRL. In [13], Kondratyuk presents a
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comparison between simulators and emulators. Hypervisors or
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monitors are programs that allow translations between physical
and virtual resources. There are two types [14]. Type 1,
also called bare-metal, have direct access to real hardware
resources, they are more secure and security flaws and
vulnerabilities are reduced because they do not depend on a
vulnerable operating system. Examples are VMware vSphere,
Microsoft Hyper-V, Kernel Virtual Machine (KVM) or Qemu
with KVM support. Type 2, known as hosted hypervisors,
depend on an operating system to manage resources, which
causes what is called VM network latency because it handles
not only what is happening in the virtual environment, but
also what happens in the host’s operating system. Examples
are VMware Fusion, Oracle VirtualBox, Oracle Solaris Zones,
VMware Workstation and Qemu without KVM support.
Regarding containers there is a variety of tools that use this
technology. Examples are LXC, Docker, Singularity, OpenVZ.
Each platform provides different features, but the containers
operates on the same principle. Even though Unikernels will
be discussed in a future work. It is important to note their
features which, as opposed to containers, they compile a
custom OS with the minimal set of libraries that include only
the functionality required by the application. Some examples

are MiragrOS, Rump Kernels, ClickOS, cLIVE, IncludeOS.
In [15], Kurek compares these three technologies on a testbed
consisting of bare metal nodes, but the results focuses only on
the interaction between the nodes.

Knowing the different tools available for virtualization, we
continue our work by describing the environment and the
elements we chose for our study.

ITII. EXPERIMENT SETTINGS

This section presents the environment built for the
experimentation allowing the study of the impact on servers
and infrastructure hosting the RemoteLabz platform [16] while
performing two sets of stress tests on a testbed sharing the
same infrastructure. RemoteLabz is a tool based on VMs
and containers set up by the University to perform remote
work in the IT field, allowing students and users access to
dedicated virtual environments via a simple web browser.
The main objective is to orient this tool towards the field of
cyber-security and be used as a cyber-range tool, observing
the risks and evaluate its resistance under a cyber-attack by
generating big amounts of traffic that might have a significant
impact on the campus network if any deficiencies are found.

A. Hardware

Our experimental testbed was built using four physical
hosts:

o Host nl: An Intel i5-3230 4 core processor at 2.6GHz
and 4 GB of RAM with Ubuntu 16.04.

o Host n2: An Intel i7-6700 8 core processor at 3.4GHz
with 32 GB of RAM with Ubuntu 18.04.

o Host n3: An Intel i7-6700 8 core processor at 3.4GHz
with 32 GB of RAM with Ubuntu 18.04.

o Host n4: A Xeon E5-2630L processor at 1.8GHz with 32
GB RAM with Debian 4.15.11-1.on VMware [17] (this
will allow us to configure processor cores at will).

B. Virtual Environment

Our testbed is divided into four architectures. In the first
architecture A (Fig. 2) four VMs were set up, interconnecting
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Fig. 4 Double OVS with 100 VMs/Containers
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TABLE I
KVM PERFORMANCE TEST SUMMARY

Host Confi Intel Core 15-3230 2.6GHz Intel Core 17-6700 3.4GHz Intel Xeon E5-2630L Intel Xeon E5-2630L
g 4 core 4Go RAM 8 core 32Go RAM 1.8GHz 8 core 32Go RAM 1.8GHz 2 core 32Go RAM
OVS Confi TOVS & 20VSwio | 1OVS & 20VSwho | LOVS & 20VSwho | TOVS & 2 0OVS wio
g VLANs VLAN VLANs VLAN VLANs VLAN VLANs VLAN
[ Condition | Normal |
Bandwidth
\t,’;‘[‘ff;‘d 0.933 0.935 38 39 0.840 0.871 0.716 0.773
VM2 (Gbrs)
[ Condition | hping3 —flood —rand-source -d 200 -S between VM3 and VM4 |
‘ # li’sgffe‘s ‘ 100 000 “ 460 000 ‘ 90 000 ‘ 90 000 ‘
Bandwidth
\mvlve:;d 0.345 0.396 2.89 2.94 0.792 0.871 0.373 0.330
VM2 (Gbls)
‘ Bﬁgf:’“jgth ‘ 62.94 ‘ 57.67 ‘ 2432 ‘ 2571 ‘ 5.60 ‘ 0,057 ‘ 4791 ‘ 5727 ‘

them using a virtual switch (vswitch), two of them in VLAN
10 and two others in VLAN 20. Two gateway interfaces
were as well put in place for the inter-VLAN routing. Then
in a second architecture B (Fig. 2), the same VMs were
set up, but this time distributed on two different vswitches
without VLANSs. These architectures will be used for a first
set of stress tests. For the second set of stress tests, a third
architecture (Fig. 3) was set up with 100 VMs/containers with
a simple vswitch. A first container will serve as a local DHCP
server. Two containers are left intact in order to run bandwidth
measurements. A fourth container is the target by running
denial of service attacks simultaneously on the remaining 96
containers. The fourth architecture (Fig. 4). was divided into
two parts, set up on two separate physical hosts interconnected
using a cisco 3550 physical switch and a vswitch installed on
each. The same principle is used as in (Fig. 3) but this time
the first four VMs/containers will be on the first host, and the
other 96 on the second one.

C. Software

The main goal of the experimentation is to carry out
systematic network cyber-attacks, therefore hping [18] was
chosen, a tool that allows multiple pings while modifying
IP packets making custom size TCP, UDP requests on a
specific port. It also allows to perform denial of service attacks,
by sending thousands of packets per second. It is thus this
option that will try to saturate the virtualized testbed. Along
with hping, Iperf [19] was used, which is a server-client tool
to perform bandwidth measurements on TCP flow generated
between hosts.

In order to carry out the testing without the need of a
physical switch, OpenvSwitch (OvS) [20] was used to set
up a vswitch and separate VMs using VLANs. OVS is an
open source project that allows the virtualization of a physical
switch. It works like any physical Layer 2 and Layer 3
switches, with the advantage that features can be added and
removed, such as the limitation in the number of ports.

For the VMs and containers, KVM, LXC and Docker were
used. This allows the collection of all the necessary data to
compare the different results. KVM [21] is a linux based
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hypervisor that allows the creation of VMs as linux isolated
processes integrating with the rest of the system. LXC [22]
the linux container solution, is the abbreviation of “LinuX
Containers”. It is a widely used solution included in the linux
kernel since the 2.6.24 version. It works along with cgroups
and namespaces. To observe the behavior of the testbeds on a
more robust containers solution Docker [23] was used, which
is an extension of LXC adding more functionalities to manage
data, processes and isolation. It provides a Docker Hub, which
is a container library with over 100000 container images that
works as a server-client application.

IV. STRESS TESTING DESCRIPTION

In this section, the first set of stress tests is explained
in detail in order to see the resistance to attacks on the
architectures A and B, proceeding first with KVM VMs, LXC
containers and then Docker containers, concluding with an
assessment of what has been achieved and observed in this
part.

A. KVM VMs Test

In our first approach four KVM VMs were used on the
physical host nl, performing bandwidth measurements with
iperf on architecture A, first in normal time by running the
test 10 times between VM1 and VM2 obtaining an average
bandwidth of 933.3 Mbps. Then launching hping along with
iperf between on VMs 3 and 4 to try to saturate the vswitch
and observe its reaction, giving an average bandwidth of 345.8
Mbps. This represented a loss of 62%, which is a noteworthy
difference leading to the assumption that the vswitch could
have been either saturated with a simple hping, or the VLANs
did not isolate well. To dispel this concern, a second test was
carried out on architecture B with the distributed VMs on the
two OvS’, attaining a similar loss of 57% of bandwidth. This
introduced the possibility that such loss did not come from the
host having only 4 GB of RAM, but rather an old processor
slowing down the execution of the VMs or the OvS.

To get a clearer view of this issue host n2 was used having
a more powerful processor. With the new configuration, an
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TABLE IT
LXC PERFORMANCE TEST SUMMARY

Host Confi Intel Core 15-3230 2.6GHz Intel Core 17-6700 3.4GHz Intel Xeon ES5-2630L Intel Xeon ES-2630L
g 4 core 4Go RAM 8 core 32Go RAM 1.8GHz 8 core 32Go RAM 1.8GHz 2 core 32Go RAM
OVS Confi TOVS & 20VSwio | 10VS & 20VSwio | 10VS & 20VS wio | 10VS & 2 0VS wio
g VLANs VLAN VLANs VLAN VLANs VLAN VLANs VLAN
[ Condition | Normal |
Bandwidth
\t,’l‘z}[‘?’e:]:‘d 30.39 31 67.02 67.24 26.16 26.51 31.89 26.74
VM2 (Gbrs)
[ Condition | hping3 —flood —rand-source -d 200 -S between VM3 and VM4 |
‘ # li’sgffe‘s ‘ 755 000 “ 1 590 000 ‘ 480 000 ‘ 480 000 ‘
Bandwidth
\mvlve:;d 21.69 23.39 65.13 66.57 24.47 26.57 21.58 18.94
VM2 (Gb/s)
‘ Bandwidth ‘ 28.63 ‘ 2455 ‘ 2.82 ‘ 0357 ‘ 6.4 ‘ 0 ‘ 3233 ‘ 29.17 ‘

average bandwidth of 3.828 Gbps was observed with a test
in normal time on architecture A, and an average of 2.897
Gbit/s by running hping between the two other VMs on the
second test, getting a 24.32% loss of bandwidth. The testing
continued with architecture B, with an average bandwidth of
3.963 Gbps in normal execution. Next with hping between two
VMs on the other vswitch, resulting in an average bandwidth
of 2.944 Gbit/s, giving a loss of 25.71%.

As shown in the first two hosts, the results obtained on
both architectures A and B are relatively similar giving a clear
answer that the processor was indeed important. On host n2,
the bandwidth loss went down to only 25%, an increase in
bandwidth important to consider with the number of packets
sent by the hping, which was much more important on this host
with 46000 packets/s against 8000 packets/s on host nl. The
same tests were performed as before but this time using host n4
because the number of cores on a VM can be easily modified
when performing tests on a VMware platform, therefore the
new tests were done putting 8 cores on the VM. On a VM
set up with 8 cores architecture A was hardly impacted during
testing with an average of 840.1 Mbit/s in normal time and
an average of 792.3 Mbit/s using hping, obtaining a 5.69%
bandwidth loss. By scaling down to two cores the results
were as expected with an average of 716.4 Mbit/s in normal
time and 373.2 Mbit/s with hping, having a loss of 47.91%
of bandwidth. In both configurations the number of packets
sent by hping were similar. This shows us the importance of
the processor to avoid the saturation and slowing down the
execution of the vswitch and the traffic. The results obtained
on architecture B were almost similar. The summary of all the
results of these tests are shown in Table L.

B. LXC Containers Test

After testing KVM, LXC containers were used with the
same tests on host 1. On architecture A and B, the results
obtained on the first two tests were quite similar, 30.39 Gbit/s
and 31Gbit/s bandwidth respectively in normal time. The first
thing noticed with the containers is that speed is much higher
ranging from a few Mbit/s to several Gbit/s. Then, during
the hping testing, the bandwidth resulted with 21.69 Gbit/s
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for architecture A, and 23.39 Gbit/s for architecture B, losing
28.63% and 24.55% respectively. The results were better than
those obtained with KVM VMs under the same tests, less than
30% versus more than 60% with KVM. However, the loss was
higher than expected. This could be explained by looking at
the number of packets sent by hping being more than 75000/s
against barely 10000/s with KVM.

Next we move over to host 2. The results were very close
regardless of the architecture, with a bandwidth in normal time
of around 67 Gbit/s. The power of the host being higher, the
hping sent a total of 159,000 packets/s. A significant loss
was expected, however during the hping on architecture A,
a bandwidth loss of about 2.82% was observed and 0.357%
for architecture B. The CPU was not saturated, so the results
confirm that only the CPU was causing losses. This time the
VMWare platform was used on a host n4. This resulted in
very few losses just like host n2, but with a lower bandwidth,
26 Gbit/s vs 67 Gbit/s on host 2. After lowering the number
of cores down to 2, we went back up to a loss of more than
30%.The summary of all the results of these tests with LXC
are shown in Table II.

C. Docker Containers Test

In order to compare the LXC results with another container
solution, we used Docker. However, the results did not change,
apart from a few values, very similar to those obtained with
LXC. The summary of all the results of the tests done with
Docker can be seen in Table III.

V. MULTIPLE STRESS TESTING DESCRIPTION

In this section we decided to perform multiple stress tests in
scenarios closer to reality with 100 VMs and containers under
the second set of architectures 3 and 4.

A. LXC Containers Test

Scenario 1 architecture (Fig. 3) on host n2: The results
obtained by performing a test in normal time using iperf
between container 2 and container 3 gave an average
bandwidth of 64.93 Gbit/s. Then by executing hping on the
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TABLE III
DOCKER PERFORMANCE TEST SUMMARY
Host Confi Intel Core i5-3230 2.6GHz Intel Core i7-6700 3.4GHz Intel Xeon E5-2630L Intel Xeon E5-2630L
g 4 core 4Go RAM 8 core 32Go RAM 1.8GHz 8 core 32Go RAM 1.8GHz 2 core 32Go RAM
OVS Confi 1 0VS & 2 OVS w/o 1 0VS & 2 OVS w/o 1 0VS & 2 OVS w/o 1 0VS & 2 OVS w/o
g VLANs VLAN VLANs VLAN VLANs VLAN VLANs VLAN
[ Condition | Normal |
Bandwidth
between
VMI and 30.91 29.08 67.95 67.98 28.91 27.25 26.58 24.39
VM2 (Gb/s)
[ Condition | hping3 —flood —rand-source -d 200 -S between VM3 and VM4 |
‘ # packets ‘ 797 225 “ 3 375 468 ‘ 414 080 ‘ 409 686 ‘
iperf
Bandwidth
between
VMI and 23.38 23.15 66.86 66.54 25.7 24.07 16.29 17.01
VM2 (Gb/s)
‘ Bandwidth ‘ 24.36 ‘ 20.39 ‘ 1.60 ‘ 2.12 ‘ 11.10 ‘ 11,67 ‘ 38.71 ‘ 30.26 ‘
loss %

other 96 containers targeting the 4th container resulted in an
average of 3.13 Gbit/s. This considerable gap of 95,17% led to
the concern that the network loss was still linked to a saturated
processor.

Scenario 2 architecture (Fig. 4): To confirm the previous
concern, new tests were done separating the first 4 containers
one host n2, and all other containers on another host n3 that
launched the attacks. As previously done an iperf was run
between container 2 and 3 on the first host, under normal
conditions, with an average of 68.83 Gbps similar to that
of the first scenario. Then running hping on the other 96
containers to the target container 4, giving an average of 54.94
Gbps. Here a 20.18% loss resulted remaining relatively correct
considering that almost 100 hpings were launched. The huge
loss in scenario 1 was confirmed to be the processor being
saturated with all the containers running on the same host.

B. KVM VMs Test

Scenario 1 architecture (Fig. 3) host n2: The purpose this
time was to be able to run a 100 VMs, but being more resource
demanding than containers, the host was quickly saturated,
therefore the number of VMs was slowly increased to reach
40. Beyond that, the host was not powerful enough to run
them. Doing the iperf, under normal conditions showed an
average of 4,057 Gbits/s. Then hping was launched on the
other VMs. Under this condition 225,7Mb/s of bandwidth
resulted on average, which reflects the same behavior as the
containers with a loss of 94,44%.

Scenario 2 Architecure D used the same principle as with
containers the first 4 VMs were on host n2, and the rest
on host n3. As observed before only 40 VMs were able to
run before the processor was saturated. Running iperf under
normal circumstances gave an average of 3.463 Gbit/s. Then
with 40 hping an average of 3.187 Gbit/s, a loss of about
7.97%.

VI. PROBLEMS DISCOVERED

After having carried out stress tests particularly with
containers, problems were found on the campus network.
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There are interesting flaws that could have a great impact on
other physical equipment and the network itself.

A. Network Impact

First, latency issues were noticed. Whenever the stress test
reached a 100 hpings, the network started to slow down
significantly in the lab where the testing was carried out, and
at some point the gateway was no longer responding. After
doing some research with other colleagues working at the IT
department, a storm-control was setup on the the switches
where the testbed machines were located. This protocol made
possible the detection of massive arrival of messages caused by
the stress testing, blocking the flow arriving on the ports. This
way when hping was launched, only a few packets were able
to pass on the network with all others being rejected. In this
particular case the storm-control was setup with a determined
percentage each time to find the level needed to prevent attacks
of this kind while avoiding reducing performance, as this
protocol also affected the upload rate of the machines.

B. Hardware Impact

Another problem found was that the lab firewall was being
saturated as packets were sent by hping having the random
source option set up. The targeted machines tried to reply
each time to each receiving message with different random
addresses and even trying to reply to IPs coming from the
internet. Therefore, the messages were not contained in the
lab, but went through the network core up to the Internet.
The firewall, seeing an answer arriving without having seen
the requests going through, blocked the packets. As a result,
it was denying hundreds of thousands of requests per second
from the targeted machines and was logging all of them. The
firewall was not configured to receive such a large number of
logs and did not have the necessary memory while hundreds
of gigabytes in files were generated, saturating the memory
allocated. In order to avoid this problem, the IT department
increased the allocated storage array for the logging as a
temporary solution while a new policy was being developed
to be implemented throughout the campus where necessary.
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TABLE IV

HPING PERFORMANCE TEST SUMMARY

. 2x Intel Core i7-6700 . 2x Intel Core i7-6700 3.4GHz 8
Host Config Inte]s(i(())l;z gégz)ogifdGHz 3.4GHz 8 core 32Go Intelsccc(:z gigz)ogiﬁGHz core 32Go RAM- Target &
RAM- Target & Attacker Attacker
OVS Config 1 OVS w/o VLANs H 2 OVS Q/E&EOSO wlo H 1 OVS w/o VLANs 2 OVS (1 per host) w/o VLANs
[ Condition | Normal |
Bandwidth
\l}i}[‘;’e:;‘d 4.057 3.463 64.93 68.83
VM2 (Gbls)
[ Condition | hping3 —flood -d 200 -S to VM4 from 96 VMs | hping3 —flood -d 200 -S to Container 4 from 96 Containers
Bandwidth
peeen 225 3.187 313 54.94
VM2 (Gbls)
Bandwidih 94.44 “ 7.97 “ 95.18 20.18

loss %

VII. SECURITY REVIEW

The main disadvantage of containers is that they can lead to
security problems. By having privilege access on a container,
it is possible for a container to have access to the resources of
physical host and subsequently on the network as seen before
with the problems encountered. Sultan et al. [24] survey the
literature describing use cases that cover container security
and solutions protecting them from inside attacks as well
as their surrounding environment. These concerns must be
addressed, and the goal is to take proper measures. Therefore
we tried to implement three basic but important solutions to
limit containers to have access only to the resources necessary
and avoid external impact. These are RAM, CPU and rights
limitation.

1) RAM Limitation: The first approach is to limit the
amount of RAM allocated with a simple tool such as cgroups,
a linux kernel feature that limits and isolates the resource usage
of processes. This way we can simply define a threshold not
to be exceeded. Using this feature we limited the containers
created on a host with 32 GB of RAM down to 2GB of
RAM. By performing an htop which is a linux interactive
system monitor and process manager, it shows that this limit
is correctly set up. In order to see if this limit is well respected
and preventing the saturation of the host, a tool called stress
was used allowing the saturation of either the processor or
the RAM of the host on which it is used. By running stress,
the allocation was not overflowing and an expected average of
2GB was obtained.

2) CPU Limitation: The second approach is the CPU
limitation. As far as RAM is concerned, the restraining is
quite simple. On the other hand, the processor becomes more
complicated as it cannot be limited to certain percentage, e.g.
going from 3.4 GHz down to 0.34 GHz. It can however be
limited to the number of cores. As an example, the container
was allocated the first core (n0O) in the configuration file.
Then, by running the stress command and processor, usage
is observed. It was noted that out of 8 cores available, only
one was saturated, which shows that the cgroups achieve
the desired bridle. By default, the containers distribute the
processor evenly. If no restriction is set, a container uses
all the cores of the host. If two containers are launched
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without restrictions, each of them can end up using all 8 cores,
resulting in a saturation of the processor, sharing about 50%
of the resources.

3) Limitation of Rights: By default, on linux containers
solutions, the users are created and execute containers as root.
This poses security problems, as an attacker who manages
to obtain rights on a container will be able to perform a
privilege escalation to access the resources of the host having
administration rights. One way to fix this flaw is to create a
limited user specially dedicated to the environment in question
with no rights other than those dedicated to its environment
and not on the outside infrastructure.

VIII. CONCLUSION PERSPECTIVES AND FOR FUTURE
WORKS

This work has allowed us to confirm that, when
experimenting with new virtualization technologies, it is
important to ensure not only the security and robustness of
the tools, or the platform in which they are tested, but also
the external environment in which these solutions share both
physical and network resources. In spite of the robustness that
virtual machines or container solutions offer, we can conclude
that they are still exposed to vulnerabilities both in themselves
and in the environment in which they are implementation and
management.

In a first effort we have sought to understand the operation
of virtualization and containers as well as the different tools
by describing and comparing them. In this way we built a test
environment in which cyber security attacks were performed
using KVM, LXC and Docker. This testbed was installed in
the Remotelabz platform in which students perform different
experiments simultaneously. The main objective was to study
the behavior of the tools and to observe the impact on the
global network in the University during the experimentation.
This testbed was divided in four architectures where 2 sets of
tests were performed in which the bandwidth was measured
in normal time and stress tests with hping in each of them.
In the first set of tests a comparison of bandwidth between
four vms and containers was made. First with KVMs and four
VMs connected to a virtual OvS switch, as well as the use
of host VLANs with an Intel Core i5-3230 2.6GHz 4-core
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processor with 4Go RAM. During the stress tests, a bandwidth
loss of 62% and 57% was observed when separating the VMS
with two switches without VLANs. In a second test a host
with Intel Core i7-6700 3.4GHz 8 core processor and 32Go
RAM was used doing the same tests obtaining 24.32% and
25.71% of bandwidth loss respectively. In a third test a host
with Intel Xeon E5-2630L1.8GHz 8 core processor with 32Go
RAM host was used with VMware to be able to change the
number of cores used. The same tests were performed on
the same architectures using first 8 cores and then 2 cores
obtaining a loss of 5.69% and 0.057% and then 47.91% and
57.27 respectively. This allowed us to conclude that the host
CPU was a fundamental part in increasing the bandwidth and
avoiding an important loss of bandwidth in the resistance
to denial of service attacks. The same tests were performed
with the other two tools obtaining a similar behavior with the
difference that the containers offered a higher performance
than the VMs. We also found that the use of vlans and the
amount of RAM memory did not significantly impact the
performance of each tool.

In the second set of tests we used the same principle as
in the first set, but more attached to reality, scaling each
architecture to 100 virtual machines and containers distributed
firstly in a host with Intel Core i7-6700 3.4GHz8 core 32Go
RAM followed by 2 hosts with the same characteristics. The
loss and gain of bandwidth were increased in a considerable
way obtaining differences of up to 94.44% of loss against
7.97% respectively. At this point we could observe an increase
in latency and a reduction in the response of the laboratory
network where the tests were performed to the point where
the gateway stopped responding. Then we could see that the
global network of the university was affected by saturating the
main firewall with the generation of hundreds of gigabytes in
logs. This prevented us from continuing our second set of tests
with docker.

The security flaws found confirmed that the campus network
and hardware was indeed impacted. This will allow the
implementation of conception of new policies and protocols
on the university’s network and secure the infrastructure
by collaborating with the IT department to patch up these
vulnerabilities.

In a future work we will make a detailed comparison
between docker unikernel-type solutions, which promise to be
safer and less resource consuming than existing solutions.
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