Search results for: Parameter Inference
936 Experimental Testing of Statistical Size Effect in Civil Engineering Structures
Authors: Jana Kaděrová, Miroslav Vořechovský
Abstract:
The presented paper copes with an experimental evaluation of a model based on modified Weibull size effect theory. Classical statistical Weibull theory was modified by introducing a new parameter (correlation length lp) representing the spatial autocorrelation of a random mechanical properties of material. This size effect modification was observed on two different materials used in civil engineering: unreinforced (plain) concrete and multi-filament yarns made of alkaliresistant (AR) glass which are used for textile-reinforced concrete. The behavior under flexural, resp. tensile loading was investigated by laboratory experiments. A high number of specimens of different sizes was tested to obtain statistically significant data which were subsequently corrected and statistically processed. Due to a distortion of the measured displacements caused by the unstiff experiment device, only the maximal load values were statistically evaluated. Results of the experiments showed a decreasing strength with an increasing sample length. Size effect curves were obtained and the correlation length was fitted according to measured data. Results did not exclude the existence of the proposed new parameter lp.
Keywords: Statistical size effect, concrete, multi filaments yarns, experiment, autocorrelation length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984935 Asynchronous Parallel Distributed Genetic Algorithm with Elite Migration
Authors: Kazunori Kojima, Masaaki Ishigame, Goutam Chakraborty, Hiroshi Hatsuo, Shozo Makino
Abstract:
In most of the popular implementation of Parallel GAs the whole population is divided into a set of subpopulations, each subpopulation executes GA independently and some individuals are migrated at fixed intervals on a ring topology. In these studies, the migrations usually occur 'synchronously' among subpopulations. Therefore, CPUs are not used efficiently and the communication do not occur efficiently either. A few studies tried asynchronous migration but it is hard to implement and setting proper parameter values is difficult. The aim of our research is to develop a migration method which is easy to implement, which is easy to set parameter values, and which reduces communication traffic. In this paper, we propose a traffic reduction method for the Asynchronous Parallel Distributed GA by migration of elites only. This is a Server-Client model. Every client executes GA on a subpopulation and sends an elite information to the server. The server manages the elite information of each client and the migrations occur according to the evolution of sub-population in a client. This facilitates the reduction in communication traffic. To evaluate our proposed model, we apply it to many function optimization problems. We confirm that our proposed method performs as well as current methods, the communication traffic is less, and setting of the parameters are much easier.Keywords: Parallel Distributed Genetic Algorithm (PDGA), asynchronousPDGA, Server-Client configuration, Elite Migration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372934 Analysis of Lightning Surge Condition Effect on Surge Arrester in Electrical Power System by using ATP/EMTP Program
Authors: N. Mungkung, S. Wongcharoen., Tanes Tanitteerapan, C. Saejao, D. Arunyasot
Abstract:
The condition of lightning surge causes the traveling waves and the temporary increase in voltage in the transmission line system. Lightning is the most harmful for destroying the transmission line and setting devices so it is necessary to study and analyze the temporary increase in voltage for designing and setting the surge arrester. This analysis describes the figure of the lightning wave in transmission line with 115 kV voltage level in Thailand by using ATP/EMTP program to create the model of the transmission line and lightning surge. Because of the limit of this program, it must be calculated for the geometry of the transmission line and surge parameter and calculation in the manual book for the closest value of the parameter. On the other hand, for the effects on surge protector when the lightning comes, the surge arrester model must be right and standardized as metropolitan electrical authority's standard. The candidate compared the real information to the result from calculation, also. The results of the analysis show that the temporary increase in voltage value will be rise to 326.59 kV at the line which is done by lightning when the surge arrester is not set in the system. On the other hand, the temporary increase in voltage value will be 182.83 kV at the line which is done by lightning when the surge arrester is set in the system and the period of the traveling wave is reduced, also. The distance for setting the surge arrester must be as near to the transformer as possible. Moreover, it is necessary to know the right distance for setting the surge arrester and the size of the surge arrester for preventing the temporary increase in voltage, effectively.
Keywords: Lightning surge, surge arrester, electrical power system, ATP/EMTP program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765933 Optimization of Wire EDM Parameters for Fabrication of Micro Channels
Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg
Abstract:
Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the micro channels and to calculate the surface finish and material removal rate of micro channels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.Keywords: Micro Channels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), Surface Finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699932 RANFIS : Rough Adaptive Neuro-Fuzzy Inference System
Authors: Sandeep Chandana, Rene V. Mayorga
Abstract:
The paper presents a new hybridization methodology involving Neural, Fuzzy and Rough Computing. A Rough Sets based approximation technique has been proposed based on a certain Neuro – Fuzzy architecture. A New Rough Neuron composition consisting of a combination of a Lower Bound neuron and a Boundary neuron has also been described. The conventional convergence of error in back propagation has been given away for a new framework based on 'Output Excitation Factor' and an inverse input transfer function. The paper also presents a brief comparison of performances, of the existing Rough Neural Networks and ANFIS architecture against the proposed methodology. It can be observed that the rough approximation based neuro-fuzzy architecture is superior to its counterparts.
Keywords: Boundary neuron, neuro-fuzzy, output excitation factor, RANFIS, rough approximation, rough neural computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704931 Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling
Authors: A. Puras Trueba, J. R. Llata García
Abstract:
A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.Keywords: Fuzzy Gain-Scheduling, Gimbal, Line-Of-SightStabilization, LQR, Optimal Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328930 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.
Keywords: Injection molding, shrinkage, six sigma, Taguchi parameter design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381929 The Use of Artificial Neural Network in Option Pricing: The Case of S and P 100 Index Options
Authors: Zeynep İltüzer Samur, Gül Tekin Temur
Abstract:
Due to the increasing and varying risks that economic units face with, derivative instruments gain substantial importance, and trading volumes of derivatives have reached very significant level. Parallel with these high trading volumes, researchers have developed many different models. Some are parametric, some are nonparametric. In this study, the aim is to analyse the success of artificial neural network in pricing of options with S&P 100 index options data. Generally, the previous studies cover the data of European type call options. This study includes not only European call option but also American call and put options and European put options. Three data sets are used to perform three different ANN models. One only includes data that are directly observed from the economic environment, i.e. strike price, spot price, interest rate, maturity, type of the contract. The others include an extra input that is not an observable data but a parameter, i.e. volatility. With these detail data, the performance of ANN in put/call dimension, American/European dimension, moneyness dimension is analyzed and whether the contribution of the volatility in neural network analysis make improvement in prediction performance or not is examined. The most striking results revealed by the study is that ANN shows better performance when pricing call options compared to put options; and the use of volatility parameter as an input does not improve the performance.
Keywords: Option Pricing, Neural Network, S&P 100 Index, American/European options
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084928 Modeling and Simulation of Axial Fan Using CFD
Authors: Hemant Kumawat
Abstract:
Axial flow fans, while incapable of developing high pressures, they are well suitable for handling large volumes of air at relatively low pressures. In general, they are low in cost and possess good efficiency, and can have blades of airfoil shape. Axial flow fans show good efficiencies, and can operate at high static pressures if such operation is necessary. Our objective is to model and analyze the flow through AXIAL FANS using CFD Software and draw inference from the obtained results, so as to get maximum efficiency. The performance of an axial fan was simulated using CFD and the effect of variation of different parameters such as the blade number, noise level, velocity, temperature and pressure distribution on the blade surface was studied. This paper aims to present a final 3D CAD model of axial flow fan. Adapting this model to the available components in the market, the first optimization was done. After this step, CFX flow solver is used to do the necessary numerical analyses on the aerodynamic performance of this model. This analysis results in a final optimization of the proposed 3D model which is presented in this article.
Keywords: ANSYS CFX, Axial Fan, Computational Fluid Dynamics (CFD), Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11202927 Service-Oriented Architecture for Object- Centric Information Fusion
Authors: Jeffrey A. Dunne, Kevin Ligozio
Abstract:
In many applications there is a broad variety of information relevant to a focal “object" of interest, and the fusion of such heterogeneous data types is desirable for classification and categorization. While these various data types can sometimes be treated as orthogonal (such as the hull number, superstructure color, and speed of an oil tanker), there are instances where the inference and the correlation between quantities can provide improved fusion capabilities (such as the height, weight, and gender of a person). A service-oriented architecture has been designed and prototyped to support the fusion of information for such “object-centric" situations. It is modular, scalable, and flexible, and designed to support new data sources, fusion algorithms, and computational resources without affecting existing services. The architecture is designed to simplify the incorporation of legacy systems, support exact and probabilistic entity disambiguation, recognize and utilize multiple types of uncertainties, and minimize network bandwidth requirements.Keywords: Data fusion, distributed computing, service-oriented architecture, SOA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469926 Flow Discharge Determination in Straight Compound Channels Using ANNs
Authors: A. Zahiri, A. A. Dehghani
Abstract:
Although many researchers have studied the flow hydraulics in compound channels, there are still many complicated problems in determination of their flow rating curves. Many different methods have been presented for these channels but extending them for all types of compound channels with different geometrical and hydraulic conditions is certainly difficult. In this study, by aid of nearly 400 laboratory and field data sets of geometry and flow rating curves from 30 different straight compound sections and using artificial neural networks (ANNs), flow discharge in compound channels was estimated. 13 dimensionless input variables including relative depth, relative roughness, relative width, aspect ratio, bed slope, main channel side slopes, flood plains side slopes and berm inclination and one output variable (flow discharge), have been used in ANNs. Comparison of ANNs model and traditional method (divided channel method-DCM) shows high accuracy of ANNs model results. The results of Sensitivity analysis showed that the relative depth with 47.6 percent contribution, is the most effective input parameter for flow discharge prediction. Relative width and relative roughness have 19.3 and 12.2 percent of importance, respectively. On the other hand, shape parameter, main channel and flood plains side slopes with 2.1, 3.8 and 3.8 percent of contribution, have the least importance.Keywords: ANN model, compound channels, divided channel method (DCM), flow rating curve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558925 New Approach for Load Modeling
Authors: S. Chokri
Abstract:
Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.
Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198924 A Program for Solving problems in Inorganic Chemistry based on Knowledge Base
Authors: Nhon Van Do, Nam Hoai Le, Vien Chan Luong
Abstract:
The Model for Knowledge Base of Computational Objects (KBCO model) has been successfully applied to represent the knowledge of human like Plane Geometry, Physical, Calculus. However, the original model cannot easyly apply in inorganic chemistry field because of the knowledge specific problems. So, the aim of this article is to introduce how we extend the Computional Object (Com-Object) in KBCO model, kinds of fact, problems model, and inference algorithms to develop a program for solving problems in inorganic chemistry. Our purpose is to develop the application that can help students in their study inorganic chemistry at schools. This application was built successful by using Maple, C# and WPF technology. It can solve automatically problems and give human readable solution agree with those writting by students and teachers.Keywords: artificial intelligence, automated problem solving, knowledge base system, knowledge representation, reasoning strategy, education software/educational applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477923 The Analysis of Defects Prediction in Injection Molding
Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian
Abstract:
This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.Keywords: Injection molding, plastic defects, short shot, Taguchi method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532922 Surface Modification of Titanium Alloy with Laser Treatment
Authors: Nassier A. Nassir, Robert Birch, D. Rico Sierra, S. P. Edwardson, G. Dearden, Zhongwei Guan
Abstract:
The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film.
Keywords: Bonding strength, laser surface treatment, PEKK, titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859921 Intelligent Heart Disease Prediction System Using CANFIS and Genetic Algorithm
Authors: Latha Parthiban, R. Subramanian
Abstract:
Heart disease (HD) is a major cause of morbidity and mortality in the modern society. Medical diagnosis is an important but complicated task that should be performed accurately and efficiently and its automation would be very useful. All doctors are unfortunately not equally skilled in every sub specialty and they are in many places a scarce resource. A system for automated medical diagnosis would enhance medical care and reduce costs. In this paper, a new approach based on coactive neuro-fuzzy inference system (CANFIS) was presented for prediction of heart disease. The proposed CANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach which is then integrated with genetic algorithm to diagnose the presence of the disease. The performances of the CANFIS model were evaluated in terms of training performances and classification accuracies and the results showed that the proposed CANFIS model has great potential in predicting the heart disease.
Keywords: CANFIS, genetic algorithms, heart disease, membership function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3993920 Software Maintenance Severity Prediction with Soft Computing Approach
Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581919 Quality Parameters of Offset Printing Wastewater
Authors: Kiurski S. Jelena, Kecić S. Vesna, Aksentijević M. Snežana
Abstract:
Samples of tap and wastewater were collected in three offset printing facilities in Novi Sad, Serbia. Ten physicochemical parameters were analyzed within all collected samples: pH, conductivity, m - alkalinity, p - alkalinity, acidity, carbonate concentration, hydrogen carbonate concentration, active oxygen content, chloride concentration and total alkali content. All measurements were conducted using the standard analytical and instrumental methods. Comparing the obtained results for tap water and wastewater, a clear quality difference was noticeable, since all physicochemical parameters were significantly higher within wastewater samples. The study also involves the application of simple linear regression analysis on the obtained dataset. By using software package ORIGIN 5 the pH value was mutually correlated with other physicochemical parameters. Based on the obtained values of Pearson coefficient of determination a strong positive correlation between chloride concentration and pH (r = -0.943), as well as between acidity and pH (r = -0.855) was determined. In addition, statistically significant difference was obtained only between acidity and chloride concentration with pH values, since the values of parameter F (247.634 and 182.536) were higher than Fcritical (5.59). In this way, results of statistical analysis highlighted the most influential parameter of water contamination in offset printing, in the form of acidity and chloride concentration. The results showed that variable dependence could be represented by the general regression model: y = a0 + a1x+ k, which further resulted with matching graphic regressions.
Keywords: Pollution, printing industry, simple linear regression analysis, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674918 The Effects of Soil Parameters on Efficiency of Essential Oil from Zingiber zerumbet (L.) Smith in Thailand
Authors: Worakrit Worananthakij, Kamonchanok Doungtadum, Nattagan Mingkwan, Supatsorn Chupong
Abstract:
Natural products from herb have been used in different aspects of life as a result of their various biological activities. Generally, plant growth and production of secondary compounds largely depend on environmental conditions. To better understand this correlation, study on biological activity and soil parameter is necessary. This research aims to study the soil parameters which affect the efficiency of the antioxidant activity of essential oils extracted from the Zingiber zerumbet in three areas of Thailand, including Min Buri district, Bangkok province; Muang district, Chiang Mai province and Kaeng Sanam Nang district, Nakhon Ratchasima province. The soil samples in each area were collected and analyzed in the laboratory. The essential oil of Z. zerumbet in each province was extracted and tested for antioxidant activity by hydrodistillation method and DPPH (2,2-diphenyl-1-picrylhydrazyl radical) assay, respectively. The results showed that, the soil parameters such as pH, nitrogen, potassium and phosphorus elements and exchange of cations of soil specimen from Nakhon Ratchasima province were the highest (P<0.05) (6.10 ±0.03, 0.15 ± 0.04 percent of total nitrogen, 16.67 ± 0.46 mg/L, 3.35 ± 0.65 mg/kg and 12.87 ± 0.11 cmol/kg, respectively). In addition, IC50 (Inhibition Concentrtion of antioxidant at 50%) of Z. zerumbet essential oil collected from Nakhon Ratchasima showed the highest value (P<0.05) (1,400 µg/mL). In conclusion, the soil parameters are once important factor for the efficiency of essential oils extract from Z. zerumbet.Keywords: Antioxidant, essential oil, herb, soil parameter, Zingiber zerumbet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319917 Kernel Matching versus Inverse Probability Weighting: A Comparative Study
Authors: Andy Handouyahia, Tony Haddad, Frank Eaton
Abstract:
Recent quasi-experimental evaluation of the Canadian Active Labour Market Policies (ALMP) by Human Resources and Skills Development Canada (HRSDC) has provided an opportunity to examine alternative methods to estimating the incremental effects of Employment Benefits and Support Measures (EBSMs) on program participants. The focus of this paper is to assess the efficiency and robustness of inverse probability weighting (IPW) relative to kernel matching (KM) in the estimation of program effects. To accomplish this objective, the authors compare pairs of 1,080 estimates, along with their associated standard errors, to assess which type of estimate is generally more efficient and robust. In the interest of practicality, the authorsalso document the computationaltime it took to produce the IPW and KM estimates, respectively.
Keywords: Treatment effect, causal inference, observational studies, Propensity score based matching, Kernel Matching, Inverse Probability Weighting, Estimation methods for incremental effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6926916 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller
Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.
Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163915 Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet
Authors: A. T. Eswara
Abstract:
This paper analyses the unsteady, two-dimensional stagnation point flow of an incompressible viscous fluid over a flat sheet when the flow is started impulsively from rest and at the same time, the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. The partial differential equations governing the laminar boundary layer forced convection flow are non-dimensionalised using semi-similar transformations and then solved numerically using an implicit finitedifference scheme known as the Keller-box method. Results pertaining to the flow and heat transfer characteristics are computed for all dimensionless time, uniformly valid in the whole spatial region without any numerical difficulties. Analytical solutions are also obtained for both small and large times, respectively representing the initial unsteady and final steady state flow and heat transfer. Numerical results indicate that the velocity ratio parameter is found to have a significant effect on skin friction and heat transfer rate at the surface. Furthermore, it is exposed that there is a smooth transition from the initial unsteady state flow (small time solution) to the final steady state (large time solution).Keywords: Forced flow, Keller-box method, Stagnation point, Stretching flat sheet, Unsteady laminar boundary layer, Velocity ratio parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695914 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.
Keywords: Settlement, subway line, FLAC3D, ANFIS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096913 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium
Authors: Nidhal Jamia, Sami El-Borgi
Abstract:
In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.
Keywords: Functionally graded piezoelectric material, mixed-mode crack, non-local theory, Schmidt method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998912 Intelligent Automatic Generation Control of Two Area Interconnected Power System using Hybrid Neuro Fuzzy Controller
Abstract:
This paper presents the development and application of an adaptive neuro fuzzy inference system (ANFIS) based intelligent hybrid neuro fuzzy controller for automatic generation control (AGC) of two-area interconnected thermal power system with reheat non linearity. The dynamic response of the system has been studied for 1% step load perturbation in area-1. The performance of the proposed neuro fuzzy controller is compared against conventional proportional-integral (PI) controller, state feedback linear quadratic regulator (LQR) controller and fuzzy gain scheduled proportionalintegral (FGSPI) controller. Comparative analysis demonstrates that the proposed intelligent neuro fuzzy controller is the most effective of all in improving the transients of frequency and tie-line power deviations against small step load disturbances. Simulations have been performed using Matlab®.
Keywords: Automatic generation control, ANFIS, LQR, Hybrid neuro fuzzy controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683911 Supervisory Fuzzy Learning Control for Underwater Target Tracking
Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson
Abstract:
This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898910 Design of Power System Stabilizer with Neuro-Fuzzy UPFC Controller
Authors: U. Ramesh Babu, V. Vijay Kumar Reddy, S. Tara Kalyani
Abstract:
The growth in the demand of electrical energy is leading to load on the Power system which increases the occurrence of frequent oscillations in the system. The reason for the oscillations is due to the lack of damping torque which is required to dominate the disturbances of Power system. By using FACT devices, such as Unified Power Flow Controller (UPFC) can control power flow, reduce sub-synchronous resonances and increase transient stability. Hence, UPFC is used to damp the oscillations occurred in Power system. This research focuses on adapting the neuro fuzzy controller for the UPFC design by connecting the infinite bus (SMIB - Single machine Infinite Bus) to a linearized model of synchronous machine (Heffron-Phillips) in the power system. This model gains the capability to improve the transient stability and to damp the oscillations of the system.Keywords: Power System, UPFC, (ANFIS) Adaptive Neuro Fuzzy Inference System, transient, Low frequency oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997909 Performance Analysis of Fuzzy Logic Based Unified Power Flow Controller
Authors: Lütfü Saribulut, Mehmet Tümay, İlyas Eker
Abstract:
FACTS devices are used to control the power flow, to increase the transmission capacity and to optimize the stability of the power system. One of the most widely used FACTS devices is Unified Power Flow Controller (UPFC). The controller used in the control mechanism has a significantly effects on controlling of the power flow and enhancing the system stability of UPFC. According to this, the capability of UPFC is observed by using different control mechanisms based on P, PI, PID and fuzzy logic controllers (FLC) in this study. FLC was developed by taking consideration of Takagi- Sugeno inference system in the decision process and Sugeno-s weighted average method in the defuzzification process. Case studies with different operating conditions are applied to prove the ability of UPFC on controlling the power flow and the effectiveness of controllers on the performance of UPFC. PSCAD/EMTDC program is used to create the FLC and to simulate UPFC model.Keywords: FACTS, Fuzzy Logic Controller, UPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2882908 Phylogenetic Inference from 18S rRNA Gene Sequences of Horseshoe Crabs, Tachypleus gigas between Tanjung Dawai, Kedah and Cherating, Pahang, Peninsular Malaysia
Authors: Ismail, N., Sarijan, S
Abstract:
The phylogenetic analysis using the most conservative portions of 18S rRNA gene revealed the phylogenetic relationship among the two populations where DNA divergence showed that the nucleotides diversity value were -0.00838 for the Tanjung Dawai, Kedah and -0.00708 for the Cherating, Pahang populations respectively. The net nucleotide divergence among populations (Da) was -0.0073 indicating a low polymorphism among the populations studied. Total number of mutations in the Tanjung Dawai, Kedah samples was higher than Cherating, Pahang samples, which are 73 and 59 respectively while shared mutations across the populations were 8, and reveal the evolutionary in the genome of Malaysian T. gigas. The tree topology of both populations inferred using Neigbour-joining method by comparing 1791 bp of partial 18S rRNA sequence revealed that T. gigas haplotypes were clustered into seven clades, suggesting that they are genetically diverse among populations which derived from a common ancestor.Keywords: Horseshoe crabs, Tachypleus gigas, 18S rRNA genesequences, phylogenetic analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843907 A Comparative Study of Rigid and Modified Simplex Methods for Optimal Parameter Settings of ACO for Noisy Non-Linear Surfaces
Authors: Seksan Chunothaisawat, Pongchanun Luangpaiboon
Abstract:
There are two common types of operational research techniques, optimisation and metaheuristic methods. The latter may be defined as a sequential process that intelligently performs the exploration and exploitation adopted by natural intelligence and strong inspiration to form several iterative searches. An aim is to effectively determine near optimal solutions in a solution space. In this work, a type of metaheuristics called Ant Colonies Optimisation, ACO, inspired by a foraging behaviour of ants was adapted to find optimal solutions of eight non-linear continuous mathematical models. Under a consideration of a solution space in a specified region on each model, sub-solutions may contain global or multiple local optimum. Moreover, the algorithm has several common parameters; number of ants, moves, and iterations, which act as the algorithm-s driver. A series of computational experiments for initialising parameters were conducted through methods of Rigid Simplex, RS, and Modified Simplex, MSM. Experimental results were analysed in terms of the best so far solutions, mean and standard deviation. Finally, they stated a recommendation of proper level settings of ACO parameters for all eight functions. These parameter settings can be applied as a guideline for future uses of ACO. This is to promote an ease of use of ACO in real industrial processes. It was found that the results obtained from MSM were pretty similar to those gained from RS. However, if these results with noise standard deviations of 1 and 3 are compared, MSM will reach optimal solutions more efficiently than RS, in terms of speed of convergence.
Keywords: Ant colony optimisation, metaheuristics, modified simplex, non-linear, rigid simplex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624