Search results for: Statistical language model N-grams
8516 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks
Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li
Abstract:
Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.Keywords: BERT, chatbot, cryptocurrency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9818515 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children
Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman
Abstract:
Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.
Keywords: Automatic speech recognition system, children speech, adaptation, Malay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17528514 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks
Authors: Ahmad Aljaafreh
Abstract:
This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.
Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62498513 Robot-Assisted Therapy for Autism Spectrum Disorder: Evaluating the Impact of NAO Robot on Social and Language Skills
Authors: M. Aguilar, D. L. Araujo, A. L. Avendaño, D. C. Flores, I. Lascurain, R. A. Molina, M. Romero
Abstract:
This work presents an application of social robotics, specifically the use of a NAO Robot as a tool for therapists in the treatment of Autism Spectrum Disorder (ASD). According to this, therapies approved by specialist psychologists have been developed and implemented, focusing on creating a triangulation between the robot, the child, and the therapist, aiming to improve their social and language skills, as well as communication skills and joint attention. In addition, quantitative and qualitative analysis tools have been developed and applied to prove the acceptance and the impact of the robot in the treatment of ASD.
Keywords: Autism Spectrum Disorder, NAO robot, social and language skills, therapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858512 Concurrent Approach to Data Parallel Model using Java
Authors: Bala Dhandayuthapani Veerasamy
Abstract:
Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.Keywords: Concurrent, Data Parallel, JDK, Parallel, Thread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20978511 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model
Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi
Abstract:
Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25578510 Experimental Investigation of Indirect Field Oriented Control of Field Programmable Gate Array Based Five-Phase Induction Motor Drive
Authors: G. Renuka Devi
Abstract:
This paper analyzes the experimental investigation of indirect field oriented control of Field Programmable Gate Array (FPGA) based five-phase induction motor drive. A detailed d-q modeling and Space Vector Pulse Width Modulation (SVPWM) technique of 5-phase drive is elaborated in this paper. In the proposed work, the prototype model of 1 hp 5-phase Voltage Source Inverter (VSI) fed drive is implemented in hardware. SVPWM pulses are generated in FPGA platform through Very High Speed Integrated Circuit Hardware Description Language (VHDL) coding. The experimental results are observed under different loading conditions and compared with simulation results to validate the simulation model.
Keywords: Five-phase induction motor drive, field programmable gate array, indirect field oriented control, multi-phase, space vector pulse width modulation, voltage source inverter, very high speed integrated circuit hardware description language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13058509 Assessment of Landslide Volume for Alishan Highway Based On Database of Rainfall-Induced Slope Failure
Authors: Yun-Yao Chi, Ya-Fen Lee
Abstract:
In this paper, a study of slope failures along the Alishan Highway is carried out. An innovative empirical model is developed based on 15-year records of rainfall-induced slope failures. The statistical models are intended for assessing the volume of landslide for slope failure along the Alishan Highway in the future. The rainfall data considered in the proposed models include the effective cumulative rainfall and the critical rainfall intensity. The effective cumulative rainfall is defined at the point when the curve of cumulative rainfall goes from steep to flat. Then, the rainfall thresholds of landslide are established for assessing the volume of landslide and issuing warning and/or closure for the Alishan Highway during a future extreme rainfall. Slope failures during Typhoon Saola in 2012 demonstrate that the new empirical model is effective and applicable to other cases with similar rainfall conditions.
Keywords: Slope failure, landslide, volume, model, rainfall thresholds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17728508 Data Privacy and Safety with Large Language Models
Authors: Ashly Joseph, Jithu Paulose
Abstract:
Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.
Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068507 Monitoring Patents Using the Statistical Process Control
Authors: Stephanie Russo Fabris, Edmara Thays Neres Menezes, Ruirogeres dos Santos Cruz, Lucio Leonardo Siqueira Santos, Suzana Leitao Russo
Abstract:
The statistical process control (SPC) is one of the most powerful tools developed to assist ineffective control of quality, involves collecting, organizing and interpreting data during production. This article aims to show how the use of CEP industries can control and continuously improve product quality through monitoring of production that can detect deviations of parameters representing the process by reducing the amount of off-specification products and thus the costs of production. This study aimed to conduct a technological forecasting in order to characterize the research being done related to the CEP. The survey was conducted in the databases Spacenet, WIPO and the National Institute of Industrial Property (INPI). Among the largest are the United States depositors and deposits via PCT, the classification section that was presented in greater abundance to F.
Keywords: Statistical Process Control, Industries
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15358506 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies
Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey
Abstract:
Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. The world wide observed changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although the effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.
Keywords: Climate Change, Downscaling, GCM, RCM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33758505 Multiple Regression based Graphical Modeling for Images
Authors: Pavan S., Sridhar G., Sridhar V.
Abstract:
Super resolution is one of the commonly referred inference problems in computer vision. In the case of images, this problem is generally addressed using a graphical model framework wherein each node represents a portion of the image and the edges between the nodes represent the statistical dependencies. However, the large dimensionality of images along with the large number of possible states for a node makes the inference problem computationally intractable. In this paper, we propose a representation wherein each node can be represented as acombination of multiple regression functions. The proposed approach achieves a tradeoff between the computational complexity and inference accuracy by varying the number of regression functions for a node.
Keywords: Belief propagation, Graphical model, Regression, Super resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15478504 A Survey of the Applications of Sentiment Analysis
Authors: Pingping Lin, Xudong Luo
Abstract:
Natural language often conveys emotions of speakers. Therefore, sentiment analysis on what people say is prevalent in the field of natural language process and has great application value in many practical problems. Thus, to help people understand its application value, in this paper, we survey various applications of sentiment analysis, including the ones in online business and offline business as well as other types of its applications. In particular, we give some application examples in intelligent customer service systems in China. Besides, we compare the applications of sentiment analysis on Twitter, Weibo, Taobao and Facebook, and discuss some challenges. Finally, we point out the challenges faced in the applications of sentiment analysis and the work that is worth being studied in the future.Keywords: Natural language processing, sentiment analysis, application, online comments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9538503 Sounds Alike Name Matching for Myanmar Language
Authors: Yuzana, Khin Marlar Tun
Abstract:
Personal name matching system is the core of essential task in national citizen database, text and web mining, information retrieval, online library system, e-commerce and record linkage system. It has necessitated to the all embracing research in the vicinity of name matching. Traditional name matching methods are suitable for English and other Latin based language. Asian languages which have no word boundary such as Myanmar language still requires sounds alike matching system in Unicode based application. Hence we proposed matching algorithm to get analogous sounds alike (phonetic) pattern that is convenient for Myanmar character spelling. According to the nature of Myanmar character, we consider for word boundary fragmentation, collation of character. Thus we use pattern conversion algorithm which fabricates words in pattern with fragmented and collated. We create the Myanmar sounds alike phonetic group to help in the phonetic matching. The experimental results show that fragmentation accuracy in 99.32% and processing time in 1.72 ms.Keywords: natural language processing, name matching, phonetic matching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17988502 The Implementation of Word Study Wall in an Online English Word Memorization Class
Authors: Yidan Shao
Abstract:
With the advancement of the economy, technology promotes online teaching, and learning has become one of the common features in the educational field. Meanwhile, the dramatic expansion of the online environment provides opportunities for more learners, including second language learners. A greater command of vocabulary improves students’ learning capacity, and word acquisition and development play a critical role in learning. Furthermore, the Word Wall is an effective tool to improve students’ knowledge of words, which works for a wide range of age groups. Therefore, this study is going to use the Word Wall as an intervention to examine whether it can bring some memorization changes in an online English language class for a second language learner based on the word morphology method. The participant will take ten courses in the experiment as it plans. The findings show that the Word Wall activity plays a slight role in improving word memorizing, but it does affect instant memorization. If longer periods and more comprehensive designs of research can be applied, it is expected to have more value.
Keywords: Second language acquisition, word morphology, word memorization, the Word Wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768501 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.
Keywords: Classification algorithms; data mining; tourism; knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25468500 Development of Rock Engineering System-Based Models for Tunneling Progress Analysis and Evaluation: Case Study of Tailrace Tunnel of Azad Power Plant Project
Authors: S. Golmohammadi, M. Noorian Bidgoli
Abstract:
Tunneling progress is a key parameter in the blasting method of tunneling. Taking measures to enhance tunneling advance can limit the progress distance without a supporting system, subsequently reducing or eliminating the risk of damage. This paper focuses on modeling tunneling progress using three main groups of parameters (tunneling geometry, blasting pattern, and rock mass specifications) based on the Rock Engineering Systems (RES) methodology. In the proposed models, four main effective parameters on tunneling progress are considered as inputs (RMR, Q-system, Specific charge of blasting, Area), with progress as the output. Data from 86 blasts conducted at the tailrace tunnel in the Azad Dam, western Iran, were used to evaluate the progress value for each blast. The results indicated that, for the 86 blasts, the progress of the estimated model aligns mostly with the measured progress. This paper presents a method for building the interaction matrix (statistical base) of the RES model. Additionally, a comparison was made between the results of the new RES-based model and a Multi-Linear Regression (MLR) analysis model. In the RES-based model, the effective parameters are RMR (35.62%), Q (28.6%), q (specific charge of blasting) (20.35%), and A (15.42%), respectively, whereas for MLR analysis, the main parameters are RMR, Q (system), q, and A. These findings confirm the superior performance of the RES-based model over the other proposed models.
Keywords: Rock Engineering Systems, tunneling progress, Multi Linear Regression, Specific charge of blasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418499 Impact of Financial System’s Development on Economic Development: An Empirical Investigation
Authors: Vilma Deltuvaitė
Abstract:
Comparisons of financial development across countries are central to answering many of the questions on factors leading to economic development. For this reason this study analyzes the implications of financial system’s development on country’s economic development. The aim of the article: to analyze the impact of financial system’s development on economic development. The following research methods were used: systemic, logical and comparative analysis of scientific literature, analysis of statistical data, time series model (Autoregressive Distributed Lag (ARDL) Model). The empirical results suggest about positive short and long term effect of stock market development on GDP per capita.
Keywords: Banking sector, economic development, financial system’s development, stock market, private bond market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21248498 An Examination of the Factors Influencing Software Development Effort
Authors: Zhizhong Jiang, Peter Naudé
Abstract:
Effective evaluation of software development effort is an important aspect of successful project management. Based on a large database with 4106 projects ever developed, this study statistically examines the factors that influence development effort. The factors found to be significant for effort are project size, average number of developers that worked on the project, type of development, development language, development platform, and the use of rapid application development. Among these factors, project size is the most critical cost driver. Unsurprisingly, this study found that the use of CASE tools does not necessarily reduce development effort, which adds support to the claim that the use of tools is subtle. As many of the current estimation models are rarely or unsuccessfully used, this study proposes a parsimonious parametric model for the prediction of effort which is both simple and more accurate than previous models.
Keywords: Development effort, function points, team size, development language, CASE tool, rapid application development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25088497 Using “Eckel” Model to Measure Income Smoothing Practices: The Case of French Companies
Authors: Feddaoui Amina
Abstract:
Income smoothing represents an attempt on the part of the company's management to reduce variations in earnings through the manipulation of the accounting principles. In this study, we aimed to measure income smoothing practices in a sample of 30 French joint stock companies during the period (2007-2009), we used Dummy variables method and “ECKEL” model to measure income smoothing practices and Binomial test accourding to SPSS program, to confirm or refute our hypothesis. This study concluded that there are no significant statistical indicators of income smoothing practices in the sample studied of French companies during the period (2007-2009), so the income series in the same sample studied of is characterized by stability and non-volatility without any intervention of management through accounting manipulation. However, this type of accounting manipulation should be taken into account and efforts should be made by control bodies to apply Eckel model and generalize its use at the global level.
Keywords: Income, smoothing, “Eckel”, French companies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10048496 Uncertainty Propagation and Sensitivity Analysis During Calibration of an Integrated Land Use and Transport Model
Authors: Parikshit Dutta, Mathieu Saujot, Elise Arnaud, Benoit Lefevre, Emmanuel Prados
Abstract:
In this work, propagation of uncertainty during calibration process of TRANUS, an integrated land use and transport model (ILUTM), has been investigated. It has also been examined, through a sensitivity analysis, which input parameters affect the variation of the outputs the most. Moreover, a probabilistic verification methodology of calibration process, which equates the observed and calculated production, has been proposed. The model chosen as an application is the model of the city of Grenoble, France. For sensitivity analysis and uncertainty propagation, Monte Carlo method was employed, and a statistical hypothesis test was used for verification. The parameters of the induced demand function in TRANUS, were assumed as uncertain in the present case. It was found that, if during calibration, TRANUS converges, then with a high probability the calibration process is verified. Moreover, a weak correlation was found between the inputs and the outputs of the calibration process. The total effect of the inputs on outputs was investigated, and the output variation was found to be dictated by only a few input parameters.Keywords: Uncertainty propagation, sensitivity analysis, calibration under uncertainty, hypothesis testing, integrated land use and transport models, TRANUS, Grenoble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15218495 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images
Authors: U. Datta
Abstract:
The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.
Keywords: Co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7308494 A New Quantile Based Fuzzy Time Series Forecasting Model
Authors: Tahseen A. Jilani, Aqil S. Burney, C. Ardil
Abstract:
Time series models have been used to make predictions of academic enrollments, weather, road accident, casualties and stock prices, etc. Based on the concepts of quartile regression models, we have developed a simple time variant quantile based fuzzy time series forecasting method. The proposed method bases the forecast using prediction of future trend of the data. In place of actual quantiles of the data at each point, we have converted the statistical concept into fuzzy concept by using fuzzy quantiles using fuzzy membership function ensemble. We have given a fuzzy metric to use the trend forecast and calculate the future value. The proposed model is applied for TAIFEX forecasting. It is shown that proposed method work best as compared to other models when compared with respect to model complexity and forecasting accuracy.
Keywords: Quantile Regression, Fuzzy time series, fuzzy logicalrelationship groups, heuristic trend prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19978493 Exploring the Spatial Characteristics of Mortality Map: A Statistical Area Perspective
Authors: Jung-Hong Hong, Jing-Cen Yang, Cai-Yu Ou
Abstract:
The analysis of geographic inequality heavily relies on the use of location-enabled statistical data and quantitative measures to present the spatial patterns of the selected phenomena and analyze their differences. To protect the privacy of individual instance and link to administrative units, point-based datasets are spatially aggregated to area-based statistical datasets, where only the overall status for the selected levels of spatial units is used for decision making. The partition of the spatial units thus has dominant influence on the outcomes of the analyzed results, well known as the Modifiable Areal Unit Problem (MAUP). A new spatial reference framework, the Taiwan Geographical Statistical Classification (TGSC), was recently introduced in Taiwan based on the spatial partition principles of homogeneous consideration of the number of population and households. Comparing to the outcomes of the traditional township units, TGSC provides additional levels of spatial units with finer granularity for presenting spatial phenomena and enables domain experts to select appropriate dissemination level for publishing statistical data. This paper compares the results of respectively using TGSC and township unit on the mortality data and examines the spatial characteristics of their outcomes. For the mortality data between the period of January 1st, 2008 and December 31st, 2010 of the Taitung County, the all-cause age-standardized death rate (ASDR) ranges from 571 to 1757 per 100,000 persons, whereas the 2nd dissemination area (TGSC) shows greater variation, ranged from 0 to 2222 per 100,000. The finer granularity of spatial units of TGSC clearly provides better outcomes for identifying and evaluating the geographic inequality and can be further analyzed with the statistical measures from other perspectives (e.g., population, area, environment.). The management and analysis of the statistical data referring to the TGSC in this research is strongly supported by the use of Geographic Information System (GIS) technology. An integrated workflow that consists of the tasks of the processing of death certificates, the geocoding of street address, the quality assurance of geocoded results, the automatic calculation of statistic measures, the standardized encoding of measures and the geo-visualization of statistical outcomes is developed. This paper also introduces a set of auxiliary measures from a geographic distribution perspective to further examine the hidden spatial characteristics of mortality data and justify the analyzed results. With the common statistical area framework like TGSC, the preliminary results demonstrate promising potential for developing a web-based statistical service that can effectively access domain statistical data and present the analyzed outcomes in meaningful ways to avoid wrong decision making.
Keywords: Mortality map, spatial patterns, statistical area, variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9908492 Jointly Learning Python Programming and Analytic Geometry
Authors: Cristina-Maria Păcurar
Abstract:
The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.Keywords: Analytic geometry, conics, Python programming language, quadrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15838491 The Effect of Iconic and Beat Gestures on Memory Recall in Greek’s First and Second Language
Authors: Eleni Ioanna Levantinou
Abstract:
Gestures play a major role in comprehension and memory recall due to the fact that aid the efficient channel of the meaning and support listeners’ comprehension and memory. In the present study, the assistance of two kinds of gestures (iconic and beat gestures) is tested in regards to memory and recall. The hypothesis investigated here is whether or not iconic and beat gestures provide assistance in memory and recall in Greek and in Greek speakers’ second language. Two groups of participants were formed, one comprising Greeks that reside in Athens and one with Greeks that reside in Copenhagen. Three kinds of stimuli were used: A video with words accompanied with iconic gestures, a video with words accompanied with beat gestures and a video with words alone. The languages used are Greek and English. The words in the English videos were spoken by a native English speaker and by a Greek speaker talking English. The reason for this is that when it comes to beat gestures that serve a meta-cognitive function and are generated according to the intonation of a language, prosody plays a major role. Thus, participants that have different influences in prosody may generate different results from rhythmic gestures. Memory recall was assessed by asking the participants to try to remember as many words as they could after viewing each video. Results show that iconic gestures provide significant assistance in memory and recall in Greek and in English whether they are produced by a native or a second language speaker. In the case of beat gestures though, the findings indicate that beat gestures may not play such a significant role in Greek language. As far as intonation is concerned, a significant difference was not found in the case of beat gestures produced by a native English speaker and by a Greek speaker talking English.Keywords: First language, gestures, memory, second language acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12808490 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms
Authors: Nebi Gedik
Abstract:
One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).
Keywords: Wave atom transform, statistical features, multi-resolution representation, mammogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8828489 Peer Assessment in the Context of Project-Based Learning Online
Authors: Y. Benjelloun Touimi, N. Faddouli, S. Bennani, M. Khalidi Idrissi
Abstract:
The pedagogy project has been proven as an active learning method, which is used to develop learner-s skills and knowledge.The use of technology in the learning world, has filed several gaps in the implementation of teaching methods, and online evaluation of learners. However, the project methodology presents challenges in the assessment of learners online. Indeed, interoperability between E-learning platforms (LMS) is one of the major challenges of project-based learning assessment. Firstly, we have reviewed the characteristics of online assessment in the context of project-based teaching. We addressed the constraints encountered during the peer evaluation process. Our approach is to propose a meta-model, which will describe a language dedicated to the conception of peer assessment scenario in project-based learning. Then we illustrate our proposal by an instantiation of the meta-model through a business process in a scenario of collaborative assessment on line.Keywords: Online project based learning, meta-model, peer assessment process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23728488 Standard Languages for Creating a Database to Display Financial Statements on a Web Application
Authors: Vladimir Simovic, Matija Varga, Predrag Oreski
Abstract:
XHTML and XBRL are the standard languages for creating a database for the purpose of displaying financial statements on web applications. Today, XBRL is one of the most popular languages for business reporting. A large number of countries in the world recognize the role of XBRL language for financial reporting and the benefits that the reporting format provides in the collection, analysis, preparation, publication and the exchange of data (information) which is the positive side of this language. Here we present all advantages and opportunities that a company may have by using the XBRL format for business reporting. Also, this paper presents XBRL and other languages that are used for creating the database, such XML, XHTML, etc. The role of the AJAX complex model and technology will be explained in detail, and during the exchange of financial data between the web client and web server. Here will be mentioned basic layers of the network for data exchange via the web.Keywords: XHTML, XBRL, XML, JavaScript, AJAX technology, data exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10708487 Error Analysis of English Inflection among Thai University Students
Authors: Suwaree Yordchim, Toby J. Gibbs
Abstract:
The linguistic competence of Thai university students majoring in Business English was examined in the context of knowledge of English language inflection, and also various linguistic elements. Errors analysis was applied to the results of the testing. Levels of errors in inflection, tense and linguistic elements were shown to be significantly high for all noun, verb and adjective inflections. Findings suggest that students do not gain linguistic competence in their use of English language inflection, because of interlanguage interference. Implications for curriculum reform and treatment of errors in the classroom are discussed.
Keywords: Interlanguage, error analysis, inflection, second language acquisition, Thai students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3629