Search results for: Velocity smoothness constant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1643

Search results for: Velocity smoothness constant

1283 The Response Relation between Climate Change and NDVI over the Qinghai-Tibet plateau

Authors: Shen Weishou, Ji Di, Zhang Hui, Yan Shouguang, Li Haidong, Lin Naifeng

Abstract:

Based on a long-term vegetation index dataset of NDVI and meteorological data from 68 meteorological stations in the Qinghai-Tibet plateau and their relations with major climate factors were analyzed. The results show the following: 1) The linear trends of temperature in the Qinghai-Tibet plateau indicate that the temperature in the plateau generally increased, but it rose faster in the last 20 years. 2) The most significant NDVI increase occurred in the eastern and southern plateau. However, the western and northern plateau demonstrate a decreasing trend. 3) There is a significant positive linear correlation between NDVI and temperature and a negative correlation between NDVI and mean wind speed. However, no significant statistical relationship was found between NDVI and relative humidity, precipitation or sunshine duration.4) The changes in NDVI for the plateau are driven by temperature-precipitation, but for the desert and forest areas, the relation changes to precipitation-temperature-wind velocity and wind velocity-temperature-precipitation.

Keywords: Qinghai-Tibet plateau, NDVI, climate warming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
1282 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Authors: M. S. Khurram, S. A. Memon, S. Khan

Abstract:

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

Keywords: Axial voidage, circulating fluidized bed, splash zone, static bed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
1281 A Meta-Heuristic Algorithm for Vertex Covering Problem Based on Gravity

Authors: S. Raja Balachandar, K.Kannan

Abstract:

A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving vertex covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the vertex covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.

Keywords: Vertex covering Problem, Velocity, Gravitational Force, Newton's Law, Meta Heuristic, Combinatorial optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
1280 Studying the Effect of Hydrocarbon Solutions on the Properties of Epoxy Polymer Concrete

Authors: Mustafa Hasan Omar

Abstract:

The destruction effect of hydrocarbon solutions on concrete besides its high permeability have led researchers to try to improve the performance of concrete exposed to these solutions, hence improving the durability and usability of oil concrete structures. Recently, polymer concrete is considered one of the most important types of concrete, and its behavior after exposure to oil products is still unknown. In the present work, an experimental study has been carried out, in which the prepared epoxy polymer concrete immersed in different types of hydrocarbon exposure solutions (gasoline, kerosene, and gas oil) for 120 days and compared with the reference concrete left in the air. The results for outdoor specimens indicate that the mechanical properties are increased after 120 days, but the specimens that were immersed in gasoline, kerosene, and gas oil for the same period show a reduction in compressive strength by -21%, -27% and -23%, whereas in splitting tensile strength by -19%, -24% and -20%, respectively. The reductions in ultrasonic pulse velocity for cubic specimens are -17%, -22% and -19% and in cylindrical specimens are -20%, -25% and -22%, respectively.

Keywords: Epoxy resin, hydrocarbon solutions, mechanical properties, polymer concrete, ultrasonic pulse velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
1279 Assessment of the Response of Seismic Refraction Tomography and Resistivity Imaging to the Same Geologic Environment: A Case Study of Zaria Basement Complex in North Central Nigeria

Authors: Collins C. Chiemeke, I. B. Osazuwa, Ibe S. O., Egwuonwu G. N., Ani C. D., Chii E. C.

Abstract:

The study area is Zaria, located in the basement complex of northern Nigeria. The rock type forming the major part of the Zaria batholith is granite. This research work was carried out to compare the responses of seismic refraction tomography and resistivity tomography in the same geologic environment and under the same conditions. Hence, the choice of the site that has a visible granitic outcrop that extends across a narrow stream channel and is flanked by unconsolidated overburden, a neutral profile that was covered by plain overburden and a site with thick lateritic cover became necessary. The results of the seismic and resistivity tomography models reveals that seismic velocity and resistivity does not always simultaneously increase with depth, but their responses in any geologic environment are determined by changes in the mechanical and chemical content of the rock types rather than depth.

Keywords: Environment, Resistivity, Response, Seismic, Velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
1278 Equatorial Symmetry of Chaotic Solutions in Boussinesq Convection in a Rotating Spherical Shell

Authors: Keiji Kimura, Shin-ichi Takehiro, Michio Yamada

Abstract:

We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the inner and outer sphere rotation due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number and the Taylor number are fixed to 0.4, 1 and 5002, respectively. The inertial moments of the inner and outer spheres are fixed to about 0.22 and 100, respectively. The Rayleigh number is varied from 2.6 × 104 to 3.4 × 104. In this parameter range, convective solutions transit from equatorially symmetric quasiperiodic ones to equatorially asymmetric chaotic ones as the Rayleigh number is increased. The transition route in the system allowing rotation of both the spheres is different from that in the co-rotating system, which means the inner and outer spheres rotate with the same constant angular velocity: the convective solutions transit as equatorially symmetric quasi-periodic solution → equatorially symmetric chaotic solution → equatorially asymmetric chaotic solution in the system allowing both the spheres rotation, while equatorially symmetric quasi-periodic solution → equatorially asymmetric quasiperiodic solution → equatorially asymmetric chaotic solution in the co-rotating system.

Keywords: thermal convection, numerical simulation, equatorial symmetry, quasi-periodic solution, chaotic solution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
1277 Synthesis of a Control System of a Deterministic Chaotic Process in the Class of Two-Parameter Structurally Stable Mappings

Authors: M. Beisenbi, A. Sagymbay, S. Beisembina, A. Satpayeva

Abstract:

In this paper, the problem of unstable and deterministic chaotic processes in control systems is considered. The synthesis of a control system in the class of two-parameter structurally stable mappings is demonstrated. This is realized via the gradient-velocity method of Lyapunov vector functions. It is shown that the gradient-velocity method of Lyapunov vector functions allows generating an aperiodic robust stable system with the desired characteristics. A simple solution to the problem of synthesis of control systems for unstable and deterministic chaotic processes is obtained. Moreover, it is applicable for complex systems.

Keywords: Control system synthesis, deterministic chaotic processes, Lyapunov vector function, robust stability, structurally stable mappings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339
1276 Risk Factors in a Road Construction Site

Authors: V.R Gannapathy, S.K Subramaniam, A.B Mohamad Diah, M.K Suaidi, A.H Hamidon

Abstract:

The picture of a perfect road construction site is the one that utilizes conventional vertical road signs and a flagman to optimize the traffic flow with minimum hazel to the public. Former research has been carried out by Department of Occupational Safety and Health (DOSH) and Ministry of Works to further enhance smoothness in traffic operations and particularly in safety issues within work zones. This paper highlights on hazardous zones in a certain road construction or road maintenance site. Most cases show that the flagman falls into high risk of fatal accidents within work zone. Various measures have been taken by both the authorities and contractors to overcome such miseries, yet it-s impossible to eliminate the usage of a flagman since it is considered the best practice. With the implementation of new technologies in automating the traffic flow in road construction site, it is possible to eliminate the usage of a flagman. The intelligent traffic light system is designed to solve problems which contribute hazardous at road construction site and to be inline with the road safety regulation which is taken into granted.

Keywords: Intelligent Traffic Light, Critical Zones, Safety Regulation, Flagman

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6335
1275 Characteristics of Ozone Generated from Dielectric Barrier Discharge Plasma Actuators

Authors: R. Osada, S. Ogata, T. Segawa

Abstract:

Dielectric barrier discharge plasma actuators (DBD-PAs) have been developed for active flow control devices. However, it is necessary to reduce ozone produced by DBD toward practical applications using DBD-PAs. In this study, variations of ozone concentration, flow velocity, power consumption were investigated by changing exposed electrodes of DBD-PAs. Two exposed electrode prototypes were prepared: span-type with exposed electrode width of 0.1 mm, and normal-type with width of 5 mm. It was found that span-type shows lower power consumption and higher flow velocity than that of normal-type at Vp-p = 4.0-6.0 kV. Ozone concentration of span-type higher than normal-type at Vp-p = 4.0-8.0 kV. In addition, it was confirmed that catalyst located in downstream from the exposed electrode can reduce ozone concentration between 18 and 42% without affecting the induced flow.

Keywords: Dielectric barrier discharge plasma actuators, ozone diffusion, PIV measurement, power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
1274 Modeling of Pulsatile Blood Flow in a Weak Magnetic Field

Authors: Chee Teck Phua, Gaëlle Lissorgues

Abstract:

Blood pulse is an important human physiological signal commonly used for the understanding of the individual physical health. Current methods of non-invasive blood pulse sensing require direct contact or access to the human skin. As such, the performances of these devices tend to vary with time and are subjective to human body fluids (e.g. blood, perspiration and skin-oil) and environmental contaminants (e.g. mud, water, etc). This paper proposes a simulation model for the novel method of non-invasive acquisition of blood pulse using the disturbance created by blood flowing through a localized magnetic field. The simulation model geometry represents a blood vessel, a permanent magnet, a magnetic sensor, surrounding tissues and air in 2-dimensional. In this model, the velocity and pressure fields in the blood stream are described based on Navier-Stroke equations and the walls of the blood vessel are assumed to have no-slip condition. The blood assumes a parabolic profile considering a laminar flow for blood in major artery near the skin. And the inlet velocity follows a sinusoidal equation. This will allow the computational software to compute the interactions between the magnetic vector potential generated by the permanent magnet and the magnetic nanoparticles in the blood. These interactions are simulated based on Maxwell equations at the location where the magnetic sensor is placed. The simulated magnetic field at the sensor location is found to assume similar sinusoidal waveform characteristics as the inlet velocity of the blood. The amplitude of the simulated waveforms at the sensor location are compared with physical measurements on human subjects and found to be highly correlated.

Keywords: Blood pulse, magnetic sensing, non-invasive measurement, magnetic disturbance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
1273 Investigation of Stoneley Waves in Multilayered Plates

Authors: Bing Li, Tong Lu, Lei Qiang

Abstract:

Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.

Keywords: Characteristic equation, interface waves, dispersion curves, potential function, Stoneley waves, wave structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
1272 Siding Mode Control of Pitch-Rate of an F-16 Aircraft

Authors: Ekprasit Promtun, Sridhar Seshagiri

Abstract:

This paper considers the control of the longitudinal flight dynamics of an F-16 aircraft. The primary design objective is model-following of the pitch rate q, which is the preferred system for aircraft approach and landing. Regulation of the aircraft velocity V (or the Mach-hold autopilot) is also considered, but as a secondary objective. The problem is challenging because the system is nonlinear, and also non-affine in the input. A sliding mode controller is designed for the pitch rate, that exploits the modal decomposition of the linearized dynamics into its short-period and phugoid approximations. The inherent robustness of the SMC design provides a convenient way to design controllers without gain scheduling, with a steady-state response that is comparable to that of a conventional polynomial based gain-scheduled approach with integral control, but with improved transient performance. Integral action is introduced in the sliding mode design using the recently developed technique of “conditional integrators", and it is shown that robust regulation is achieved with asymptotically constant exogenous signals, without degrading the transient response. Through extensive simulation on the nonlinear multiple-input multiple-output (MIMO) longitudinal model of the F-16 aircraft, it is shown that the conditional integrator design outperforms the one based on the conventional linear control, without requiring any scheduling.

Keywords: Sliding-mode Control, Integral Control, Model Following, F-16 Longitudinal Dynamics, Pitch-Rate Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3178
1271 Study the Effect of Roughness on the Higher Order Moment to Extract Information about the Turbulent Flow Structure in an Open Channel Flow

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

The present study was carried out to understand the extent of effect of roughness and Reynolds number in open channel flow (OCF). To this extent, four different types of bed surface conditions consisting smooth, distributed roughness, continuous roughness, natural sand bed and two different Reynolds number for each bed surfaces were adopted in this study. Particular attention was given on mean velocity, turbulence intensity, Reynolds shear stress, correlation, higher order moments and quadrant analysis. Further, the extent of influence of roughness and Reynolds number in the depth-wise direction also studied. Increasing Reynolds shear stress near rough beds are noticed due to arrays of discrete roughness elements and flow over these elements generating a series of wakes which contributes to the generation of significantly higher Reynolds shear stress.

Keywords: Bed roughness, ejection, sweep, open channel flow, Reynolds Shear Stress, turbulent boundary layer, velocity triple product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
1270 Human Growth Curve Estimation through a Combination of Longitudinal and Cross-sectional Data

Authors: Sedigheh Mirzaei S., Debasis Sengupta

Abstract:

Parametric models have been quite popular for studying human growth, particularly in relation to biological parameters such as peak size velocity and age at peak size velocity. Longitudinal data are generally considered to be vital for fittinga parametric model to individual-specific data, and for studying the distribution of these biological parameters in a human population. However, cross-sectional data are easier to obtain than longitudinal data. In this paper, we present a method of combining longitudinal and cross-sectional data for the purpose of estimating the distribution of the biological parameters. We demonstrate, through simulations in the special case ofthePreece Baines model, how estimates based on longitudinal data can be improved upon by harnessing the information contained in cross-sectional data.We study the extent of improvement for different mixes of the two types of data, and finally illustrate the use of the method through data collected by the Indian Statistical Institute.

Keywords: Preece-Baines growth model, MCMC method, Mixed effect model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
1269 The Effect of Vibration on the Absorption of CO2 with Chemical Reaction in Aqueous Solution of Calcium Hydroxide

Authors: B. Sohbi, M. Emtir, M. Elgarni

Abstract:

An interesting method to produce calcium carbonate is based in a gas-liquid reaction between carbon dioxide and aqueous solutions of calcium hydroxide. The design parameters for gas-liquid phase are flow regime, individual mass transfer, gas-liquid specific interfacial area. Most studies on gas-liquid phase were devoted to the experimental determination of some of these parameters, and more specifically, of the mass transfer coefficient, kLa which depends fundamentally on the superficial gas velocity and on the physical properties of absorption phase. The principle investigation was directed to study the effect of the vibration on the mass transfer coefficient kLa in gas-liquid phase during absorption of CO2 in the in aqueous solution of calcium hydroxide. The vibration with a higher frequency increase the mass transfer coefficient kLa, but vibration with lower frequency didn-t improve it, the mass transfer coefficient kLa increase with increase the superficial gas velocity.

Keywords: Environment technology, mass transfer coefficient, absorption, CO2, calcium hydroxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
1268 Solid Concentration in Circulating Fluidized Bed Reactor for the MTO Process

Authors: Biao Wang, Tao Li, Qi-wen Sun, Wei-yong Ying, Ding-ye Fang

Abstract:

Methanol-to-olefins (MTO) coupled with transformation of coal or natural gas to methanol gives an interesting and promising way to produce ethylene and propylene. To investigate solid concentration in gas-solid fluidized bed for methanol-to-olefins process catalyzed by SAPO-34, a cold model experiment system is established in this paper. The system comprises a gas distributor in a 300mm internal diameter and 5000mm height acrylic column, the fiber optic probe system and series of cyclones. The experiments are carried out at ambient conditions and under different superficial gas velocity ranging from 0.3930m/s to 0.7860m/s and different initial bed height ranging from 600mm to 1200mm. The effects of radial distance, axial distance, superficial gas velocity, initial bed height on solid concentration in the bed are discussed. The effects of distributor shape and porosity on solid concentration are also discussed. The time-averaged solid concentration profiles under different conditions are obtained.

Keywords: Branched pipe distributor, distributor porosity, gas-solid fluidized bed, solid concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
1267 Effect of Buoyancy Ratio on Non-Darcy Mixed Convection in a Vertical Channel: A Thermal Non-equilibrium Approach

Authors: Manish K. Khandelwal, P. Bera, A. Chakrabarti

Abstract:

This article presents a numerical study of the doublediffusive mixed convection in a vertical channel filled with porous medium by using non-equilibrium model. The flow is assumed fully developed, uni-directional and steady state. The controlling parameters are thermal Rayleigh number (RaT ), Darcy number (Da), Forchheimer number (F), buoyancy ratio (N), inter phase heat transfer coefficient (H), and porosity scaled thermal conductivity ratio (γ). The Brinkman-extended non-Darcy model is considered. The governing equations are solved by spectral collocation method. The main emphasize is given on flow profiles as well as heat and solute transfer rates, when two diffusive components in terms of buoyancy ratio are in favor (against) of each other and solid matrix and fluid are thermally non-equilibrium. The results show that, for aiding flow (RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a certain value of H, beyond that decreases smoothly and converges to a constant, whereas in case of opposing flow (RaT = -1000), the result is same for N = 0 and 1. The variation of Nuf in (N, Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases (aiding and opposing) the flow destabilize on increasing N by inviting point of inflection or flow separation on the velocity profile. Overall, the buoyancy force have significant impact on the non-Darcy mixed convection under LTNE conditions.

Keywords: buoyancy ratio, mixed convection, non-Darcy model, thermal non-equilibrium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
1266 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin

Abstract:

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

Keywords: Balance control, speed control, intelligent controller and two wheel inverted pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
1265 CFD Simulation of Condensing Vapor Bubble using VOF Model

Authors: Seong-Su Jeon, Seong-Jin Kim, Goon-Cherl Park

Abstract:

In this study, direct numerical simulation for the bubble condensation in the subcooled boiling flow was performed. The main goal was to develop the CFD modeling for the bubble condensation and to evaluate the accuracy of the VOF model with the developed CFD modeling. CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using UDF. In the modeling, the amount of condensation was determined using the interfacial heat transfer coefficient obtained from the bubble velocity, liquid temperature and bubble diameter every time step. To evaluate the VOF model using the CFD modeling for the bubble condensation, CFD simulation results were compared with SNU experimental results such as bubble volume and shape, interfacial area, bubble diameter and bubble velocity. Simulation results predicted well the behavior of the actual condensing bubble. Therefore, it can be concluded that the VOF model using the CFD modeling for the bubble condensation will be a useful computational fluid dynamics tool for analyzing the behavior of the condensing bubble in a wide range of the subcooled boiling flow.

Keywords: Bubble condensation, CFD modeling, Subcooled boiling flow, VOF model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6688
1264 The Influence of Pad Thermal Diffusivity over Heat Transfer into the PCBs Structure

Authors: Mihai Brânzei, Ioan Plotog, Ion Pencea

Abstract:

The Pads have unique values of thermophysical properties (THP) having important contribution over heat transfer into the PCB structure. Materials with high thermal diffusivity (TD) rapidly adjust their temperature to that of their surroundings, because the HT is quick in compare to their volumetric heat capacity (VHC). In the paper is presenting the diffusivity tests (ASTM E1461 flash method) for PCBs with different core materials. In the experiments, the multilayer structure of PCBA was taken into consideration, an equivalent property referring to each of experimental structure be practically measured. Concerning to entire structure, the THP emphasize the major contribution of substrate in establishing of reflow soldering process (RSP) heat transfer necessities. This conclusion offer practical solution for heat transfer time constant calculation as function of thickness and substrate material diffusivity with an acceptable error estimation.

Keywords: heat transfer time constant, packaging, reflowsoldering process, thermal diffusivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
1263 Design of 3-Step Skew BLAC Motor for Better Performance in Electric Power Steering System

Authors: Design of 3-Step Skew BLAC Motor for Better Performance in Electric Power Steering System

Abstract:

In Electric Power Steering (EPS), spoke type Brushless AC (BLAC) motors offer distinct advantages over other electric motor types in terms torque smoothness, reliability and efficiency. This paper deals with the shape optimization of spoke type BLAC motor, in order to reduce cogging torque. This paper examines 3 steps skewing rotor angle, optimizing rotor core edge and rotor overlap length for reducing cogging torque in spoke type BLAC motor. The methods were applied to existing machine designs and their performance was calculated using finite- element analysis (FEA). Prototypes of the machine designs were constructed and experimental results obtained. It is shown that the FEA predicted the cogging torque to be nearly reduce using those methods.

Keywords: EPS, 3-Step skewing, spoke type BLAC, cogging torque, FEA, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2906
1262 Effect of Swirl on Gas-Fired Combustion Behavior in a 3-D Rectangular Combustion Chamber

Authors: Man Young Kim

Abstract:

The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on the effect of inlet swirl flow through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal and flow characteristics in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate and temperature were shifted to forward direction compared with the case of no swirl.

Keywords: Gaseous Fuel, Inlet Swirl, Thermal Radiation, Turbulent Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
1261 Effect of the Rise/Span Ratio of a Spherical Cap Shell on the Buckling Load

Authors: Peter N. Khakina, Mohammed I. Ali, Enchun Zhu, Huazhang Zhou, Baydaa H. Moula

Abstract:

Rise/span ratio has been mentioned as one of the reasons which contribute to the lower buckling load as compared to the Classical theory buckling load but this ratio has not been quantified in the equation. The purpose of this study was to determine a more realistic buckling load by quantifying the effect of the rise/span ratio because experiments have shown that the Classical theory overestimates the load. The buckling load equation was derived based on the theorem of work done and strain energy. Thereafter, finite element modeling and simulation using ABAQUS was done to determine the variables that determine the constant in the derived equation. The rise/span was found to be the determining factor of the constant in the buckling load equation. The derived buckling load correlates closely to the load obtained from experiments.

Keywords: Buckling, Finite element, Rise/span ratio, Sphericalcap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
1260 On the Reduction of Side Effects in Tomography

Authors: V. Masilamani, C. Vanniarajan, Kamala Krithivasan

Abstract:

As the Computed Tomography(CT) requires normally hundreds of projections to reconstruct the image, patients are exposed to more X-ray energy, which may cause side effects such as cancer. Even when the variability of the particles in the object is very less, Computed Tomography requires many projections for good quality reconstruction. In this paper, less variability of the particles in an object has been exploited to obtain good quality reconstruction. Though the reconstructed image and the original image have same projections, in general, they need not be the same. In addition to projections, if a priori information about the image is known, it is possible to obtain good quality reconstructed image. In this paper, it has been shown by experimental results why conventional algorithms fail to reconstruct from a few projections, and an efficient polynomial time algorithm has been given to reconstruct a bi-level image from its projections along row and column, and a known sub image of unknown image with smoothness constraints by reducing the reconstruction problem to integral max flow problem. This paper also discusses the necessary and sufficient conditions for uniqueness and extension of 2D-bi-level image reconstruction to 3D-bi-level image reconstruction.

Keywords: Discrete Tomography, Image Reconstruction, Projection, Computed Tomography, Integral Max Flow Problem, Smooth Binary Image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
1259 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs

Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu

Abstract:

This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.

Keywords: Interpolation, Approximate Solution, Collocation, Differential system, Half step, Converges, Block method, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
1258 Elastic Strain-Concentration Factor of Cylindrical Bars with Circumferential Flat-Bottom Groove under Static Tension

Authors: Hitham M. Tlilan

Abstract:

Using finite element method (FEM), the elastic new strain-concentration factor (SNCF) of cylindrical bars with circumferential flat-bottom groove is studied. This new SNCF has been defined under triaxial stress state. The employed specimens have constant groove depth with net section and gross diameters of 10.0 and 16.7 mm, respectively. The length of flatness ao has been varied form 0.0 ~12.5 mm to study the elastic SNCF of this type of geometrical irregularities. The results that the elastic new SNCF rapidly drops from its elastic value of the groove with ao = 0.0, i.e. circumferential U-notch, and reaches minimum value at ao = 2 mm. After that the elastic new SNCF becomes nearly constant with increasing flatness length (ao). The value of tensile load at yielding at the groove root increases with increasing ao. The current results show that severity of the notch decreases with increasing flatness length ao.

Keywords: Bar, groove, strain, tension

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
1257 A Robust TVD-WENO Scheme for Conservation Laws

Authors: A. Abdalla, A. Kaltayev

Abstract:

The ultimate goal of this article is to develop a robust and accurate numerical method for solving hyperbolic conservation laws in one and two dimensions. A hybrid numerical method, coupling a cheap fourth order total variation diminishing (TVD) scheme [1] for smooth region and a Robust seventh-order weighted non-oscillatory (WENO) scheme [2] near discontinuities, is considered. High order multi-resolution analysis is used to detect the high gradients regions of the numerical solution in order to capture the shocks with the WENO scheme, while the smooth regions are computed with fourth order total variation diminishing (TVD). For time integration, we use the third order TVD Runge-Kutta scheme. The accuracy of the resulting hybrid high order scheme is comparable with these of WENO, but with significant decrease of the CPU cost. Numerical demonstrates that the proposed scheme is comparable to the high order WENO scheme and superior to the fourth order TVD scheme. Our scheme has the added advantage of simplicity and computational efficiency. Numerical tests are presented which show the robustness and effectiveness of the proposed scheme.

Keywords: WENO scheme, TVD schemes, smoothness indicators, multi-resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
1256 Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures

Authors: S. Hachemi, A. Ounis, S. Chabi

Abstract:

This paper presents the results of an experimental  study on the effects of elevated temperature on compressive and  flexural strength of Normal Strength Concrete (NSC), High Strength  Concrete (HSC) and High Performance Concrete (HPC). In addition,  the specimen mass and volume were measured before and after  heating in order to determine the loss of mass and volume during the  test. In terms of non-destructive measurement, ultrasonic pulse  velocity test was proposed as a promising initial inspection method  for fire damaged concrete structure. 100 Cube specimens for three  grades of concrete were prepared and heated at a rate of 3°C/min up  to different temperatures (150, 250, 400, 600, and 900°C). The results  show a loss of compressive and flexural strength for all the concretes  heated to temperature exceeding 400°C. The results also revealed that  mass and density of the specimen significantly reduced with an  increase in temperature.

 

Keywords: High temperature, Compressive strength, Mass loss, Ultrasonic pulse velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
1255 Compressive Strength and Capillary Water Absorption of Concrete Containing Recycled Aggregate

Authors: Yeşim Tosun, Remzi Şahin

Abstract:

This paper presents results of compressive strength, capillary water absorption, and density tests conducted on concrete containing recycled aggregate (RCA) which is obtained from structural waste generated by the construction industry in Turkey. In the experiments, 0%, 15%, 30%, 45% and 60% of the normal (natural) coarse aggregate was replaced by the recycled aggregate. Maximum aggregate particle sizes were selected as 16 mm, 22,4 mm and 31,5 mm; and 0,06%, 0,13% and 0,20% of air-entraining agent (AEA) were used in mixtures. Fly ash and superplasticizer were used as a mineral and chemical admixture, respectively. The same type (CEM I 42.5) and constant dosage of cement were used in the study. Water/cement ratio was kept constant as 0.53 for all mixture. It was concluded that capillary water absorption, compressive strength, and density of concrete decreased with increasing RCA ratio. Increasing in maximum aggregate particle size and amount of AEA also affect the properties of concrete significantly.

Keywords: Capillary water absorption, compressive strength, density, recycled concrete aggregates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2788
1254 Estimation of Seismic Ground Motion and Shaking Parameters Based On Microtremor Measurements at Palu City, Central Sulawesi Province, Indonesia

Authors: P. S. Thein, S. Pramumijoyo, K. S. Brotopuspito, J. Kiyono, W. Wilopo, A. Furukawa, A. Setianto

Abstract:

In this study, we estimated the seismic ground motion parameters based on microtremor measurements atPalu City. Several earthquakes have struck along the Palu-Koro Fault during recent years. The USGS epicenter, magnitude Mw 6.3 event that occurred on January 23, 2005 caused several casualties. We conducted a microtremor survey to estimate the strong ground motion distribution during the earthquake. From this surveywe produced a map of the peak ground acceleration, velocity, seismic vulnerability index and ground shear strain maps in Palu City. We performed single observations of microtremor at 151 sites in Palu City. We also conducted8-site microtremors array investigation to gain a representative determination of the soil condition of subsurface structures in Palu City.From the array observations, Palu City corresponds to relatively soil condition with Vs ≤ 300m/s, the predominant periods due to horizontal vertical ratios (HVSRs) are in the range of 0.4 to 1.8 s and the frequency are in the range of 0.7 to 3.3 Hz. Strong ground motions of the Palu area were predicted based on the empirical stochastic green’s function method. Peak ground acceleration and velocity becomes more than 400 gal and 30 kine in some areas, which causes severe damage for buildings in high probability. Microtremor survey results showed that in hilly areas had low seismic vulnerability index and ground shear strain, whereas in coastal alluvium was composed of material having a high seismic vulnerability and ground shear strain indication.

Keywords: Palu-Koro Fault, Microtremor, Peak Ground Acceleration, Peak Ground Velocity and Seismic Vulnerability Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3283