Search results for: soil and leaf nutrient composition.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1686

Search results for: soil and leaf nutrient composition.

1326 Effect of PGPB Inoculation, Addition of Biochar, and Mineral N Fertilization on Mycorrhizal Colonization

Authors: Irina Mikajlo, Jaroslav Záhora, Helena Dvořáčková, Jaroslav Hynšt, Jakub Elbl

Abstract:

Strong anthropogenic impact has uncontrolled consequences on the nature of the soil. Hence, up-to-date sustainable methods of soil state improvement are essential. Investigators provide the evidence that biochar can positively effects physical, chemical, and biological soil properties and the abundance of mycorrhizal fungi which are in the focus of this study. The main aim of the present investigation is to demonstrate the effect of two types of plant growth promoting bacteria (PGPB) inoculums along with the beech wood biochar and mineral N additives on mycorrhizal colonization. Experiment has been set up in laboratory conditions with containers filled with arable soil from the protection zone of the main water source “Brezova nad Svitavou”. Lactuca sativa (lettuce) has been selected as a model plant. Based on the obtained data, it can be concluded that mycorrhizal colonization increased as the result of combined influence of biochar and PGPB inoculums amendment. In addition, correlation analyses showed that the numbers of main groups of cultivated bacteria were dependent on the degree of mycorrhizal colonization.

Keywords: Arbuscular mycorrhiza, biochar, PGPB inoculum, soil microorganisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
1325 Experimental Test of a Combined Machine that Evenly Distributes Fertilizer under the Soil on Slopes

Authors: Qurbanov Huseyn Nuraddin

Abstract:

The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory.

Keywords: Combined plough, mineral fertilizers, sprinkle fluently, fertilizer rate, cereals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407
1324 Enrichment of Cr, Mn, Ni and Zn in Surface Soil

Authors: Gitimoni Deka, Krishna G Bhattacharyya

Abstract:

The textile industry produces highly coloured effluents containing polar and non-polar compounds. The textile mill run by the Assam Polyester Co-operative Society Limited (APOL) is situated at Rangia, about 55 km from Guwahati (26011' N, 91047' E) in the northern bank of the river Brahmaputra, Assam (India). This unit was commissioned in June 1988 and started commercial production in November 1988. The installed capacity of the weaving unit was 8000 m/day and that of the processing unit was 20,000 m/day. The mill has its own dyeing unit with a capacity of 1500-2000 kg/day. The western side of the mill consists of vast agricultural land and the far northern and southern side of the mill has scattered human population. The eastern side of the mill has a major road for thoroughfare. The mill releases its effluents into the agricultural land in the western side of the mill. The present study was undertaken to assess the impact of the textile mill on surface soil quality in and around the mill with particular reference to Cr, Mn, Ni and Zn. Surface soil samples, collected along different directions at 200, 500 and 1000 m were digested and the metals were estimated with Atomic Absorption Spectrophotometer. The metals were found in the range of: Cr 50.9 – 105.0 mg kg-1, Mn 19.2- 78.6 mg kg-1, Ni 41.9 – 50.6 mg kg-1 and Zn 187.8 – 1095.8 mg kg-1. The study reveals enrichment of Cr, Mn, Ni and Zn in the soil near the textile mill.

Keywords: Cr, Mn, Ni, Zn, soil quality, heavy metal enrichment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
1323 Molluscicidal Effects of Ageratum conyzoides and Datura stramonium on Bulinus globosus and Lymnea natalensis

Authors: Olofintoye Lawrence Kayode, Olorunniyi Omojola Felix

Abstract:

Schistosomiasis is a vector-borne water-based disease transmitted by Bulinus globosus, causing haematuria in the urine of man, while fascioliasis is a trematode zoonosis infectious transmitted by Lymnaea natalensis causing liver disease in man and animals. Adult Bulinus globosus and Lymnaea natalensis were used for the experiment. Aqueous leaf extract of Ageratum conyzoides and Datura stramonium were prepared into 25, 50, 75, 100, 200 and 400 ppm concentrations. Ten snails of each species were exposed to different concentrations in triplicates, and dechlorinated water was used as control at 24h, 48h, and 72h exposure. The results revealed that 100 ppm of both plants leaves extracts indicated mortality rates between 76.7% and 100% at 24h, 48h, and 72h for both snail species. (P < 0.05). In conclusion, the extract exercised molluscicidal activity to control the snail vector at lethal doses LC50 (66.611-72.021 ppm), CI = 63.083-77.90 ppm and LC90 (92.623-102.350), CI = 87.715-110.12 ppm.

Keywords: Snail, plant leaf, aqueous extract, mortality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22
1322 Antioxidant Capacity and Total Phenolic Content of Aqueous Acetone and Ethanol Extract of Edible Parts of Moringa oleifera and Sesbania grandiflora

Authors: Perumal Siddhuraju, Arumugam Abirami, Gunasekaran Nagarani, Marimuthu Sangeethapriya

Abstract:

Aqueous ethanol and aqueous acetone extracts of Moringa oleifera (outer pericarp of immature fruit and flower) and Sesbania grandiflora white variety (flower and leaf) were examined for radical scavenging capacities and antioxidant activities. Ethanol extract of S. grandiflora (flower and leaf) and acetone extract of M. oleifera (outer pericarp of immature fruit and flower) contained relatively higher levels of total dietary phenolics than the other extracts. The antioxidant potential of the extracts were assessed by employing different in vitro assays such as reducing power assay, DPPH˙, ABTS˙+ and ˙OH radical scavenging capacities, antihemolytic assay by hydrogen peroxide induced method and metal chelating ability. Though all the extracts exhibited dose dependent reducing power activity, acetone extract of all the samples were found to have more hydrogen donating ability in DPPH˙ (2.3% - 65.03%) and hydroxyl radical scavenging systems (21.6% - 77.4%) than the ethanol extracts. The potential of multiple antioxidant activity was evident as it possessed antihemolytic activity (43.2 % to 68.0 %) and metal ion chelating potency (45.16 - 104.26 mg EDTA/g sample). The result indicate that acetone extract of M. oleifera (OPIF and flower) and S. grandiflora (flower and leaf) endowed with polyphenols, could be utilized as natural antioxidants/nutraceuticals.

Keywords: Antioxidant activity, Moringa oleifera, Polyphenolics, Sesbania grandiflora, Underutilized vegetables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
1321 Study of Salinity Stress and Calcium Interaction on Morphological and Physiological Traits of Vicia villosa under Hydroponic Condition

Authors: Raheleh Khademian, Roghayeh Aminian

Abstract:

For the study of salinity stress on Vicia villosa and calcium effect for modulation of that, an experiment was conducted under hydroponic condition, and some important morphological and physiological characteristics were evaluated. This experiment was conducted as a factorial based on randomized complete design with three replications. The treatments include salinity stress in three levels (0, 50, and 100 mM NaCl) and calcium in two levels (content in Hoagland solution and double content). The results showed that all morphological and physiological traits include root and shoot length, root and shoot wet and dry weight, leaf area, leaf chlorophyll content, RWC, CMS, and biological yield was significantly different from the control and is affected by the salinity stress severely. But, calcium effect on them was not significant despite of decreasing salinity effect.

Keywords: Vicia villossa, salinity stress, calcium, hydroponic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
1320 Inter-Specific Differences in Leaf Phenology, Growth of Seedlings of Cork OAK (Quercus suber L.), Zeen Oak (Quercus canariensis Willd.) and Their Hybrid Afares Oak (Quercus afares Pomel) in the Nursery

Authors: S. Mhamdi, O. Brendel, P. Montpied, K. Ben Yahia, N. Saouyah, B. Hasnaoui, E. Dreyer

Abstract:

Leaf Life Span (LLS) is used to classify trees into two main groups: evergreen and deciduous species. It varies according to the forms of life between taxonomic groups. Co-occurrence of deciduous and evergreen oaks is common in some Mediterranean type climate areas. Nevertheless, in the Tunisian forests, there is no enough information about the functional inter-specific diversity among oak species, especially in the mixed stand marked by the simultaneous presence of Q. suber L., Q. canariensis Willd. and their hybrid (Q. afares), the latter being an endemic oak species threatened with extinction. This study has been conducted to estimate the LLS, the relative growth rate, and the count of different growth flushes of samplings in semi-controlled conditions. Our study took 17 months, with an observation's interval of 4 weeks. The aim is to characterize and compare the hybrid species to the parental ones. Differences were observed among species, both for phenology and growth. Indeed, Q. suber saplings reached higher total height and number of growth flushes then Q. canariensis, while Q. afares showed much less growth flushes than the parental species. The LLS of parental species has exceeded the duration of the experiment, but their hybrid lost all leaves on all cohorts. The short LLSs of hybrid species are in accordance with this phenology in the field, but for Q. canariensis there was a contrast with observations in the field where phenology is strictly annual. This study allowed us to differentiate the hybrid from both parental species.

Keywords: Leaf life span, growth, hybrid, evergreen, deciduous, seedlings, Q. afares Pomel, Q. suber L., Q. canariensis Willd.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980
1319 Assessment of Downy mildew Resistance (Peronospora farinosa) in a Quinoa (Chenopodium quinoa Willd.) Germplasm

Authors: Manal Mhada, BrahimEzzahiri, Ouafae Benlhabib

Abstract:

Seventy-nine accessions, including two local wild species (Chenopodium album and C. murale) and several cultivated quinoa lines developed through recurrent selection in Morocco were screened for their resistance against Peronospora farinose, the causal agent of downy mildew disease. The method of artificial inoculation on detached healthy leaves taken from the middle stage of the plant was used. Screened accessions showed different levels of quantitative resistance to downy mildew as they were scored through the calculation of their area under disease progress curve and their two resistance components, the incubation period and the latent period. Significant differences were found between accessions regarding the three criteria (Incubation Period, Latent Period and Area Under Diseases Progress Curve). Accessions M2a and S938/1 were ranked resistant as they showed the longest Incubation Period (7 days) and Latent Period (12 days) and the lowest area under diseases progress curve (4). Therefore, M24 is the most susceptible accession as it has presented the highest area under diseases progress curve (34.5) and the shortest Incubation Period (1 day) and Latent Period (3 days). In parallel to this evaluation approach, the accession resistance was confirmed under the field conditions through natural infection by using the tree-leaf method. The high correlation found between detached leaf inoculation method and field screening under natural infection allows us to use this laboratory technique with sureness in further selection works.

Keywords: Detached leaf inoculation, Downy mildew, Field screening, Quinoa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
1318 Yield and Sward Composition Responses of Natural Grasslands to Treatments Meeting Sustainability

Authors: D. Díaz Fernández, I. Csízi, K. Pető, G. Nagy

Abstract:

An outstanding part of the animal products are based on the grasslands, due to the fact that the grassland ecosystems can be found all over the globe. In places where economical and successful crop production cannot be managed, the grassland based animal husbandry can be an efficient way of food production. In addition, these ecosystems have an important role in carbon sequestration, and with their rich flora – and fauna connected to it – in conservation of biodiversity. The protection of nature, and the sustainable agriculture is getting more and more attention in the European Union, but, looking at the consumers’ needs, the production of healthy food cannot be neglected either. Because of these facts, the effects of two specific composts - which are officially authorized in organic farming, in Agri-environment Schemes and Natura 2000 programs – on grass yields and sward compositions were investigated in a field trial. The investigation took place in Hungary, on a natural grassland based on solonetz soil. Three rates of compost (10 t/ha, 20 t/ha, 30 t/ha) were tested on 3 m X 10 m experimental plots. Every treatment had four replications and both type of compost had four-four control plots too, this way 32 experimental plots were included in the investigations. The yield of the pasture was harvested two-times (in May and in September) and before cutting the plots, measurements on botanical compositions were made. Samples for laboratory analysis were also taken. Dry matter yield of pasture showed positive responses to the rates of composts. The increase in dry matter yield was partly due to some positive changes in sward composition. It means that the proportions of grass species with higher yield potential increased in ground cover of the sward without depressing out valuable native species of diverse natural grasslands. The research results indicate that the use of organic compost can be an efficient way to increase grass yields in a sustainable way.

Keywords: Compost application, crude protein content, dry matter yield, native grassland, sward composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
1317 Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition

Authors: Yendiyarov Sergei, Zobnin Boris, Petrushenko Sergei

Abstract:

Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process.

Keywords: sintering process, particle swarm optimization, optimal control, expert system, solid-fuel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
1316 Effect of Three Sand Types on Potato Vegetative Growth and Yield

Authors: Shatha A. Yousif, Qasim M. Zamil, Hasan Y. Al Muhi, Jamal A. Al Shammari

Abstract:

Potato (Solanum tuberosum L.) is one of the major vegetable crops that are grown world –wide because of its economic importance. This experiment investigated the effect of local sands (River Base, Al-Ekader and Karbala) on number and total weight of minitubers. Statistical analysis revealed that there were no significant differences among sand cultures in number of stem/plant, chlorophyll index and tubers dry weight. River Base sand had the highest plant height (74.9 cm), leaf number/plant number (39.3), leaf area (84.4 dcm2⁄plant), dry weight/plant (26.31), tubers number/plant (8.5), tubers weight/plant (635.53 gm) and potato tuber yields/trove (28.60 kg), whereas the Karbala sand had lower performance. All the characters had positive and significant correlation with yields except the traits number of stem and tuber dry weight.

Keywords: Correlation, Potato, Sand Culture, Yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
1315 Evaluation on Bearing Capacity of Ring Foundations on two-Layered Soil

Authors: R. Ziaie Moayed, V. Rashidian, E. Izadi

Abstract:

This paper utilizes a finite element analysis to study the bearing capacity of ring footings on a two-layered soil. The upper layer, that the footing is placed on it, is soft clay and the underneath layer is a cohesionless sand. For modeling soils, Mohr–Coulomb plastic yield criterion is employed. The effects of two factors, the clay layer thickness and the ratio of internal radius of the ring footing to external radius of the ring, have been analyzed. It is found that the bearing capacity decreases as the value of ri / ro increases. Although, as the clay layer thickness increases the bearing capacity was alleviated gradually.

Keywords: Bearing capacity, Ring footing, Two-layered soil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4043
1314 Effect of Plant Growth Promoting Bacteria Inoculation, Addition of Biochar, and Mineral N Fertilization on Mycorrhizal Colonization

Authors: Irina Mikajlo, Jaroslav Záhora, Helena Dvořáčková, Jaroslav Hynšt, Jakub Elbl

Abstract:

Strong anthropogenic impact has uncontrolled consequences on the nature of the soil. Hence, up-to-date sustainable methods of soil state improvement are essential. Investigators provide the evidence that biochar can positively effects physical, chemical, and biological soil properties and the abundance of mycorrhizal fungi which are in the focus of this study. The main aim of the present investigation is to demonstrate the effect of two types of plant growth promoting bacteria (PGPB) inoculums along with the beech wood biochar and mineral N additives on mycorrhizal colonization. Experiment has been set up in laboratory conditions with containers filled with arable soil from the protection zone of the main water source “Brezova nad Svitavou”. Lactuca sativa (lettuce) has been selected as a model plant. Based on the obtained data, it can be concluded that mycorrhizal colonization increased as the result of combined influence of biochar and PGPB inoculums amendment. In addition, correlation analyses showed that the numbers of main groups of cultivated bacteria were dependent on the degree of mycorrhizal colonization.

Keywords: Arbuscular mycorrhiza, biochar, PGPB inoculum, soil microorganisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
1313 Soil-Structure Interaction Models for the Reinforced Foundation System: A State-of-the-Art Review

Authors: Ashwini V. Chavan, Sukhanand S. Bhosale

Abstract:

Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of it over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation, respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model’. The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. A flow-chart showing procedure for compution of deformation and mobilized tension is also incorporated in the paper. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models. 

Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
1312 Temporal Variation of Surface Runoff and Inter-Rill Erosion in Different Soil Textures of a Semi-Arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Inter-rill erosion is the detachment and transfer of soil particles between the rills which occurs due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of inter-rill erosion during a rainfall event and the effect of soil properties on it can help develop better methods to soil conservation in the hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and inter-rill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. Soil properties including particle size distribution, aggregate stability, bulk density, exchangeable sodium percentages (ESP) and hydraulic conductivity (Ks) were determined in the soil samples. Correlation and regression analysis was done to determine the effect of soil properties on runoff and inter-rill erosion. Results indicated that the study soils have lower both organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher ESP. Runoff production and soil loss did not occur in sand texture, which was associated with higher infiltration and drainage rates. A strong relationship was found between inter-rill erosion and surface runoff (R2 = 0.75, p < 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, Ks, lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more inter-rill erosion. In the soils, surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: Erosion plot, rainfall simulator, soil properties, surface flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70
1311 Sunflower Irrigation with Two Different Types of Soil Moisture Sensors

Authors: C. D. Papanikolaou, V. A. Giouvanis, E. A. Karatasiou, D. S. Dimakas, M. A. Sakellariou-Makrantonaki

Abstract:

Irrigation is one of the most important cultivation practices for each crop, especially in areas where rainfall is enough to cover the crop water needs. In such areas, the farmers must irrigate in order to achieve high economical results. The precise irrigation scheduling contributes to irrigation water saving and thus a valuable natural resource is protected. Under this point of view, in the experimental field of the Laboratory of Agricultural Hydraulics of the University of Thessaly, a research was conducted during the growing season of 2012 in order to evaluate the growth, seed and oil production of sunflower as well as the water saving, by applying different methods of irrigation scheduling. Three treatments in four replications were organized. These were: a) surface drip irrigation where the irrigation scheduling based on the Penman-Monteith (PM) method (control); b) surface drip irrigation where the irrigation scheduling based on a soil moisture sensor (SMS); and c) surface drip irrigation, where the irrigation scheduling based on a soil potential sensor (WM).

Keywords: Irrigation scheduling, soil moisture sensors, sustainable agriculture, water saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980
1310 Experimental Studies on Treated Sub-base Soil with Fly Ash and Cement for Sustainable Design Recommendations

Authors: M. Jayakumar, Lau Chee Sing

Abstract:

The pavement constructions on soft and expansive soils are not durable and unable to sustain heavy traffic loading. As a result, pavement failures and settlement problems will occur very often even under light traffic loading due to cyclic and rolling effects. Geotechnical engineers have dwelled deeply into this matter, and adopt various methods to improve the engineering characteristics of soft fine-grained soils and expansive soils. The problematic soils are either replaced by good and better quality material or treated by using chemical stabilization with various binding materials. Increased the strength and durability are also the part of the sustainability drive to reduce the environment footprint of the built environment by the efficient use of resources and waste recycle materials. This paper presents a series of laboratory tests and evaluates the effect of cement and fly ash on the strength and drainage characteristics of soil in Miri. The tests were performed at different percentages of cement and fly ash by dry weight of soil. Additional tests were also performed on soils treated with the combinations of fly ash with cement and lime. The results of this study indicate an increase in unconfined compression strength and a decrease in hydraulic conductivity of the treated soil.

Keywords: Pavement failure, soft soil, sustainability, stabilization, fly ash, strength and permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439
1309 Seismic Hazard Assessment of Offshore Platforms

Authors: F. D. Konstandakopoulou, G. A. Papagiannopoulos, N. G. Pnevmatikos, G. D. Hatzigeorgiou

Abstract:

This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.

Keywords: Hazard analysis, offshore platforms, earthquakes, safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025
1308 A Close Study on the Nitrate Fertilizer Use and Environmental Pollution for Human Health in Iran

Authors: Saeed Rezaeian, M. Rezaee Boroon

Abstract:

Nitrogen accumulates in soils during the process of fertilizer addition to promote the plant growth. When the organic matter decomposes, the form of available nitrogen produced is in the form of nitrate, which is highly mobile. The most significant health effect of nitrate ingestion is methemoglobinemia in infants under six months of age (blue baby syndrome). The mobile nutrients, like nitrate nitrogen, are not stored in the soil as the available forms for the long periods and in large amounts. It depends on the needs for the crops such as vegetables. On the other hand, the vegetables will compete actively for nitrate nitrogen as a mobile nutrient and water. The mobile nutrients must be shared. The fewer the plants, the larger this share is for each plant. Also, this nitrate nitrogen is poisonous for the people who use these vegetables. Nitrate is converted to nitrite by the existing bacteria in the stomach and the Gastro-Intestinal (GI) tract. When nitrite is entered into the blood cells, it converts the hemoglobin to methemoglobin, which causes the anoxemia and cyanosis. The increasing use of pesticides and chemical fertilizers, especially the fertilizers with nitrates compounds, which have been common for the increased production of agricultural crops, has caused the nitrate pollution in the (soil, water, and environment). They have caused a lot of damage to humans and animals. In this research, the nitrate accumulation in different kind of vegetables such as; green pepper, tomatoes, egg plants, watermelon, cucumber, and red pepper were observed in the suburbs of Mashhad, Neisabour, and Sabzevar cities. In some of these cities, the information forms of agronomical practices collected were such as; different vegetable crops fertilizer recommendations, varieties, pesticides, irrigation schedules, etc., which were filled out by some of our colleagues in the research areas mentioned above. Analysis of the samples was sent to the soil and water laboratory in our department in Mashhad. The final results from the chemical analysis of samples showed that the mean levels of nitrates from the samples of the fruit crops in the mentioned cities above were all lower than the critical levels. These fruit crop samples were in the order of: 35.91, 8.47, 24.81, 6.03, 46.43, 2.06 mg/kg dry matter, for the following crops such as; tomato, cucumber, eggplant, watermelon, green pepper, and red pepper. Even though, this study was conducted with limited samples and by considering the mean levels, the use of these crops from the nutritional point of view will not cause the poisoning of humans.

Keywords: Environmental pollution, human health, nitrate accumulations, nitrate fertilizers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
1307 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant

Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov

Abstract:

Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.

Keywords: Catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
1306 Nutritional Composition of Iranian Desi and Kabuli Chickpea (Cicer Arietinum L.) Cultivars in Autumn Sowing

Authors: Khosro Mohammadi

Abstract:

The grain quality of chickpea in Iran is low and instable, which may be attributed to the evolution of cultivars with a narrow genetic base making them vulnerable to biotic stresses. Four chickpea varieties from diverse geographic origins were chosen and arranged in a randomized complete block design. Mesorhizobium sp. cicer strain SW7 was added to all the chickpea seeds. Chickpea seeds were planted on October 9, 2013. Each genotype was sown 5 m in length, with 35 cm inter-row spacing, in 3 rows. Weeds were removed manually in all plots. Results showed that Analysis of variance on the studied traits showed significant differences among genotypes for N, P, K and Fe contents of chickpea, but there is not a significant difference among Ca, Zn and Mg continents of chickpea. The experimental coefficient of variation (CV) varied from 7.3 to 15.8. In general, the CV value lower than 20% is considered to be good, indicating the accuracy of conducted experiments. The highest grain N was observed in Hashem and Jam cultivars. The highest grain P was observed in Jam cultivar. Phosphorus content (mg/100g) ranged from 142.3 to 302.3 with a mean value of 221.3. The negative correlation (-0.126) was observed between the N and P of chickpea cultivars. The highest K and Fe contents were observed in Jam cultivar.

Keywords: Cultivar, genotype, nitrogen, nutrient, yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
1305 A Capacitive Sensor Interface Circuit Based on Phase Differential Method

Authors: H. A. Majid, N. Razali, M. S. Sulaiman, A. K. A'ain

Abstract:

A new interface circuit for capacitive sensor is presented. This paper presents the design and simulation of soil moisture capacitive sensor interface circuit based on phase differential technique. The circuit has been designed and fabricated using MIMOS- 0.35"m CMOS technology. Simulation and test results show linear characteristic from 36 – 52 degree phase difference, representing 0 – 100% in soil moisture level. Test result shows the circuit has sensitivity of 0.79mV/0.10 phase difference, translating into resolution of 10% soil moisture level.

Keywords: Capacitive sensor, interface, phase differential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
1304 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling

Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada

Abstract:

In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.

Keywords: Climate changes, dry soil, Phytopathogenicity, Predictive model, Fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
1303 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: Collapsible soil, relative subsidence, dielectric permittivity, moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118
1302 Sensitivity Analysis for Determining Priority of Factors Controlling SOC Content in Semiarid Condition of West of Iran

Authors: Y. Parvizi, M. Gorji, M.H. Mahdian, M. Omid

Abstract:

Soil organic carbon (SOC) plays a key role in soil fertility, hydrology, contaminants control and acts as a sink or source of terrestrial carbon content that can affect the concentration of atmospheric CO2. SOC supports the sustainability and quality of ecosystems, especially in semi-arid region. This study was conducted to determine relative importance of 13 different exploratory climatic, soil and geometric factors on the SOC contents in one of the semiarid watershed zones in Iran. Two methods canonical discriminate analysis (CDA) and feed-forward back propagation neural networks were used to predict SOC. Stepwise regression and sensitivity analysis were performed to identify relative importance of exploratory variables. Results from sensitivity analysis showed that 7-2-1 neural networks and 5 inputs in CDA models output have highest predictive ability that explains %70 and %65 of SOC variability. Since neural network models outperformed CDA model, it should be preferred for estimating SOC.

Keywords: Soil organic carbon, modeling, neural networks, CDA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
1301 Using GIS and Map Data for the Analysis of the Relationship between Soil and Groundwater Quality at Saline Soil Area of Kham Sakaesaeng District, Nakhon Ratchasima, Thailand

Authors: W. Thongwat, B. Terakulsatit

Abstract:

The study area is Kham Sakaesaeng District in Nakhon Ratchasima Province, the south section of Northeastern Thailand, located in the Lower Khorat-Ubol Basin. This region is the one of saline soil area, located in a dry plateau and regularly experience standing with periods of floods and alternating with periods of drought. Especially, the drought in the summer season causes the major saline soil and saline water problems of this region. The general cause of dry land salting resulted from salting on irrigated land, and an excess of water leading to the rising water table in the aquifer. The purpose of this study is to determine the relationship of physical and chemical properties between the soil and groundwater. The soil and groundwater samples were collected in both rainy and summer seasons. The content of pH, electrical conductivity (EC), total dissolved solids (TDS), chloride and salinity were investigated. The experimental result of soil and groundwater samples show the slightly pH less than 7, EC (186 to 8,156 us/cm and 960 to 10,712 us/cm), TDS (93 to 3,940 ppm and 480 to 5,356 ppm), chloride content (45.58 to 4,177,015 mg/l and 227.90 to 9,216,736 mg/l), and salinity (0.07 to 4.82 ppt and 0.24 to 14.46 ppt) in the rainy and summer seasons, respectively. The distribution of chloride content and salinity content were interpolated and displayed as a map by using ArcMap 10.3 program, according to the season. The result of saline soil and brined groundwater in the study area were related to the low-lying topography, drought area, and salt-source exposure. Especially, the Rock Salt Member of Maha Sarakham Formation was exposed or lies near the ground surface in this study area. During the rainy season, salt was eroded or weathered from the salt-source rock formation and transported by surface flow or leached into the groundwater. In the dry season, the ground surface is dry enough resulting salt precipitates from the brined surface water or rises from the brined groundwater influencing the increasing content of chloride and salinity in the ground surface and groundwater.

Keywords: Environmental geology, soil salinity, geochemistry, groundwater hydrology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
1300 Hydrothermal Treatment for Production of Aqueous Co-Product and Efficient Oil Extraction from Microalgae

Authors: Manatchanok Tantiphiphatthana, Lin Peng, Rujira Jitrwung, Kunio Yoshikawa

Abstract:

Hydrothermal liquefaction (HTL) is a technique for obtaining clean biofuel from biomass in the presence of heat and pressure in an aqueous medium which leads to a decomposition of this biomass to the formation of various products. A role of operating conditions is essential for the bio-oil and other products’ yield and also quality of the products. The effects of these parameters were investigated in regards to the composition and yield of the products. Chlorellaceae microalgae were tested under different HTL conditions to clarify suitable conditions for extracting bio-oil together with value-added co-products. Firstly, different microalgae loading rates (5-30%) were tested and found that this parameter has not much significant to product yield. Therefore, 10% microalgae loading rate was selected as a proper economical solution for conditioned schedule at 250oC and 30 min-reaction time. Next, a range of temperature (210-290oC) was applied to verify the effects of each parameter by keeping the reaction time constant at 30 min. The results showed no linkage with the increase of the reaction temperature and some reactions occurred that lead to different product yields. Moreover, some nutrients found in the aqueous product are possible to be utilized for nutrient recovery.

Keywords: Bio-oil, Hydrothermal Liquefaction, Microalgae, Aqueous co-product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
1299 Tolerance of Heavy Metals by Gram Positive Soil Bacteria

Authors: I. V. N. Rathnayake, Mallavarapu Megharaj, Nanthi Bolan, Ravi Naidu

Abstract:

With the intention of screening for heavy metal tolerance, a number of bacteria were isolated and characterized from a pristine soil. Two Gram positive isolates were identified as Paenibacillus sp. and Bacillus thuringeinsis. Tolerance of Cd2+, Cu2+ and Zn2+ by these bacteria was studied and found that both bacteria were highly sensitive to Cu2+ compared to other two metals. Both bacteria showed the same pattern of metal tolerance in the order Zn+ > Cd2+ > Cu2+. When the metal tolerance in both bacteria was compared, Paenibacillus sp. showed the highest sensitivity to Cu2+ where as B. thuringiensis showed highest sensitivity to Cd2+ and Zn2+ .These findings revealed the potential of Paenibacillus sp. in developing a biosensor to detect Cu2+ in environmental samples.

Keywords: Heavy metals, bacteria, soil, tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7010
1298 3D Oil Reservoir Visualisation Using Octree Compression Techniques Utilising Logical Grid Co-Ordinates

Authors: S. Mulholland

Abstract:

Octree compression techniques have been used for several years for compressing large three dimensional data sets into homogeneous regions. This compression technique is ideally suited to datasets which have similar values in clusters. Oil engineers represent reservoirs as a three dimensional grid where hydrocarbons occur naturally in clusters. This research looks at the efficiency of storing these grids using octree compression techniques where grid cells are broken into active and inactive regions. Initial experiments yielded high compression ratios as only active leaf nodes and their ancestor, header nodes are stored as a bitstream to file on disk. Savings in computational time and memory were possible at decompression, as only active leaf nodes are sent to the graphics card eliminating the need of reconstructing the original matrix. This results in a more compact vertex table, which can be loaded into the graphics card quicker and generating shorter refresh delay times.

Keywords: 3D visualisation, compressed vertex tables, octree compression techniques, oil reservoir grids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
1297 Effects of Reclaimed Agro-Industrial Wastewater for Long-Term Irrigation of Herbaceous Crops on Soil Chemical Properties

Authors: E. Tarantino, G. Disciglio, G. Gatta, L. Frabboni, A. Libutti, A. Tarantino

Abstract:

Worldwide, about two-thirds of industrial and domestic wastewater effluent is discharged without treatment, which can cause contamination and eutrophication of the water. In particular, for Mediterranean countries, irrigation with treated wastewater would mitigate the water stress and support the agricultural sector. Changing global weather patterns will make the situation worse, due to increased susceptibility to drought, which can cause major environmental, social, and economic problems. The study was carried out in open field in an intensive agricultural area of the Apulian region in Southern Italy where freshwater resources are often scarce. As well as providing a water resource, irrigation with treated wastewater represents a significant source of nutrients for soil–plant systems. However, the use of wastewater might have further effects on soil. This study thus investigated the long-term impact of irrigation with reclaimed agro-industrial wastewater on the chemical characteristics of the soil. Two crops (processing tomato and broccoli) were cultivated in succession in Stornarella (Foggia) over four years from 2012 to 2016 using two types of irrigation water: groundwater and tertiary treated agro-industrial wastewater that had undergone an activated sludge process, sedimentation filtration, and UV radiation. Chemical analyses were performed on the irrigation waters and soil samples. The treated wastewater was characterised by high levels of several chemical parameters including TSS, EC, COD, BOD5, Na+, Ca2+, Mg2+, NH4-N, PO4-P, K+, SAR and CaCO3, as compared with the groundwater. However, despite these higher levels, the mean content of several chemical parameters in the soil did not show relevant differences between the irrigation treatments, in terms of the chemical features of the soil.

Keywords: Agro-industrial wastewater, broccoli, long-term re-use, tomato.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154