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Abstract—The adoption of modern lightweight virtualization often
comes with new threats and network vulnerabilities. This paper seeks
to assess this with a different approach studying the behavior of a
testbed built with tools such as Kernel-based Virtual Machine (KVM),
LinuX Containers (LXC) and Docker, by performing stress tests
within a platform where students experiment simultaneously with
cyber-attacks, and thus observe the impact on the campus network
and also find the best solution for cyber-security learning. Interesting
outcomes can be found in the literature comparing these technologies.
It is, however, difficult to find results of the effects on the global
network where experiments are carried out. Our work shows that
other physical hosts and the faculty network were impacted while
performing these trials. The problems found are discussed, as well
as security solutions and the adoption of new network policies.
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I. INTRODUCTION

THE great success of classic virtualization has decreased

in recent years due to the growing limitations and

deficiencies in performance and resource management on a

large scale. Despite being a milestone during the last decades

offering a high degree of security reducing network impact,

costs and improving user experience; researchers and computer

experts are leaning towards new lightweight solutions such

as containers and Unikernel-type systems in order to reduce

heavy virtualization overhead. However, containers are known

to be less secure than virtual machines (VMs), and the

provision of cloud computing services where millions of users

are given access, requires an approach that is imperatively

oriented towards security, isolation and performance. The

majority of studies in the literature focus on analysing

virtualization solutions in fixed environments, but not the

impact these can have on the network in which they are

being tested while someone else is running tests on other

machines. Workload tests carried out on a shared environment

can have an important impact not only on the interconnections

of VMs [1], the testbed itself or the technology used, but

also on other physical equipment and the global network.

Therefore, in this paper, we carried out stress tests on a

virtualization platform called Remotelabz, used by students at

the University to find the most suitable solution for teaching
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cyber-security by comparing and determining the limits of

VMs and containers put under pressure, as well as observing

the impact on the campus network, finding possible problems

and allowing the enhancement and implementation of new

policies within the IT department for an access to more secure

physical and virtual environments. Hence in Section II, we

present the state of the art and the related work along with

a description of existing virtualization solutions technologies

and tools. In Section III, our experimental testbed and protocol

is described. In Section IV. the details and results of a first

set of stress tests are developed. Section V presents multiple

stress tests performed in a scenario closer to reality and their

results. In Section VI, the problems found during testing are

discussed and different solutions are proposed. In Section VII,

we present our conclusions and perspectives for future works.

II. STATE OF THE ART

With the growing number of users accessing services online,

big companies found themselves in the need to make sure

their infrastructure was capable and scalable enough to provide

uninterrupted availability. To achieve this, they relied on

hardware and resources that were becoming expensive to

maintain for a single service. Semnanian et al. [2] mention in

their work how hardware was built on the basis of running a

single application, squandering most of the resources available.

This led to the use of virtualization technologies.

A. Virtualization

Virtualization is a widely used technology in a lot of

domains such as education, high performance computing

(HPC) [3], research and cloud computing services by using an

abstraction of processes or a complete system known as VMs

[4]. These can switch from one device to another, eliminating

the concern that, in the event of a device failure, a network

or a system can continue to function. The main objective

is to facilitate the construction of new systems without the

constraints of traditional hardware and software, enhancing

performance, reducing network impact, costs and providing

isolation with different methods and levels of security, making

them less prone to events that may make them irreplaceable.

In other words, it simplifies complex systems by maintaining

their essence and functionality, transforming a physical object

into an ideal abstract object. However, its complexity goes

beyond depending on the level of abstraction. In [5], Smith

et al. describe the taxonomy of VMs and unify their different
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concepts and architectures. Understanding how virtualization

works, can help reduce considerably the complexity and help

define better interfaces. Roy et al. [6] point out the need

for accurate emulation and that working with fixed network

resources on a controlled testbed can limit the tests, and impact

the accuracy of results, hiding potential problems that can only

be found on a large scale.

Fig. 1 Difference between virtual machines and containers

B. Containerization

Despite being more secure as a result of their complete

isolation the main problem with classic VMs is the resources

required to emulate software and hardware which are in turn

independent on real hardware capabilities, so the number of

instances on a host are limited to the resources available.

This is where containers come into play, which are close

to VMs, but instead they do not emulate hardware or use

a complete OS inside of a container. Pahl et al. [7] make

an extensive review and taxonomically describe, classify and

compare containers and their orchestration. Contrary to VMs

(Fig. 1), a container uses multiple isolated processes on the

host’s OS instead of installing one for each container, reducing

overhead by encapsulating applications and dependencies.

The main purpose is to isolate applications with different

methods and levels of security to perform specific tasks

limiting the use of resources and preventing the impact on

the main system and the network where the container is

hosted. Simply put, they can allow changes to the applications

they hold without affecting their surrounding environment. In

[8], the authors compare multilevel virtualization impact and

performance in cloud computing, but they conclude that using

different levels of virtualization configurations performance

did not decrease significantly. In contrast, Joy [9] compares the

performance and scalability of VMs against containers using

macro benchmarks showing that containers do a better job than

VMs, but when it comes to handling critical business data the

latter are better. However this work only shows the impact

on the testbed itself and not the surrounding infrastructure.

Nevertheless, this exposes the downside with containers on

their dependency on a normal OS and the fact that a non-secure

container with root privileges can be an access point in

an insecure infrastructure, by privilege escalation, or DOS

attacks to saturate a container and consequently the host and

the network itself. The degree of elasticity that can make

virtualization easier to adapt to what is needed and provide

resources quickly and efficiently resides on the right choice of

tools described in Subsection C.

C. Virtualization Tools

Building a proper secure testbed, which is an environment

in which we can test, develop and play with different features,

generally combines different technologies, making them fast

and precise depending on what is being used. In [10], it is

concluded that some technologies performed better depending

on what is the purpose and what is being observed on the

system. Testbeds can be shared, but they are usually difficult

to configure if the user does not know the proper technology to

be used. In [11], Huang et al. review different technologies and

cover the requirements of network testbeds describing different

possible attacks and the importance of security no matter what

modern virtualization tool is introduced, still being vulnerable

to security attacks.

Among the wide range of virtualization and containerization

tools existing out there, these can be regrouped into different

categories: simulators, emulators, hypervisors, containers and

unikernels. A simulator as its name suggests, only simulates

Fig. 2 (A) Single OVS with VLANs; (B) Dual OVS without VLANs

the behavior and functions of an object. This makes its

features useless if real behavior is needed, often requiring

code modification and usually known to be slow. Some

examples of simulators are GNS3/Dynamips/Dynagen, Cisco

Packet Tracer, NetSim, QualNet. In [12], Siraj et al. study

the main features, advantages and disadvantages of these

tools. Emulators are an exact copy of real hardware or

software but depend largely on hardware resources. Emulators

examples are Open vSwitch (OvS), OpenDaylight, CORE,

NetEm, EVE-NG, Cisco VIRL. In [13], Kondratyuk presents a
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comparison between simulators and emulators. Hypervisors or

Fig. 3 Single OVS with 100 containers

monitors are programs that allow translations between physical

and virtual resources. There are two types [14]. Type 1,

also called bare-metal, have direct access to real hardware

resources, they are more secure and security flaws and

vulnerabilities are reduced because they do not depend on a

vulnerable operating system. Examples are VMware vSphere,

Microsoft Hyper-V, Kernel Virtual Machine (KVM) or Qemu

with KVM support. Type 2, known as hosted hypervisors,

depend on an operating system to manage resources, which

causes what is called VM network latency because it handles

not only what is happening in the virtual environment, but

also what happens in the host’s operating system. Examples

are VMware Fusion, Oracle VirtualBox, Oracle Solaris Zones,

VMware Workstation and Qemu without KVM support.

Regarding containers there is a variety of tools that use this

technology. Examples are LXC, Docker, Singularity, OpenVZ.

Each platform provides different features, but the containers

operates on the same principle. Even though Unikernels will

be discussed in a future work. It is important to note their

features which, as opposed to containers, they compile a

custom OS with the minimal set of libraries that include only

the functionality required by the application. Some examples

are MiragrOS, Rump Kernels, ClickOS, cLIVE, IncludeOS.

In [15], Kurek compares these three technologies on a testbed

consisting of bare metal nodes, but the results focuses only on

the interaction between the nodes.

Knowing the different tools available for virtualization, we

continue our work by describing the environment and the

elements we chose for our study.

III. EXPERIMENT SETTINGS

This section presents the environment built for the

experimentation allowing the study of the impact on servers

and infrastructure hosting the RemoteLabz platform [16] while

performing two sets of stress tests on a testbed sharing the

same infrastructure. RemoteLabz is a tool based on VMs

and containers set up by the University to perform remote

work in the IT field, allowing students and users access to

dedicated virtual environments via a simple web browser.

The main objective is to orient this tool towards the field of

cyber-security and be used as a cyber-range tool, observing

the risks and evaluate its resistance under a cyber-attack by

generating big amounts of traffic that might have a significant

impact on the campus network if any deficiencies are found.

A. Hardware

Our experimental testbed was built using four physical

hosts:

• Host n1: An Intel i5-3230 4 core processor at 2.6GHz

and 4 GB of RAM with Ubuntu 16.04.

• Host n2: An Intel i7-6700 8 core processor at 3.4GHz

with 32 GB of RAM with Ubuntu 18.04.

• Host n3: An Intel i7-6700 8 core processor at 3.4GHz

with 32 GB of RAM with Ubuntu 18.04.

• Host n4: A Xeon E5-2630L processor at 1.8GHz with 32

GB RAM with Debian 4.15.11-1.on VMware [17] (this

will allow us to configure processor cores at will).

B. Virtual Environment

Our testbed is divided into four architectures. In the first

architecture A (Fig. 2) four VMs were set up, interconnecting

Fig. 4 Double OVS with 100 VMs/Containers
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TABLE I
KVM PERFORMANCE TEST SUMMARY

Host Config
Intel Core i5-3230 2.6GHz

4 core 4Go RAM
Intel Core i7-6700 3.4GHz

8 core 32Go RAM
Intel Xeon E5-2630L

1.8GHz 8 core 32Go RAM
Intel Xeon E5-2630L

1.8GHz 2 core 32Go RAM

OVS Config
1 OVS &
VLANs

2 OVS w/o
VLAN

1 OVS &
VLANs

2 OVS w/o
VLAN

1 OVS &
VLANs

2 OVS w/o
VLAN

1 OVS &
VLANs

2 OVS w/o
VLAN

Condition Normal

Bandwidth
between

VM1 and
VM2 (Gb/s)

0.933 0.935 3.8 3.9 0.840 0.871 0.716 0.773

Condition hping3 –flood –rand-source -d 200 -S between VM3 and VM4

# packets
iperf

100 000 460 000 90 000 90 000

Bandwidth
between

VM1 and
VM2 (Gb/s)

0.345 0.396 2.89 2.94 0.792 0.871 0.373 0.330

Bandwidth
loss %

62.94 57.67 24.32 25.71 5.69 0,057 47.91 57.27

them using a virtual switch (vswitch), two of them in VLAN

10 and two others in VLAN 20. Two gateway interfaces

were as well put in place for the inter-VLAN routing. Then

in a second architecture B (Fig. 2), the same VMs were

set up, but this time distributed on two different vswitches

without VLANs. These architectures will be used for a first

set of stress tests. For the second set of stress tests, a third

architecture (Fig. 3) was set up with 100 VMs/containers with

a simple vswitch. A first container will serve as a local DHCP

server. Two containers are left intact in order to run bandwidth

measurements. A fourth container is the target by running

denial of service attacks simultaneously on the remaining 96

containers. The fourth architecture (Fig. 4). was divided into

two parts, set up on two separate physical hosts interconnected

using a cisco 3550 physical switch and a vswitch installed on

each. The same principle is used as in (Fig. 3) but this time

the first four VMs/containers will be on the first host, and the

other 96 on the second one.

C. Software

The main goal of the experimentation is to carry out

systematic network cyber-attacks, therefore hping [18] was

chosen, a tool that allows multiple pings while modifying

IP packets making custom size TCP, UDP requests on a

specific port. It also allows to perform denial of service attacks,

by sending thousands of packets per second. It is thus this

option that will try to saturate the virtualized testbed. Along

with hping, Iperf [19] was used, which is a server-client tool

to perform bandwidth measurements on TCP flow generated

between hosts.

In order to carry out the testing without the need of a

physical switch, OpenvSwitch (OvS) [20] was used to set

up a vswitch and separate VMs using VLANs. OVS is an

open source project that allows the virtualization of a physical

switch. It works like any physical Layer 2 and Layer 3

switches, with the advantage that features can be added and

removed, such as the limitation in the number of ports.

For the VMs and containers, KVM, LXC and Docker were

used. This allows the collection of all the necessary data to

compare the different results. KVM [21] is a linux based

hypervisor that allows the creation of VMs as linux isolated

processes integrating with the rest of the system. LXC [22]

the linux container solution, is the abbreviation of ”LinuX

Containers”. It is a widely used solution included in the linux

kernel since the 2.6.24 version. It works along with cgroups

and namespaces. To observe the behavior of the testbeds on a

more robust containers solution Docker [23] was used, which

is an extension of LXC adding more functionalities to manage

data, processes and isolation. It provides a Docker Hub, which

is a container library with over 100000 container images that

works as a server-client application.

IV. STRESS TESTING DESCRIPTION

In this section, the first set of stress tests is explained

in detail in order to see the resistance to attacks on the

architectures A and B, proceeding first with KVM VMs, LXC

containers and then Docker containers, concluding with an

assessment of what has been achieved and observed in this

part.

A. KVM VMs Test

In our first approach four KVM VMs were used on the

physical host n1, performing bandwidth measurements with

iperf on architecture A, first in normal time by running the

test 10 times between VM1 and VM2 obtaining an average

bandwidth of 933.3 Mbps. Then launching hping along with

iperf between on VMs 3 and 4 to try to saturate the vswitch

and observe its reaction, giving an average bandwidth of 345.8

Mbps. This represented a loss of 62%, which is a noteworthy

difference leading to the assumption that the vswitch could

have been either saturated with a simple hping, or the VLANs

did not isolate well. To dispel this concern, a second test was

carried out on architecture B with the distributed VMs on the

two OvS’, attaining a similar loss of 57% of bandwidth. This

introduced the possibility that such loss did not come from the

host having only 4 GB of RAM, but rather an old processor

slowing down the execution of the VMs or the OvS.

To get a clearer view of this issue host n2 was used having

a more powerful processor. With the new configuration, an
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TABLE II
LXC PERFORMANCE TEST SUMMARY

Host Config
Intel Core i5-3230 2.6GHz

4 core 4Go RAM
Intel Core i7-6700 3.4GHz

8 core 32Go RAM
Intel Xeon E5-2630L

1.8GHz 8 core 32Go RAM
Intel Xeon E5-2630L

1.8GHz 2 core 32Go RAM

OVS Config
1 OVS &
VLANs

2 OVS w/o
VLAN

1 OVS &
VLANs

2 OVS w/o
VLAN

1 OVS &
VLANs

2 OVS w/o
VLAN

1 OVS &
VLANs

2 OVS w/o
VLAN

Condition Normal

Bandwidth
between

VM1 and
VM2 (Gb/s)

30.39 31 67.02 67.24 26.16 26.51 31.89 26.74

Condition hping3 –flood –rand-source -d 200 -S between VM3 and VM4

# packets
iperf

755 000 1 590 000 480 000 480 000

Bandwidth
between

VM1 and
VM2 (Gb/s)

21.69 23.39 65.13 66.57 24.47 26.57 21.58 18.94

Bandwidth
loss %

28.63 24.55 2.82 0.357 6.4 0 32.33 29.17

average bandwidth of 3.828 Gbps was observed with a test

in normal time on architecture A, and an average of 2.897

Gbit/s by running hping between the two other VMs on the

second test, getting a 24.32% loss of bandwidth. The testing

continued with architecture B, with an average bandwidth of

3.963 Gbps in normal execution. Next with hping between two

VMs on the other vswitch, resulting in an average bandwidth

of 2.944 Gbit/s, giving a loss of 25.71%.

As shown in the first two hosts, the results obtained on

both architectures A and B are relatively similar giving a clear

answer that the processor was indeed important. On host n2,

the bandwidth loss went down to only 25%, an increase in

bandwidth important to consider with the number of packets

sent by the hping, which was much more important on this host

with 46000 packets/s against 8000 packets/s on host n1. The

same tests were performed as before but this time using host n4

because the number of cores on a VM can be easily modified

when performing tests on a VMware platform, therefore the

new tests were done putting 8 cores on the VM. On a VM

set up with 8 cores architecture A was hardly impacted during

testing with an average of 840.1 Mbit/s in normal time and

an average of 792.3 Mbit/s using hping, obtaining a 5.69%

bandwidth loss. By scaling down to two cores the results

were as expected with an average of 716.4 Mbit/s in normal

time and 373.2 Mbit/s with hping, having a loss of 47.91%

of bandwidth. In both configurations the number of packets

sent by hping were similar. This shows us the importance of

the processor to avoid the saturation and slowing down the

execution of the vswitch and the traffic. The results obtained

on architecture B were almost similar. The summary of all the

results of these tests are shown in Table I.

B. LXC Containers Test

After testing KVM, LXC containers were used with the

same tests on host 1. On architecture A and B, the results

obtained on the first two tests were quite similar, 30.39 Gbit/s

and 31Gbit/s bandwidth respectively in normal time. The first

thing noticed with the containers is that speed is much higher

ranging from a few Mbit/s to several Gbit/s. Then, during

the hping testing, the bandwidth resulted with 21.69 Gbit/s

for architecture A, and 23.39 Gbit/s for architecture B, losing

28.63% and 24.55% respectively. The results were better than

those obtained with KVM VMs under the same tests, less than

30% versus more than 60% with KVM. However, the loss was

higher than expected. This could be explained by looking at

the number of packets sent by hping being more than 75000/s

against barely 10000/s with KVM.

Next we move over to host 2. The results were very close

regardless of the architecture, with a bandwidth in normal time

of around 67 Gbit/s. The power of the host being higher, the

hping sent a total of 159,000 packets/s. A significant loss

was expected, however during the hping on architecture A,

a bandwidth loss of about 2.82% was observed and 0.357%

for architecture B. The CPU was not saturated, so the results

confirm that only the CPU was causing losses. This time the

VMWare platform was used on a host n4. This resulted in

very few losses just like host n2, but with a lower bandwidth,

26 Gbit/s vs 67 Gbit/s on host 2. After lowering the number

of cores down to 2, we went back up to a loss of more than

30%.The summary of all the results of these tests with LXC

are shown in Table II.

C. Docker Containers Test

In order to compare the LXC results with another container

solution, we used Docker. However, the results did not change,

apart from a few values, very similar to those obtained with

LXC. The summary of all the results of the tests done with

Docker can be seen in Table III.

V. MULTIPLE STRESS TESTING DESCRIPTION

In this section we decided to perform multiple stress tests in

scenarios closer to reality with 100 VMs and containers under

the second set of architectures 3 and 4.

A. LXC Containers Test

Scenario 1 architecture (Fig. 3) on host n2: The results

obtained by performing a test in normal time using iperf

between container 2 and container 3 gave an average

bandwidth of 64.93 Gbit/s. Then by executing hping on the
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TABLE III
DOCKER PERFORMANCE TEST SUMMARY

Host Config
Intel Core i5-3230 2.6GHz

4 core 4Go RAM
Intel Core i7-6700 3.4GHz

8 core 32Go RAM
Intel Xeon E5-2630L

1.8GHz 8 core 32Go RAM
Intel Xeon E5-2630L

1.8GHz 2 core 32Go RAM

OVS Config
1 OVS &
VLANs

2 OVS w/o
VLAN

1 OVS &
VLANs

2 OVS w/o
VLAN

1 OVS &
VLANs

2 OVS w/o
VLAN

1 OVS &
VLANs

2 OVS w/o
VLAN

Condition Normal

Bandwidth
between

VM1 and
VM2 (Gb/s)

30.91 29.08 67.95 67.98 28.91 27.25 26.58 24.39

Condition hping3 –flood –rand-source -d 200 -S between VM3 and VM4

# packets
iperf

797 225 3 375 468 414 080 409 686

Bandwidth
between

VM1 and
VM2 (Gb/s)

23.38 23.15 66.86 66.54 25.7 24.07 16.29 17.01

Bandwidth
loss %

24.36 20.39 1.60 2.12 11.10 11,67 38.71 30.26

other 96 containers targeting the 4th container resulted in an

average of 3.13 Gbit/s. This considerable gap of 95,17% led to

the concern that the network loss was still linked to a saturated

processor.

Scenario 2 architecture (Fig. 4): To confirm the previous

concern, new tests were done separating the first 4 containers

one host n2, and all other containers on another host n3 that

launched the attacks. As previously done an iperf was run

between container 2 and 3 on the first host, under normal

conditions, with an average of 68.83 Gbps similar to that

of the first scenario. Then running hping on the other 96

containers to the target container 4, giving an average of 54.94

Gbps. Here a 20.18% loss resulted remaining relatively correct

considering that almost 100 hpings were launched. The huge

loss in scenario 1 was confirmed to be the processor being

saturated with all the containers running on the same host.

B. KVM VMs Test

Scenario 1 architecture (Fig. 3) host n2: The purpose this

time was to be able to run a 100 VMs, but being more resource

demanding than containers, the host was quickly saturated,

therefore the number of VMs was slowly increased to reach

40. Beyond that, the host was not powerful enough to run

them. Doing the iperf, under normal conditions showed an

average of 4,057 Gbits/s. Then hping was launched on the

other VMs. Under this condition 225,7Mb/s of bandwidth

resulted on average, which reflects the same behavior as the

containers with a loss of 94,44%.

Scenario 2 Architecure D used the same principle as with

containers the first 4 VMs were on host n2, and the rest

on host n3. As observed before only 40 VMs were able to

run before the processor was saturated. Running iperf under

normal circumstances gave an average of 3.463 Gbit/s. Then

with 40 hping an average of 3.187 Gbit/s, a loss of about

7.97%.

VI. PROBLEMS DISCOVERED

After having carried out stress tests particularly with

containers, problems were found on the campus network.

There are interesting flaws that could have a great impact on

other physical equipment and the network itself.

A. Network Impact

First, latency issues were noticed. Whenever the stress test

reached a 100 hpings, the network started to slow down

significantly in the lab where the testing was carried out, and

at some point the gateway was no longer responding. After

doing some research with other colleagues working at the IT

department, a storm-control was setup on the the switches

where the testbed machines were located. This protocol made

possible the detection of massive arrival of messages caused by

the stress testing, blocking the flow arriving on the ports. This

way when hping was launched, only a few packets were able

to pass on the network with all others being rejected. In this

particular case the storm-control was setup with a determined

percentage each time to find the level needed to prevent attacks

of this kind while avoiding reducing performance, as this

protocol also affected the upload rate of the machines.

B. Hardware Impact

Another problem found was that the lab firewall was being

saturated as packets were sent by hping having the random

source option set up. The targeted machines tried to reply

each time to each receiving message with different random

addresses and even trying to reply to IPs coming from the

internet. Therefore, the messages were not contained in the

lab, but went through the network core up to the Internet.

The firewall, seeing an answer arriving without having seen

the requests going through, blocked the packets. As a result,

it was denying hundreds of thousands of requests per second

from the targeted machines and was logging all of them. The

firewall was not configured to receive such a large number of

logs and did not have the necessary memory while hundreds

of gigabytes in files were generated, saturating the memory

allocated. In order to avoid this problem, the IT department

increased the allocated storage array for the logging as a

temporary solution while a new policy was being developed

to be implemented throughout the campus where necessary.
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TABLE IV
HPING PERFORMANCE TEST SUMMARY

Host Config
Intel Core i7-6700 3.4GHz

8 core 32Go RAM

2x Intel Core i7-6700
3.4GHz 8 core 32Go

RAM- Target & Attacker

Intel Core i7-6700 3.4GHz
8 core 32Go RAM

2x Intel Core i7-6700 3.4GHz 8
core 32Go RAM- Target &

Attacker

OVS Config 1 OVS w/o VLANs
2 OVS (1 per host) w/o

VLANs
1 OVS w/o VLANs 2 OVS (1 per host) w/o VLANs

Condition Normal

Bandwidth
between

VM1 and
VM2 (Gb/s)

4.057 3.463 64.93 68.83

Condition hping3 –flood -d 200 -S to VM4 from 96 VMs hping3 –flood -d 200 -S to Container 4 from 96 Containers

Bandwidth
between

VM1 and
VM2 (Gb/s)

225 3.187 3.13 54.94

Bandwidth
loss %

94.44 7.97 95.18 20.18

VII. SECURITY REVIEW

The main disadvantage of containers is that they can lead to

security problems. By having privilege access on a container,

it is possible for a container to have access to the resources of

physical host and subsequently on the network as seen before

with the problems encountered. Sultan et al. [24] survey the

literature describing use cases that cover container security

and solutions protecting them from inside attacks as well

as their surrounding environment. These concerns must be

addressed, and the goal is to take proper measures. Therefore

we tried to implement three basic but important solutions to

limit containers to have access only to the resources necessary

and avoid external impact. These are RAM, CPU and rights

limitation.
1) RAM Limitation: The first approach is to limit the

amount of RAM allocated with a simple tool such as cgroups,

a linux kernel feature that limits and isolates the resource usage

of processes. This way we can simply define a threshold not

to be exceeded. Using this feature we limited the containers

created on a host with 32 GB of RAM down to 2GB of

RAM. By performing an htop which is a linux interactive

system monitor and process manager, it shows that this limit

is correctly set up. In order to see if this limit is well respected

and preventing the saturation of the host, a tool called stress

was used allowing the saturation of either the processor or

the RAM of the host on which it is used. By running stress,

the allocation was not overflowing and an expected average of

2GB was obtained.
2) CPU Limitation: The second approach is the CPU

limitation. As far as RAM is concerned, the restraining is

quite simple. On the other hand, the processor becomes more

complicated as it cannot be limited to certain percentage, e.g.

going from 3.4 GHz down to 0.34 GHz. It can however be

limited to the number of cores. As an example, the container

was allocated the first core (n0) in the configuration file.

Then, by running the stress command and processor, usage

is observed. It was noted that out of 8 cores available, only

one was saturated, which shows that the cgroups achieve

the desired bridle. By default, the containers distribute the

processor evenly. If no restriction is set, a container uses

all the cores of the host. If two containers are launched

without restrictions, each of them can end up using all 8 cores,

resulting in a saturation of the processor, sharing about 50%

of the resources.

3) Limitation of Rights: By default, on linux containers

solutions, the users are created and execute containers as root.

This poses security problems, as an attacker who manages

to obtain rights on a container will be able to perform a

privilege escalation to access the resources of the host having

administration rights. One way to fix this flaw is to create a

limited user specially dedicated to the environment in question

with no rights other than those dedicated to its environment

and not on the outside infrastructure.

VIII. CONCLUSION PERSPECTIVES AND FOR FUTURE

WORKS

This work has allowed us to confirm that, when

experimenting with new virtualization technologies, it is

important to ensure not only the security and robustness of

the tools, or the platform in which they are tested, but also

the external environment in which these solutions share both

physical and network resources. In spite of the robustness that

virtual machines or container solutions offer, we can conclude

that they are still exposed to vulnerabilities both in themselves

and in the environment in which they are implementation and

management.

In a first effort we have sought to understand the operation

of virtualization and containers as well as the different tools

by describing and comparing them. In this way we built a test

environment in which cyber security attacks were performed

using KVM, LXC and Docker. This testbed was installed in

the Remotelabz platform in which students perform different

experiments simultaneously. The main objective was to study

the behavior of the tools and to observe the impact on the

global network in the University during the experimentation.

This testbed was divided in four architectures where 2 sets of

tests were performed in which the bandwidth was measured

in normal time and stress tests with hping in each of them.

In the first set of tests a comparison of bandwidth between

four vms and containers was made. First with KVMs and four

VMs connected to a virtual OvS switch, as well as the use

of host VLANs with an Intel Core i5-3230 2.6GHz 4-core
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processor with 4Go RAM. During the stress tests, a bandwidth

loss of 62% and 57% was observed when separating the VMS

with two switches without VLANs. In a second test a host

with Intel Core i7-6700 3.4GHz 8 core processor and 32Go

RAM was used doing the same tests obtaining 24.32% and

25.71% of bandwidth loss respectively. In a third test a host

with Intel Xeon E5-2630L1.8GHz 8 core processor with 32Go

RAM host was used with VMware to be able to change the

number of cores used. The same tests were performed on

the same architectures using first 8 cores and then 2 cores

obtaining a loss of 5.69% and 0.057% and then 47.91% and

57.27 respectively. This allowed us to conclude that the host

CPU was a fundamental part in increasing the bandwidth and

avoiding an important loss of bandwidth in the resistance

to denial of service attacks. The same tests were performed

with the other two tools obtaining a similar behavior with the

difference that the containers offered a higher performance

than the VMs. We also found that the use of vlans and the

amount of RAM memory did not significantly impact the

performance of each tool.
In the second set of tests we used the same principle as

in the first set, but more attached to reality, scaling each

architecture to 100 virtual machines and containers distributed

firstly in a host with Intel Core i7-6700 3.4GHz8 core 32Go

RAM followed by 2 hosts with the same characteristics. The

loss and gain of bandwidth were increased in a considerable

way obtaining differences of up to 94.44% of loss against

7.97% respectively. At this point we could observe an increase

in latency and a reduction in the response of the laboratory

network where the tests were performed to the point where

the gateway stopped responding. Then we could see that the

global network of the university was affected by saturating the

main firewall with the generation of hundreds of gigabytes in

logs. This prevented us from continuing our second set of tests

with docker.
The security flaws found confirmed that the campus network

and hardware was indeed impacted. This will allow the

implementation of conception of new policies and protocols

on the university’s network and secure the infrastructure

by collaborating with the IT department to patch up these

vulnerabilities.
In a future work we will make a detailed comparison

between docker unikernel-type solutions, which promise to be

safer and less resource consuming than existing solutions.
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