Search results for: heterogeneous catalyst
145 Adaptive Score Normalization: A Novel Approach for Multimodal Biometric Systems
Authors: Anouar Ben Khalifa, Sami Gazzah, Najoua Essoukri BenAmara
Abstract:
Multimodal biometric systems integrate the data presented by multiple biometric sources, hence offering a better performance than the systems based on a single biometric modality. Although the coupling of biometric systems can be done at different levels, the fusion at the scores level is the most common since it has been proven effective than the rest of the fusion levels. However, the scores from different modalities are generally heterogeneous. A step of normalizing the scores is needed to transform these scores into a common domain before combining them. In this paper, we study the performance of several normalization techniques with various fusion methods in a context relating to the merger of three unimodal systems based on the face, the palmprint and the fingerprint. We also propose a new adaptive normalization method that takes into account the distribution of client scores and impostor scores. Experiments conducted on a database of 100 people show that the performances of a multimodal system depend on the choice of the normalization method and the fusion technique. The proposed normalization method has given the best results.
Keywords: Multibiometrics, Fusion, Score level, Score normalization, Adaptive normalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554144 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases
Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha
Abstract:
Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.
Keywords: Feature fusion, image retrieval, membership function, normalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345143 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.
Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 569142 Synthesis of Gold Nanoparticles Stabilized in Na-Montmorillonite for Nitrophenol Reduction
Authors: F. Ammari, M. Chenouf
Abstract:
Synthesis of gold nanoparticles has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nanoparticles in the reaction of CO oxidation at low temperature. In this research field, we used Na-montmorillonite for gold nanoparticles stabilization; various gold loading percentage 1, 2 and 5% were used for gold nanoparticles preparation. The gold nanoparticles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nanoparticles stabilized in Na-montmorillonite were used as catalysts for the reduction of 4- nitrophenol to aminophenol with sodium borohydride at room temperature. The UV-Vis results confirmed directly the gold nanoparticles formation. The XRD and N2 adsorption results showed the formation of gold nanoparticles in the pores of montmorillonite with an average size of 5 nm obtained on samples with 2% gold loading percentage. The gold particles size increased with the increase of gold loading percentage. The reduction reaction of 4- nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au-Namontmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 9 min for 1%Au-Na-montmorillonite and within 3 min for 2%Au-Na-montmorillonite.Keywords: Chemical reduction, gold, montmorillonite, nanoparticles, 4-nitrophenol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111141 Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks
Authors: Ashanie Guanathillake, Kithsiri Samarasinghe
Abstract:
Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.
Keywords: Energy efficient, Global re-clustering, Local re-clustering, Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370140 Influence of Textured Clusters on the Goss Grains Growth in Silicon Steels Consideration of Energy and Mobility
Authors: H. Afer, N. Rouag, R. Penelle
Abstract:
In the Fe-3%Si sheets, grade Hi-B, with AlN and MnS as inhibitors, the Goss grains which abnormally grow do not have a size greater than the average size of the primary matrix. In this heterogeneous microstructure, the size factor is not a required condition for the secondary recrystallization. The onset of the small Goss grain abnormal growth appears to be related to a particular behavior of their grain boundaries, to the local texture and to the distribution of the inhibitors. The presence and the evolution of oriented clusters ensure to the small Goss grains a favorable neighborhood to grow. The modified Monte-Carlo approach, which is applied, considers the local environment of each grain. The grain growth is dependent of its real spatial position; the matrix heterogeneity is then taken into account. The grain growth conditions are considered in the global matrix and in different matrixes corresponding to A component clusters. The grain growth behaviour is considered with introduction of energy only, energy and mobility, energy and mobility and precipitates.Keywords: Abnormal grain growth, grain boundary energy andmobility, neighbourhood, oriented clusters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373139 Simulation of the Performance of the Reforming of Methane in a Primary Reformer
Authors: A. Alkattib, M. Boumaza
Abstract:
Steam reforming is industrially important as it is incorporated in several major chemical processes including the production of ammonia, methanol, hydrogen and ox alcohols. Due to the strongly endothermic nature of the process, a large amount of heat is supplied by fuel burning (commonly natural gas) in the furnace chamber. Reaction conversions, tube catalyst life, energy consumption and CO2 emission represent the principal factors affecting the performance of this unit and are directly influenced by the high operating temperatures and pressures. This study presents a simulation of the performance of the reforming of methane in a primary reformer, through a developed empirical relation which enables to investigate the effects of operating parameters such as the pressure, temperature, steam to carbon ratio on the production of hydrogen, as well as the fraction of non converted methane. It appears from this analysis that the exit temperature Te, the operating pressure as well the steam to carbon ratio has an important effect on the reforming of methane.
Keywords: Reforming, methane, performance, hydrogen, parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472138 Migration among Multicities
Authors: Ming Guan
Abstract:
This paper proposes a simple model of economic geography within the Dixit-Stiglitz-Iceberg framework that may be used to analyze migration patterns among three cities. The cost–benefit tradeoffs affecting incentives for three types of migration, including echelon migration, are discussed. This paper develops a tractable, heterogeneous-agent, general equilibrium model, where agents share constant human capital, and explores the relationship between the benefits of echelon migration and gross human capital. Using Chinese numerical solutions, we study the manifestation of echelon migration and how it responds to changes in transportation cost and elasticity of substitution. Numerical results demonstrate that (i) there are positive relationships between a migration-s benefit-and-wage ratio, (ii) there are positive relationships between gross human capital ratios and wage ratios as to origin and destination, and (iii) we identify 13 varieties of human capital convergence among cities. In particular, this model predicts population shock resulting from the processes of migration choice and echelon migration.
Keywords: Dixit-Stiglitz-Iceberg framework, elasticity , echelonmigration, trade-off
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475137 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling
Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi
Abstract:
The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.
Keywords: Desert soil, Climatic changes, Bacteria, Vegetation, Artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891136 TiO2-Zeolite Y Catalyst Prepared Using Impregnation and Ion-Exchange Method for Sonocatalytic Degradation of Amaranth Dye in Aqueous Solution
Authors: Atheel Hassan Alwash, Ahmad Zuhairi Abdullah, Norli Ismail
Abstract:
Characteristics and sonocatalytic activity of zeolite Y catalysts loaded with TiO2 using impregnation and ion exchange methods for the degradation of amaranth dye were investigated. The Ion-exchange method was used to encapsulate the TiO2 into the internal pores of the zeolite while the incorporation of TiO2 mostly on the external surface of zeolite was carried out using the impregnation method. Different characterization techniques were used to elucidate the physicochemical properties of the produced catalysts. The framework of zeolite Y remained virtually unchanged after the encapsulation of TiO2 while the crystallinity of zeolite decreased significantly after the incorporation of 15 wt% of TiO2. The sonocatalytic activity was enhanced by TiO2 incorporation with maximum degradation efficiencies of 50% and 68% for the encapsulated titanium and titanium loaded onto the zeolite, respectively after 120min of reaction. Catalysts characteristics and sonocatalytic behaviors were significantly affected by the preparation method and the location of TiO2 introduced with zeolite structure. Behaviors in the sonocatalytic process were successfully correlated with the characteristics of the catalysts used.Keywords: Sonocatalytic degradation, TiO2 loaded, ionexchange, impregnation, amaranth dye, process behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4320135 Idiopathic Constipation can be Subdivided in Clinical Subtypes: Data Mining by Cluster Analysis on a Population based Study
Authors: Mauro Giacomini, Stefania Bertone, Carlo Mansi, Pietro Dulbecco, Vincenzo Savarino
Abstract:
The prevalence of non organic constipation differs from country to country and the reliability of the estimate rates is uncertain. Moreover, the clinical relevance of subdividing the heterogeneous functional constipation disorders into pre-defined subgroups is largely unknown.. Aim: to estimate the prevalence of constipation in a population-based sample and determine whether clinical subgroups can be identified. An age and gender stratified sample population from 5 Italian cities was evaluated using a previously validated questionnaire. Data mining by cluster analysis was used to determine constipation subgroups. Results: 1,500 complete interviews were obtained from 2,083 contacted households (72%). Self-reported constipation correlated poorly with symptombased constipation found in 496 subjects (33.1%). Cluster analysis identified four constipation subgroups which correlated to subgroups identified according to pre-defined symptom criteria. Significant differences in socio-demographics and lifestyle were observed among subgroups.Keywords: Cluster analysis, constipation, data mining, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300134 Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks
Authors: O. Yavuz, L. Ozyilmaz
Abstract:
HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.Keywords: Auto-Regressive Model, HIV, Neural Networks, ROC Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181133 Energy Benefits of Urban Platooning with Self-Driving Vehicles
Authors: Eduardo F. Mello, Peter H. Bauer
Abstract:
The primary focus of this paper is the generation of energy-optimal speed trajectories for heterogeneous electric vehicle platoons in urban driving conditions. Optimal speed trajectories are generated for individual vehicles and for an entire platoon under the assumption that they can be executed without errors, as would be the case for self-driving vehicles. It is then shown that the optimization for the “average vehicle in the platoon” generates similar transportation energy savings to optimizing speed trajectories for each vehicle individually. The introduced approach only requires the lead vehicle to run the optimization software while the remaining vehicles are only required to have adaptive cruise control capability. The achieved energy savings are typically between 30% and 50% for stop-to-stop segments in cities. The prime motivation of urban platooning comes from the fact that urban platoons efficiently utilize the available space and the minimization of transportation energy in cities is important for many reasons, i.e., for environmental, power, and range considerations.Keywords: Electric vehicles, energy efficiency, optimization, platooning, self-driving vehicles, urban traffic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252132 Enhanced Coagulation of Disinfection By-Products Precursors in Porsuk Water Resource, Eskisehir
Authors: Zehra Yigit, Hatice Inan, Guven Seydioglu, Vedat Uyak
Abstract:
Natural organic matter (NOM) is heterogeneous mixture of organic compounds that enter the water media from animal and plant remains, domestic and industrial wastes. Researches showed that NOM is likely precursor material for disinfection by products (DBPs). Chlorine very commenly used for disinfection purposes and NOM and chlorine reacts then Trihalomethane (THM) and Haloacetic acids (HAAs) which are cancerogenics for human health are produced. The aim of the study is to search NOM removal by enhanced coagulation from drinking water source of Eskisehir which is supplied from Porsuk Dam. Recently, Porsuk dam water is getting highly polluted and therefore NOM concentration is increasing. Enhanced coagulation studies were evaluated by measurement of Dissolved Organic Carbon (DOC), UV absorbance at 254 nm (UV254), and different trihalomethane formation potential (THMFP) tests. Results of jar test experiments showed that NOM can be removed from water about 40-50 % of efficiency by enhanced coagulation. Optimum coagulant type and coagulant dosages were determined using FeCl3 and Alum.Keywords: Chlorination, Disinfection by-products, DOC, Enhanced Coagulation, NOM, Porsuk, UV254.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218131 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva
Abstract:
Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.Keywords: Ammonia slip, neural-network, vehicles emissions, SCR-NOx.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042130 Mathematical Simulation of Bubble Column Slurry Reactor for Direct Dimethyl Ether Synthesis Process from Syngas
Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
Based on a global kinetics of direct dimethyl ether (DME) synthesis process from syngas, a steady-state one-dimensional mathematical model for the bubble column slurry reactor (BCSR) has been established. It was built on the assumption of plug flow of gas phase, sedimentation-dispersion model of catalyst grains and isothermal chamber regardless of reaction heats and rates for the design of an industrial scale bubble column slurry reactor. The simulation results indicate that higher pressure and lower temperature were favorable to the increase of CO conversion, DME selectivity, products yield and the height of slurry bed, which has a coincidence with the characteristic of DME synthesis reaction system, and that the height of slurry bed is lessen with the increasing of operation temperature in the range of 220-260℃. CO conversion, the optimal operation conditions in BCSR were proposed.
Keywords: Alcohol/ether fuel, bubble column slurry reactor, global kinetics, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625129 Semi-automatic Construction of Ontology-based CBR System for Knowledge Integration
Authors: Junjie Gao, Guishi Deng
Abstract:
In order to integrate knowledge in heterogeneous case-based reasoning (CBR) systems, ontology-based CBR system has become a hot topic. To solve the facing problems of ontology-based CBR system, for example, its architecture is nonstandard, reusing knowledge in legacy CBR is deficient, ontology construction is difficult, etc, we propose a novel approach for semi-automatically construct ontology-based CBR system whose architecture is based on two-layer ontology. Domain knowledge implied in legacy case bases can be mapped from relational database schema and knowledge items to relevant OWL local ontology automatically by a mapping algorithm with low time-complexity. By concept clustering based on formal concept analysis, computing concept equation measure and concept inclusion measure, some suggestions about enriching or amending concept hierarchy of OWL local ontologies are made automatically that can aid designers to achieve semi-automatic construction of OWL domain ontology. Validation of the approach is done by an application example.Keywords: OWL ontology, Case-based Reasoning, FormalConcept Analysis, Knowledge Integration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013128 Hydrogen Production from Dehydrogenation of Ethanol over Ag-Based Catalysts
Authors: S. Totong, K. Faungnawakij, N. Laosiripojana
Abstract:
The development of alternative energy is interesting in the present especially, hydrogen production because it is an important energy resource in the future. This paper studied the hydrogen production from catalytic dehydrogenation of ethanol through via low temperature (<500°C) reaction. Copper (Cu) and silver (Ag) supported on fumed silica (SiO2) were selected in the present work; in addition, bimetallic material; Ag-Cu supported on SiO2 was also investigated. The catalysts were prepared by the incipient wetness impregnation method and characterized via X-ray diffraction (XRD), temperature-programmed reduction (TPR)and nitrogen adsorption measurements. The catalytic dehydrogenation of ethanol was carried out in a fixed bed continuous flow reactor at atmospheric pressure. The effect of reaction temperature between 300-375°C was studied in order to maximize the hydrogen yield. It was found that Ag-Cu/SiO2 exhibited the highest hydrogen yield compared to Ag/SiO2 and Cu/SiO2 at low reaction temperature (300°C) with full ethanol conversion. The highest hydrogen yield observed was 40% and will be further used as a reactant in fuel cells to generate electricity or feedstock of chemical production.
Keywords: Catalyst, dehydrogenation, ethanol, hydrogen production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3519127 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porous Isotropic Composite Materials
Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya
Abstract:
The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser thermooptical method of ultrasound generation combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.Keywords: Laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549126 Sustainability in the Construction Industry in Malaysia: The Challenges and Breakthroughs
Authors: Yoong H. Chan, Brenda C. T. Lee, Jin C. Lee
Abstract:
As Malaysia aims to be a developed country by year 2020; the construction industry has since been identified as a major catalyst for the country to attain the status. It is one of the sectors that contribute to most environmental pollutions. It is, therefore, important for the industry to implement sustainable construction practices to reduce the negative impacts that it has on the environment. However, most Malaysian developers have placed much focus on market demand and economic factors; neglecting the need for attention on environmental issues. The practice of sustainable construction is deemed to be an obstacle to achieve short-term economic goals due to the higher cost incurred in the operations. Hence, choices need to be made and a balance needs to be struck in weighing the long-term environmental benefits against immediate economic factors. This paper discusses the challenges faced by Malaysian developers in adopting sustainable practices in the construction industry and the cause of these challenges. It also looks into the achievements and breakthroughs that developers in Malaysia have achieved so far. The paper aims explores the long-term benefits of sustainable practices that would potentially raise awareness on the feasibility and economic potential of sustainable construction.
Keywords: Construction industry, construction method, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9411125 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Based Management Systems
Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi
Abstract:
There are real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. The needs came because most of current learning standard adopted web based learning and the e-learning systems do not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is that it uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish an intelligent educational system supporting student tutoring, self and lifelong learning system.Keywords: Knowledge Management Systems, Ontologies, Semantic Web, Open Educational Resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580124 Negative Pressure Waves in Hydraulic Systems
Authors: Fuad H. Veliev
Abstract:
Negative pressure phenomenon appears in many thermodynamic, geophysical and biophysical processes in the Nature and technological systems. For more than 100 years of the laboratory researches beginning from F. M. Donny’s tests, the great values of negative pressure have been achieved. But this phenomenon has not been practically applied, being only a nice lab toy due to the special demands for the purity and homogeneity of the liquids for its appearance. The possibility of creation of direct wave of negative pressure in real heterogeneous liquid systems was confirmed experimentally under the certain kinetic and hydraulic conditions. The negative pressure can be considered as the factor of both useful and destroying energies. The new approach to generation of the negative pressure waves in impure, unclean fluids has allowed the creation of principally new energy saving technologies and installations to increase the effectiveness and efficiency of different production processes. It was proved that the negative pressure is one of the main factors causing hard troubles in some technological and natural processes. Received results emphasize the necessity to take into account the role of the negative pressure as an energy factor in evaluation of many transient thermohydrodynamic processes in the Nature and production systems.
Keywords: Liquid systems, negative pressure, temperature, wave, metastable state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696123 Construction and Performance Characterization of the Looped-Tube Travelling-Wave Thermoacoustic Engine with Ceramic Regenerator
Authors: Abdulrahman S. Abduljalil, Zhibin Yu, Artur J. Jaworski, Lei Shi
Abstract:
In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle difference between the pressure and velocity oscillation is close to zero in the regenerator. This paper presents the construction and testing of a thermoacoustic engine equipped with a ceramic regenerator, made from a ceramic material that is usually used as catalyst substrate in vehicles- exhaust systems, with fine square channels (900 cells per square inch). The testing includes the onset temperature difference (minimum temperature difference required to start the acoustic oscillation in an engine), the acoustic power output, thermal efficiency and the temperature profile along the regenerator.Keywords: Regenerator, Temperature gradient, Thermoacoustic, Travelling-wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267122 Structure and Activity Research of Hydrocarbons Refining Catalysts Based on Wastes of Ferroalloy Production
Authors: Zhanat Shomanova, Ruslan Safarov, Yuri Nosenko, Zheneta Tashmuchambetova, Alima Zharmagambetova
Abstract:
An effective way of utilization of ferroalloy production wastes is preparing hydrocarbon refining catalysts from them. It is possible due to accordable transition metals containing in the wastes. In the work, we are presenting the results on elemental analysis of sludge samples from Aksu ferroalloy plant (Aksu, Kazakhstan), method of catalysts preparing, results of physical-chemical analysis of obtained catalysts (X-ray analysis, electron microscopy, the BET method etc.), results of using the catalysts in some hydrocarbons refining processes such as hydrocracking of rubber waste, cracking of gasoil, oxidation of cyclohexane. The main results of catalytic activity research are: a) In hydrocracking of rubber waste 64.9% of liquid products were fuel fractions; b) In cracking of gasoil conversion was 51% and selectivity by liquid products was 99%; c) In oxidation of cyclohexane the maximal product yield 87.9% and selectivity by cyclohexanol 93.0% were achieved.Keywords: Catalyst, cyclohexane oxidation, ferroalloy production waste, gasoil cracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889121 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.
Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412120 Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection
Authors: Hong Pan, Yaping Zhu, Liang Zheng Xia
Abstract:
We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.
Keywords: Adaboost, Face detection, Feature selection, PSO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200119 Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks
Authors: Mohanad Alhabo, Naveed Nawaz
Abstract:
The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing handover procedure while the user is on the move. However, dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and/or handover failure because of short time of stay of a user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method decreases the candidate small cell list, unnecessary handovers, handover failure and short time of stay cells compared to the competitive method.
Keywords: Handover, HetNets, MADM, small cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541118 The Knowledge Representation of the Genetic Regulatory Networks Based on Ontology
Authors: Ines Hamdi, Mohamed Ben Ahmed
Abstract:
The understanding of the system level of biological behavior and phenomenon variously needs some elements such as gene sequence, protein structure, gene functions and metabolic pathways. Challenging problems are representing, learning and reasoning about these biochemical reactions, gene and protein structure, genotype and relation between the phenotype, and expression system on those interactions. The goal of our work is to understand the behaviors of the interactions networks and to model their evolution in time and in space. We propose in this study an ontological meta-model for the knowledge representation of the genetic regulatory networks. Ontology in artificial intelligence means the fundamental categories and relations that provide a framework for knowledge models. Domain ontology's are now commonly used to enable heterogeneous information resources, such as knowledge-based systems, to communicate with each other. The interest of our model is to represent the spatial, temporal and spatio-temporal knowledge. We validated our propositions in the genetic regulatory network of the Aarbidosis thaliana flower
Keywords: Ontological model, spatio-temporal modeling, Genetic Regulatory Networks (GRNs), knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485117 Solar Energy Generation Based Urban Development: A Case of Jodhpur City
Authors: A. Kumar, V. Devadas
Abstract:
India has the most year-round favorable sunny conditions along with the second-highest solar irradiation in the world, the country holds the potential to become the global solar hub. The solar and wind-based generation capacity has skyrocketed in India with the successful effort of the Ministry of Renewable Energy, whereas the potential of rooftop based solar power generation has yet to be explored for proposed solar cities in India. The research aims to analyze the gap in the energy scenario in Jodhpur City and proposes interventions of solar energy generation systems as a catalyst for urban development. The research is based on the system concept which deals with simulation between the city system as a whole and its interactions between different subsystems. A system-dynamics based mathematical model is developed by identifying the control parameters using regression and correlation analysis to assess the gap in energy sector. The base model validation is done using the past 10 years timeline data collected from secondary sources. Further, energy consumption and solar energy generation-based projection are made for testing different scenarios to conclude the feasibility for maintaining the city level energy independence till 2031.
Keywords: City, consumption, energy, generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564116 The Effect of Pyramid Structure on Firm Value
Authors: Irfah Najihah Basir Malan, Norhana Salamudin, Noryati Ahmad
Abstract:
Corporate ownership structure is an important factor influencing firm performance. This study aims to answer the question whether pyramid structure has negative effect on firm value. This study is important because the ownership of public listed companies in Malaysia is highly concentrated. The concentrated ownership such as Malaysia, agency conflict is prevalent between controlling shareholders and minority shareholders. Accordingly, the dominant role of shareholders in firms allows the controlling shareholders (including managers) to expropriate the interest of the minority shareholders for their own private advantage. This research is conducted on pyramidal firms in Malaysia. Applying the Attig Model as the underlying statistical test, it is found that firm value is negatively related to pyramid ownership of Malaysian public listed firms due to the mismatch between cash flow rights and control rights. Future research needs to focus on identifying the heterogeneous factors that improve the generalizability of research.
Keywords: Pyramid structure, Cash flow right, Control right, Firm value, Attig model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3270