
Abstract—Using finite element method (FEM), the elastic 
new strain-concentration factor (SNCF) of cylindrical bars 
with circumferential flat-bottom groove is studied. This new 
SNCF has been defined under triaxial stress state. The 
employed specimens have constant groove depth with net 
section and gross diameters of 10.0 and 16.7 mm, 
respectively. The length of flatness ao has been varied form 
0.0 ~12.5 mm to study the elastic SNCF of this type of 
geometrical irregularities. The results that the elastic new 
SNCF rapidly drops from its elastic value of the groove with 
ao = 0.0, i.e. circumferential U-notch, and reaches minimum 
value at ao = 2 mm. After that the elastic new SNCF becomes 
nearly constant with increasing flatness length (ao). The value 
of tensile load at yielding at the groove root increases with 
increasing ao.  The current results show that severity of the 
notch decreases with increasing flatness length ao.
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I. INTRODUCTION

HE structural and machine elements such as bars, axles, 
beam, etc. which are designed to avoid excessive elastic 

deflection, often fail suddenly by fracture. The presence of 
discontinuities or geometrical irregularities such as notches is 
a common reason for these failures. This is due to the 
amplification of the stress or strain amplitude at the 
boundaries of the geometrical irregularities. Moreover, the 
stress state is changed to be triaxial stress state at the 
immediate vicinity of the geometrical irregularities. Failure in 
machine elements takes place mainly at stress concentrations. 
Methods for predicting failure must take their effect into 
account.  In design, it is common to use textbooks; [1], [2], to 
obtain the stress-concentration factor (SSCF). Also there have 
been many studies to tackle this problem, beginning with the 
work of  Hardrath and Ohman , and Neuber [3],[4]. 

A considerable amount of work has been completed with 
regard to the determination of elastic stress concentration 
factor for common discontinuities or geometrical irregularities 
under static loading. Results of these studies have been 
presented in graphical representation of experimental results, 
empirical formulae, and in theoretical solutions [5] - [9]. 
Fewer studies have been done examining the SNCF of 
discontinuities under static loading. For static tension, it has 
been predicted by Neuber that the plastic SNCF increases and 
the plastic SSCF decreases from their elastic values as plastic 

Hitham M. Tlilan is Assistant Professor in the Department of Mechanical 
Engineering, Faculty of Engineering in The Hashemite University  Zarqa 
13115, Jordan, (Tel. : +962-(0)5-3903333, Ext. (4463);  Mobile:   +962-(0)7-
77368136 Fax:  +962-(0)5-3826348; e-mail: hitham@hu.edu.jo). 

deformation develops from the notch root [2]. This prediction 
has been confirmed experimentally or analytically and given 
in literature [8]-[13]. These results indicate that for any type 
of loading, the SNCF is more important than the SSCF [14]-
[19].  This is because the plastic SNCF maintains a high value 
much greater than unity, while the plastic SSCF decreases 
towards unity.  The notches employed in the above studies are 
of intermediate depth, considered to give a strong notch effect.   

A new SNCF has been defined under the triaxial stress 
state at the net section.  This new SNCF provides reasonable 
values consistent with the concave distributions of the axial 
strain on the net section.  Moreover, this new SNCF has 
removed the contradiction in the conventional SNCF having 
the values less than unity in spite of the concave distributions 
of the axial strain under elastic-plastic deformation.  On the 
other hand, the conventional SNCF has been defined under 
the uniaxial stress state, which is completely different from 
the stress state at the net section, namely; the triaxial stress 
state [14]-[20].  This causes the above contradiction of the 
conventional SNCF.  The SNCF for any type of loading must 
therefore be defined under the triaxial stress state at the net 
section.  This is because the axial strain at the notch root 
occurs under the triaxial stress state SSCF [14]-[20]. The new 
SNCF has made it possible to clarify the strain concentration 
in notches under creep for the first time. 

This paper attempts to improve the understanding of the 
effect flatness length (ao) on the new SNCF for 
circumferential notches with flat bottom under static tension. 
The FEM is used to obtain the stain distributions. This study 
covers deformation level up to a deformation level close to 
where the notch tensile strength occurred. 

II. NEW STRAIN-CONCNETRATION FACTOR 
Recently, a new strain-concentration factor (SNCF) has 

been introduced by Majima for static tension [14]. This new 
SNCF is defined as the ratio of the maximum axial strain 
( z)max to new average axial or nominal strain at the net section 
( z)av

new;

                
new
avz

maxznew

)(

)(
K                    (1) 

The maximum axial strain at the notch root is independent of 
definition, and hence the new SNCF depends on the definition 
of the average axial strain.  The axial strain is assumed to be 
uniformly distributed at the net section if the notch effect is 
negligible. This assumption gives the average axial or nominal 
strain.  For circumferentially notched cylindrical bars ( z )av

new

is defined as (14Majima 1999) 
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where s = r/rn.  In elastic deformation ( z)av
new can be 

transformed into 
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where E,  and P are Young’s modulus, Poisson’s ratio and 
tensile load, respectively.  Equation (3) can be rewritten as 

            1

0

avznew
av d}{2)()( )()( ssEE

ss rz
         (4) 

This equation indicates that ( z )av
new is defined under the 

triaxial stress state at the net section.  It should be noted that 
( z )av

new, given by equation (2), is defined under the triaxial 
stress state also in plastically deformed area at the net section.  
This is because the plastic component of the axial strain is 
directly related to the triaxial stress state, as indicated by the 
theory of plasticity.  The definition under the triaxial stress 
state gives the reasonable SNCF consistent with the concave 
distribution of the axial strain at any deformation level [14]-
[20]. 

The conventional SNCF under static tension has been 
defined as the ratio of the maximum axial strain ( z)max at the 
notch root to the conventional average axial strain ( z)av

con, i.e. 

                       
con
avz

maxzcon

)(

)(
K                     (5) 

The conventional average axial strain ( z)av
con has been given 

by the axial strain of an unnotched bar, which has the cross 
section identical with the net section and is subjected to the 
same load level as in the notched bar.  This means that the 
conventional average axial strain ( z)av

con has been defined 
under the uniaxial stress state level [14]-[20]. In elastic 
deformation the conventional average axial strain ( z)av

con is 
given by the ratio of the average axial stress ( z)av (= P / net 
section area) to Young’s modulus E.  Even in this stress range 
with plastic deformation at the notch root ( z )av

con has been 
given by 

          
E

avzcon
avz

)(
)(                      (6) 

This equation indicates that the conventional definition has 
neglected the effect of the tangential stress  and the radial 
stresses r.  On further development of plastic deformation, 
i.e. in the range z)av > Y, ( z )av

con must be determined using 

the uniaxial true stress–total strain curve  = ƒ( ).  The 
conventional average axial strain is therefore given by 

                    }){()(
avz

1con
avz f             (7) 

III. MATERIALS AND GEOMETRIES 
The material employed in this study is an Ni-Cr-Mo steel 

with tensile yiled strength, Young’s modulus, and Poisson’s 
ratio of 525 (MPa), 206 (GPa), and 0.3, respectively. The true 
stress strain curves is obtained from conventional tension test.  

Cylindrical bars with circumferential flat-bottom notches 
are employed in the current study, as shown in Fig. 1. Two 
different fillet radii 0.5 and 1.0 (mm) are employed. The gross 
and net-section diameters are 16.7 and 10.0 (mm),  

Fig. 1 Cylindrical bar with circumferential flat-bottom groove 

respectively, to give net-to-gross diameter ratio of 0.6. In 
order to study the effect of flatness on the new SNCF, the 
gage length lo was kept constant of 50 mm and flatness length 
ao was varied from 0.0 to 12.5 (mm). It should be noted that ao

= 0.0 (mm) expresses the circumferentially U-notched 
cylindrical bars. 

IV. FINITE ELEMENT SIMULATIONS 
Taking into account the symmetry of the specimens, only a 

quarter of the geometry was modeled. FE models of the 
employed specimen were constructed in the Marc code using 
8-node axisymmetric isoperimetric quadrilateral ring element 
with biquadratic interpolation and full integration, type 28 in 
MARC classifications, is employed for tension in this study. A 
typical mesh of one–quarter for simulating the tensile loaded 
circumferentially notched bars is shown in Fig. 2. The meshes 
contain between 1717 and 15717 nodes, depending on the 
length of the specimen. A mesh-sensitivity analysis was 
conducted to investigate the influence of mesh discretization 
on the numerical observations. The mesh was varied by 
creating fine, moderate, and coarse models for all specimens 
employed. The FEM calculations were performed under the 
axisymmetric deformation, which is applied at the end of the 
unnotched part. The commercial finite element software, MSc 
Marc, was used for all calculations.
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Fig. 2 FEM model of the circumferentially grooved Cylindrical bar.

V. RESULTS AND DISCUSSION

A. Variation in elastic new SNCF with tensile load  
The variations of the elastic New SNCF with tensile load 

are plotted in Fig. 3 for all fillet radii and groove flattens 
lengths employed. It should be noted that the groove with zero 
flatness length is the circumferential U- notch (groove).  As 
the tensile load increases the initial response is elastic and the 
SNCF is constant in elastic deformation. Figure 3 shows the 
effect of the flatness length on elastic new SNCF for all 
specimens employed. Elastic new SNCF in grooved 
specimens varies significantly with flatness length in the 
ranges where ao  2 mm, as clearly shown in Fig. 4. On the 
other hand, it becomes nearly independent of the flatness 
length in the range ao > 2 mm. This is true for all groove and 
fillet radii employed. However, the maximum elastic SNCF of 
the circumferential U-groove, i.e. ao = 0.0 mm, is greater that 
of a groove with ao > 0.0 mm. This indicates that the severity 
of the notch or groove vanishes with the presence of flatness 
length in the groves. It vanishes also with increasing notch or 
fillet radius. 

It is evident that there is notable influence of the flatness 
length as well as the fillet radius on elastic values and on the 
range of this constant value, i.e. elastic value of the new 
SNCF.  Particularly, it increases with increasing flatness 
length in the range ao  5 mm, while it independent of ao  in 
the range ao > 5 mm. Also, this range increases with 
increasing notch or fillet radius.  This can be clarified by 
plotting the relation between PY; the tensile load value at 
yielding at the notch or fillet root, and flatness length ao, as 
shown in Figures 5and 6. It clearly shown that the value of PY

rapidly increases with increasing ao  in the range ao  2 mm 
and slightly decreases with ao up to ao = 5 mm. After that PY

becomes nearly independent of ao.

Fig. 3 Effect of flatness length on elastic new SNCF

         Fig. 4 Effect of flatness length on elastic new SNCF (enlarged)

Figure 7 shows The rapid decrease in the elastic new SNCF 
with increasing flatness length is essentially attributed to 
decrease in the axial strain, i.e. maximum axial strain, at the 
notch or fillet root. This is prominent in the range where 0.0 < 
ao  2 (mm), while it is nearly independent of ao when ao > 2.0 
(mm). on the other hand, the average or nominal axial strain in 
nearly independent of ao for all specimens employed. The 
current results showed that the strains were highest ahead of 
the notch root when the flatness is small, i.e. 0.0 < ao  2.

VI. CONCLUSION

In the present work, FEM is used to study the elastic SNCF 
for circumferentially U- flat bottom notched bars in tension. 
The elastic SNCF rapidly decreases from its value at ao = 0.0 
(mm), i.e. circumferentially U-notch, to a minimum value at ao

= 2.0 (mm). For ao  2.0 the elastic SNCF is nearly 
independent of ao. The range of elastic SNCF becomes lager 
with increasing ao, i.e. the values of tensile load at yielding at 
the notch root PY, up to ao = 2.0 (mm). For larger ao, the 
values of PY are nearly independent of ao.
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Fig. 5 Effect of flatness length on tensile load at yielding

Fig. 6 Effect of flatness length on tensile load at yielding (enlarged)

Fig. 7 Variations in the ( z)av
new , ( z)max with tensile load for    

Ni-Cr-Mo steel 
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