
Abstract—In many applications there is a broad variety of 
information relevant to a focal “object” of interest, and the fusion of 
such heterogeneous data types is desirable for classification and 
categorization.  While these various data types can sometimes be 
treated as orthogonal (such as the hull number, superstructure color, 
and speed of an oil tanker), there are instances where the inference 
and the correlation between quantities can provide improved fusion 
capabilities (such as the height, weight, and gender of a person).  A 
service-oriented architecture has been designed and prototyped to 
support the fusion of information for such “object-centric” situations.  
It is modular, scalable, and flexible, and designed to support new 
data sources, fusion algorithms, and computational resources without 
affecting existing services.  The architecture is designed to simplify 
the incorporation of legacy systems, support exact and probabilistic 
entity disambiguation, recognize and utilize multiple types of 
uncertainties, and minimize network bandwidth requirements. 

Keywords—Data fusion, distributed computing, service-oriented 
architecture, SOA. 

I. INTRODUCTION

T can be argued that the value of a service-oriented 
architecture (SOA) is best illustrated by its applicability to a 

wide range of business applications.  Such breadth is easily 
seen by simple Internet searches for exemplar SOAs, and 
outlined by the overviews and case studies found in standard 
reference books such as those by Erl [1], [2].  While many 
people often associate SOAs with web services, SOA 
encompasses a broader set of capabilities.  We will not 
provide an overview of the requirements or capabilities of 
SOAs in this paper, as they are readily available elsewhere (a 
simple overview, for example can be found online [3]).  
Rather, this paper describes an SOA approach for facilitating 
object-centric data fusion, in which a single “thing” – such  as 
a particular cargo ship, a computer system, an individual, or 
even a category of persons – is the focal nexus of the 
information of interest. 

Data fusion applications can be described as falling into one 
of two categories.  Homogeneous data fusion applications take 
similar types of information and combine them in a way that 
best associates and reconciles the information.  Basic target 
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tracking1 is an example.  Multiple position reports of similar 
or identical nature are evaluated, and establish, or are assigned 
to, tracks based upon fusion algorithms.  Heterogeneous data 
fusion, on the other hand, stitches together multiple types of 
information in order to formulate a coherent picture.  Tools 
for establishing situational awareness are examples of these.  
Position/track reports, object characteristics, behavior 
prediction, etc. are all brought together to produce a fusion 
product.  A wealth of examples can be found in fields such as 
law enforcement, maritime domain awareness/situational 
awareness, etc. 

Naturally, most real systems do not fall cleanly into one 
category or the other.  For example, consider the case of 
syndromic surveillance in which one is searching for early 
indicators of epidemics.  The combination of similar data from 
multiple hospitals to establish average admittance rates, or 
perhaps multiple pharmacies to determine net over-the-
counter drug sales, represents homogeneous fusion, whereas 
the combination of the two sources is a heterogeneous data 
fusion task. Examples of such fusion activities and associated 
requirements/challenges can also be found in the literature [6]-
[8]. 

To best illustrate the utility of this architecture, consider an 
application in which various sensor measurements and 
historical database archives provide estimates of one or more 
attributes of an object.  As an example, consider the desire to 
specifically identify and classify a military aircraft that is 
expected to soon launch, where the following information 
sources are available: a) a low-resolution, black-and-white 
reconnaissance photograph in which the aircraft is present; b) 
an eye-witness report of a certain limited set of aircraft 
markings; and c) databases identifying local airfield 
capabilities (perhaps fueling equipment, runway lengths, etc.).  
While the black-and-white photograph might provide 
reasonable estimates on fuselage length or wingspan, these are 
insufficient to identify a particular aircraft.  Similarly, the 
limited aircraft markings might aid in identifying the 
nationality of the asset, but themselves do not indicate the 
exact type of plane.  Lastly, knowing the type of fuel the 

1 The term “basic” here specifies target tracking that focuses solely upon 
the process of best estimating tracks from noisy data, as opposed to systems 
that seek to combine such tracks with other types of information.  “Basic” 
does not at all suggest simplicity, however.  The development of effective 
trackers is, even after decades of work, still an ongoing research effort.  The 
interested reader is referred to the abundance of research papers, as well as 
standard references such as those by Bar-Shalom [4], [5]. 
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aircraft uses, or being able to establish limitations on the 
required runway length, themselves do not permit unique 
identification.  However, whereas each individual datum is 
itself insufficient, the fusion of these data likely would enable 
more exacting classification. 

 This type of data fusion is of interest in many domains, of 
which military capabilities as described above are just one 
example.  Another, which the prototype below is more closely 
designed towards, is the fusion of human identifiers (in this 
case name and social security number) to support automated 
processes for the disambiguation of individual databases. 

The description in this paper covers the exchange and 
management system to support this type of object-centric 
information fusion, i.e. the supporting architecture.  It does 
not address any details related to specific applications, such as 
specifics of particular data archives, any implemented 
fusion/correlation algorithms, or other case-specific business 
process chain details.  The paper is divided into several 
sections.  Section II summarizes the design requirements and 
expectations that motivated this information architecture.  
Section III provides an overview of the architecture in terms 
of its basic elements and how they interact.  Section IV 
describes a prototyped Microsoft .NET implementation with 
some basic examples of how the architecture was realized in 
terms of specific interfaces.  Finally, a summary is provided in 
Section V. 

II. DESIGN REQUIREMENTS

As mentioned in Section I, the SOA presented in this paper 
was designed in support of a project in which disparate pieces 
of raw data are assessed in order to reduce the ambiguity 
associated with a particular object under consideration.  Such 
data might come from a database or a measurement, but in 
either case are likely to contain multiple sub-pieces of data 
related to individual object attributes.  In the previous 
examples, the photograph of an airplane (the measurement) 
gave estimates for two object attributes, wingspan and 
fuselage length.  Similarly, a record from a database of 
employee information might contain object attributes such as 
name, age, duration of employment, salary, etc.  Within this 
architecture, each attribute is treated as the atomic unit for 
consideration.  As described later in this paper, combinations 
of such atoms (molecules, if you will) can also be stored and 
manipulated, but here we will focus on atomic attributes for 
pedagogical reasons.  

These estimates of attributes can be used in a variety of 
ways.  As a starting point, one might simply compare values 
with historical data in one or more archives to identify what 
known objects have matching characteristics.  A more in-
depth analysis might rank, with some appropriate weighting, a 
set of known objects based upon how many characteristics 
matched, and how closely.  Still more sophisticated systems 
might use knowledge about the sensors and environmental 
conditions in such matches.  For example, suppose that a high 
resolution photograph in good illumination showed a yellow 

sinusoidal pattern marking on the side of an aircraft, and a low 
resolution image in poor lighting displays a brown streak.  
Without knowledge of the sensor capabilities and conditions 
of the measurements, these features might be considered 
incompatible, whereas a more informed algorithm could 
recognize the possibility that they represent the same marking. 

Very complex systems might seek to use inference to 
improve performance.  Suppose the presence of a propeller on 
a plane in the photograph can be used to place limits on the 
maximum speed of the aircraft.  Representation of such 
information within the system adds value by permitting the 
exclusion of certain objects from consideration (in this case, 
excluding all airplanes known to be able to travel faster than 
the speed of sound). 

The overall goal of this architecture is to support a broad 
range of analyses based on the idea that there is a single object 
to which observable attributes apply.  Such objects might be 
concrete (e.g. a specific physical object) or abstract (e.g. a 
conceptual object or meaningful categorization of physical 
objects), but in either case attribute estimates (direct or 
inferred) must be addressed with the flexibility described 
above.  These analyses could aim to produce a variety of 
outputs, as illustrated by the following questions (from most 
to least direct): 

1. What/who is this?  (comparison against a potentially 
large set of enrolled objects to identify the best match) 

2. Is this ____? (comparison against a single object to 
assess similarity) 

3. Has this object been observed before/How likely is it 
that this object has not been observed before? 
(comparison against prior measurement sets) 

4. Is this object atypical? (assessment of characteristics 
against a norm standard) 

5. What other characteristics should be measured to 
improve classification? (evaluation of knowledge 
dimensionality) 

In addition to supporting the raw data and inference 
capabilities described above, as well as the ability to answer 
these kinds of queries, several other requirements were 
identified.  These are briefly summarized in the following 
subsections.  

A. Complex Data 
Most legacy database archives contain relatively simple 

data – strings, numbers, dates, etc.  Newer systems are more 
likely to include uncertainties or other qualifying metadata, 
but they still represent comparatively straightforward 
information compared with the actual measurements from 
which the data were distilled.  Even many transducers collect 
raw data that can be represented in relatively straightforward 
formats (binary or analog data that can be discretized).  
However, the input to data fusion algorithms often require 
more detail, and can come from sensor systems that, rather 
than distilling measurements down to simple numbers, process 
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raw data into more complex structures.  Consequently, this 
information architecture must be designed to handle data that 
has a variety of complexities.  This is especially important for 
probabilistic fusion engines.  In order to support whatever 
fusion algorithms are appropriate, the architecture was 
designed to address multiple complexities in the data: 

Fuzziness:  Beyond discrete numbers, strings and 
Booleans, the architecture must be able to handle 
approximations, inequalities, etc. 
Structure and higher dimensionality:  The system must be 
able to handle intervals and matrices in order to support 
compound sets of values such as discontinuous ranges, 
spectra, multiple string values, etc. 
Uncertainty:  The system must recognize and facilitate the 
handling of uncertainty associated with the data.  While 
simple uncertainties might be addressed under the 
previous bullet (i.e. using intervals), this is not uniformly 
the case for all types of uncertainties.  Two important 
aspects that require specific handling are: 
o Likelihood – Likelihood refers to the chance that a 

measurement of an attribute of an object will match a 
prior measurement.  In some cases the likelihood is 
high.  For example, each time one measures the length 
of an aircraft, it is likely that it can be meaningfully 
compared with prior measurements.  The likelihood is 
not as great for an attribute such as the weight of the 
plane (which would change slightly depending on 
what was in it), and substantially less so for more 
variable quantities like the speed of the aircraft, which 
could change drastically depending upon the 
conditions of the observation. 

o Applicability – Applicability refers to the degree to 
which an attribute applies to an object.  To continue 
the aircraft example with a somewhat contrived 
example, suppose one side of a plane was painted blue 
and the other side red.  The assessment of whether the 
skin color was blue or red depends on circumstance, 
so one can assess the applicability of the characteristic 
as being less than unity (for example, “the skin color 
is red” is only 50% applicable). 

To further elucidate upon the concept of applicability, a 
more meaningful example is the following.  Suppose a 
particular (previously unseen) person is known to have 
descended from two ethic backgrounds, A and B.  Further, 
suppose it has been determined that people of ethnicity A have 
some likelihood of having blue eyes.  Now assume that a 
measurement (perhaps a photograph) shows the existence of a 
person having blue eyes.  If we wished to use eye color as a 
factor in determining the probability that this was the person 
of interest, it is necessary to understand not only the 
likelihood of a person of ethnicity A to have blue eyes, but the 
degree of applicability of the assignment of that ethnicity to 
the person.  Even if the likelihood of blue eyes for ethnicity A 
is 100%, the fact that that ethnicity is only somewhat 

applicable to the specific person plays an important role in 
making an accurate assessment of the situation. 

Lastly, the system must be able to handle quantities not 
only in terms of specified values, but also as functional 
relationships to other values.  For example, suppose a naval 
vessel of a particular class can be identified by its length, but 
that different ships of that class each carried different 
armaments depending on when it was built.  A functional 
relationship provides the necessary “link” to connect 
otherwise disparate pieces of information (e.g. knowing the 
ship class and that it has already fired more than N surface-to-
air missiles might now be utilized to uniquely classify the 
vessel). 

B. Legacy Data 
For most applications a great deal of data already exists in 

legacy systems.  Consequently, the architecture should be able 
to interact with and utilize those systems’ resources and 
capabilities.  Those capabilities can vary significantly, from 
systems with substantial computational resources that can 
support high query and data transfer rates, to older systems 
that could take minutes or longer to respond to a single 
request.  This might even include non-automated legacy 
systems, such as processes requiring human action/ 
intervention.  Perhaps more so than any other, it was this 
requirement for asynchronous operation that makes an SOA 
ideal for the application. 

The requirement to interact with these types of systems is 
further constrained in that it is assumed that the legacy 
systems will not necessarily change as a consequence of the 
data consumer’s requirements.  Therefore, an intermediate 
capability must exist that “understands” the nature of the 
information contained within the legacy system, and can 
mediate the SOA’s requirements with the capabilities of the 
data source.  Such intermediate systems are also essential to 
facilitate the disambiguation problem arising from the use of 
multiple independent data sources. 

C. Downsizing and Extensibility 
As with SOAs in general, it is desirable that the system as a 

whole be stable against problems with individual services.  
For example, in a system that seeks to fuse person-related 
data, one should not be restricted from using height and 
weight data simply because the service that addresses blood 
type is down for repair.  In other words, since there is no 
guarantee that all resources will be available all of the time – 
whether it is due to service-specific issues, network 
accessibility, bandwidth restrictions, policy/governance issues, 
etc. – the system must continue to operate when individual 
capabilities are removed.  Similarly, different use cases will 
dictate how many computation resources can be applied to a 
situation.  The addition or removal of such resources should 
only impact the efficiency of the system and the scope of the 
processing that it can perform, not whether the architecture 
will function. 

 Of at least equal, but likely greater, importance is that the 
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architecture must be scalable, easily updated, and extensible.  
This need is generally ubiquitous across all data fusion 
applications, and is another reason why an SOA approach is 
desirable, because it provides the ability to seamlessly a) add 
new data sources as they become available, b) incorporate 
new fusion algorithms and update existing ones, and c) 
increase available computation resources.  Moreover, such 
changes must not require subsequent modification to other 
portions of the system in order to utilize the new resources, 
and the addition of improvements should not necessitate 
shutting the system down. 

III. ARCHITECTURE

The following subsections describe the architecture in terms 
of its essential elements (Section III.A) and their interactions 
(Section III.B). 

A. Architecture Elements 
 At the core of the architecture is a central database that 
serves to establish a unique record for each object.  For 
illustrative purposes, throughout this section let us suppose 
that the system is being used to fuse data regarding military 
assets.  In this case, any particular asset has one or more rows 
in this Object Index (OI).  Additionally, the idea of an object, 
such as “tanks,” can also have a record (making this an index 
of both concrete and abstract objects), so that one can assign 
characteristics to the idea of a tank rather than to an 
individual, specific tank. 
 If all information was conclusive, an object would have 
only a single row in the OI.  In the absence of such conclusive 
proof, however, it is necessary to retain the possibility that 
there are multiple distinct objects.  At the same time, though, 
one still wants to capture the possibility that two objects might 
be one and the same.  The service that fills this need is the 
Object Equivalency Index (OEI).  This service tracks the 
degree of belief that two records in the OI represent the same 
thing. 
 The value of the OEI is illustrated in the following 
example.  Consider a first observation of a tank reporting that 
it has a 75 mm main gun.  In a later observation of a tank – 
which we think might be the same one, but we are not 
completely sure – it is seen that the tank has twelve wheels 
within its tread.  A third observation now reports seeing a 
World War II Comet Cruiser tank (which has 12 wheels and a 
75 mm gun), and we want to know if this “third” tank has 
been seen before.  Without recording the possibility that the 
first two observations were potentially both of the same tank, 
we would only be able to return two matches with 
comparatively low measures of confidence (each only 
matched one piece of information).  However, through the 
OEI, we can recognize and utilize the possibility that those 
two records actually represent the same object, enabling a 
fusion algorithm to potentially report a single, higher 
confidence conclusion. 
 Although this was not implemented in our prototype, this 
same OEI can also retain hierarchical information.  For 
example, if one record in the OI represents the category 
“Comet Cruiser Tank,” and another the observation of a 

particular tank that has some probability of belonging to that 
category, the OEI could capture this information in order to 
provide the functionality of inherited properties. 
 Two other indices within the architecture are the Sensor 
Index (SI) and the Environmental Index (EI).  The former 
maintains information about the sensors used to collect data.  
This is important because the details of measurement 
collection can be crucial in evaluating the data.  As an 
example, consider that different microphones can have 
substantially different frequency response curves.  Knowing 
what microphone was used to collect a particular audio 
recording can be essential for knowing how to meaningfully 
compare that measurement against measurements made with 
other microphones (or if such a comparison can meaningfully 
be made at all!). 
 Similarly, an EI is required for maintaining information 
regarding the environmental conditions associated with 
particular measurements.  In certain applications it might be 
necessary to have multiple EIs, or even multiple SIs, 
depending on the nature of the system’s focus.  In other cases, 
perhaps where there are no measurements per se (such as in 
the disambiguation of data from multiple databases), it is 
possible that neither index would be required. 
 The basis of system operation is that there exists an 
Attribute Service (AS) for each attribute relevant to the 
objects.  For systems addressing fusion for people, one might 
have a Name AS, a Date of Birth AS, a Social Security 
Number AS, a Hair Color AS, and so forth.  Each of these 
attributes represent the information atoms described earlier.  
In cases where attributes are appropriately linked together, an 
AS might exist for that molecule of information (e.g. a 
Height/Weight AS), but this will be discussed later. 
 In general, each attribute has at least one corresponding AS.  
Similarly, each interfaced legacy data system will have at least 
one association AS.  It is possible to have multiple attribute 
services for a particular attribute (for example, if there are 
many services offering to manipulate that kind of information) 
or legacy system (for example if that system maintains 
information on multiple attributes). 
 The primary purpose of an AS is to “know about” a 
particular attribute – what style of information is required to 
specify it; how is that information best retrieved, stored, and 
displayed; how are multiple values meaningfully compared 
with each other.  As such, the primary activity of an AS is 
homogeneous data matching.  Whenever information about a 
particular attribute is being processed or requested, those 
actions are carried out by the AS.  It is possible to 
denormalize a system in cases where certain requirements or 
types of processing would benefit, but such is beyond the 
scope of this paper.  The AS is also the source/repository for 
Graphical User Interfaces (GUIs) and other interface 
mechanisms that are used to handle attribute data.  A user’s 
thin client actually obtains its GUI’s for inputting and 
displaying specific attribute data directly from the AS. 
 For attributes that are not tied to an external legacy system, 
the AS is the repository for attribute data, and therefore will 
generally have its own databases (that are linked to system 
indices such as the OI, SI, EI, etc.).  When external data is 
used, the AS serves as the intermediary between the legacy 
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system and the information architecture.  It encapsulates all of 
the logic and processes necessary to access and utilize the 
external data, to perform any caching or augmenting necessary 
for system operation, and to interpret external data in the 
context of the overall system.  In this capacity, it retains the 
information necessary to tie legacy system foreign keys to the 
OI (and other indices as appropriate).  As with most services 
in an SOA, an AS represents a combination of database 
technology and software applications. 
 As alluded to above, an AS does not necessarily always 
address a single attribute.  In cases where sets of attributes are 
best analyzed jointly, an AS can be developed to perform this 
function.  Consider, for example, the case where one is 
considering both the height and weight of a person who 
happens to be both very short and very heavy.  One could 
create a height AS and a weight AS, and perform matching 
comparisons independently, combining the results within a 
correlation service (see below).  This, however, might not be 
the most efficient mechanism for system performance, and it 
would be preferable to treat the set of attributes as the 
quantum of data and build a dedicated AS for that information 
molecule.  In general, molecular attribute services make sense 
when a) a group of attributes are always measured, stored, and 
processed as a logical entity, or b) the exploitation of complex 
correlations amongst the attributes is more common than 
working with the individual attributes separately2.
 Perhaps most importantly, attribute services are (in the 
spirit of the archetypal SOA) instantiated independently of 
each other, and can be designed to access and utilize other 
known services.  Multiple services for a single type of data 
can be built and incorporated even when they “compete” with 
existing services.  This enables a competitive “survival of the 
fittest” approach to system growth where services are utilized 
(and discarded) based on their demonstrated capability, as 
evaluated by individual users or via collected/tracked usage 
and performance statistics. 
 The attribute services play an important role in the data 
fusion process, but to use them exclusively for this purpose 
would result in an exponential number of services (one for 
every possible combination of attributes to be considered).  In 
many cases, heterogeneous information can be treated 
orthogonally by assuming that the individual data are 
uncorrelated, or at least that the relationships between the data 
can be treated as a separable problem, i.e. the comparison of a 
height to a height is not directly dependent on a weight (even 
though the value/meaning of the result of that comparison is 
affected by the weight).  For these reasons, the architecture 
also includes the concept of a Correlation Service (CS). 
 A CS takes the results from two or more other services 
(each of which could be an AS or a CS), and fuses those 
results using some algorithm.  It is, in fact, the correlation (i.e. 
fusion) algorithm that is the defining feature of any particular 
CS.  As an example, a simple CS might take two results sets3,

2 There are, of course, advantages and disadvantages to each approach, and 
the architecture supports both in order to provide the greatest flexibility and 
capability. 

3 In most cases (but not all) a results set is a ranked list of comparisons for 
known objects against the specified parameter(s).  In this sentence’s example, 
it might be a list for all military assets asserting the probability that the 

one from a comparison of wingspans and the other from a 
comparison of engine types, and determine what assets best 
match both measurements.  Because this kind of generic 
fusion approach can be applied as meaningfully to aircraft 
based on wingspan and engine type as it can for cargo vessels 
using hull color and the cruising speed, a single CS can 
replace N2 combined attribute services. 
 CSs can also be designed to use more specific knowledge of 
the data.  For example, one could design a CS for the earlier 
example of comparing height and weight4 that uses the 
knowledge that tall people are more likely to weigh more, and 
so would recognize the increased value of having matched 
both height and weight for someone who is, for example, very 
short and heavy or very tall and light. 
 As new fusion approaches are developed, they can be 
instantiated into new CSs, and registered within the 
architecture.  Like the attribute services, CSs can “compete,” 
with the most useful and effective ones taking over processes 
that were originally handled by the less robust services. 
 The last two elements of the architecture are the Registry 
Service (RS) and a thin client interface that connects to the 
various other elements.  The RS tracks the presence and 
locations of available attribute and correlation services, as 
well as the various indices (OI, OEI, SI, EI), connecting the 
various services according to their requirements.  The thin 
client interface is what enables a user to take action within the 
system, and is discussed in greater detail in the next section. 

B. Element Interactions 
Although the OI and other indices represent the true core of 

the architecture, the RS and user client are the central 
elements in coordinating the exchanges of information 
between the indices and the attribute and correlation services.  
In order to provide an overview of the interactions of the 
various elements, we will outline the array of processes 
involved from startup through the use of the system to identify 
an object based upon a set of measurements.  In this example 
there will be two attribute services and a single correlation 
service.  For illustration purposes, we will assume that 
measurements are inputted manually by a user rather than via 
an automated process. 

The first system to initialize is the RS.  After that, the OI, 
OEI, EIs, and SI all initialize, each contacting the RS to alert it 
that they are active and to provide their respective addresses.  
Next, each attribute and correlation service initializes and 
exchanges messages with the RS to provide its address.  All of 
these services may continue to exchange messages with the 
RS on a periodic basis to confirm that they are still active.  
Additionally, the services request and obtain the addresses for 
the different system indices. 

Finally the user interface system (UIS) initializes and 
connects to the RS in order to learn what attribute and 
correlation services are currently available.  In this example 
                                                                                                    
measurement is in agreement with prior knowledge for that asset based on 
how closely the measured wingspan agrees with the historically recorded 
wingspan. 

4 Because the specific comparison mechanism for each attribute is 
independent, even if the net correlation is not. 
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the user wishes to enter measurements A and B, and so selects 
the corresponding AS for each.  The RS then provides the UIS 
with the connection information for those two services. 

For the thoroughness of the example, we will assume that 
this is the first time the UIS is interacting with the AS for 
measurement A.  The UIS connects to the AS, and requests a 
GUI and data object template for displaying and holding data 
for measurement A.  These are returned to the UIS as a 
function library for instantiating the GUI and a class for the 
data.  If the UIS has not interacted with the other AS before, it 
would do the same for measurement B. 

The UIS now displays the received GUIs and the user 
inputs the measurement data for attributes A and B.  The UIS 
now sends that data, in the form of serialized objects, to each 
AS respectively.  For the sake of this example, assume that the 
user is seeking to identify the object via comparison with 
previously archived measurements. 

Each AS takes the data it receives and begins comparing it 
against its archives of previous attribute measurements.  As 
necessary, it accesses the sensor and environmental indices to 
request and receive any information needed to make 
effective/correct measurement comparisons.  Once an AS has 
completed its internal comparisons, it might (depending on 
system settings) also contact the OEI, providing a list of 
object identifiers (as are stored in the OI) and requesting all 
additional identifiers that might be alternate representations. 

During this process, the AS can (again depending on 
system settings) send periodic updates to the UIS to inform 
the user of its progress.  It might also accept requests from the 
UIS to query regarding its status, or perhaps to cancel or 
abbreviate its searching processes, depending upon the 
sophistication of the capabilities provided by the AS. 

Once the AS has completed its processing, it sends a 
message to the UIS (with a unique results set identifier) 
indicating that it has completed its comparisons and is 
awaiting further instructions.  Note that it does not 
automatically send its results to the UIS, as the user may not 
wish to view them directly, and it is possible that the transfer 
of the results set could be (depending on the circumstances) 
bandwidth intensive. 

When the alert arrives the user is prompted that one or more 
sets of results are completed, and s/he can decide what to do 
with the output. If numerous measurements were being 
processed, and some are expected to take a long time to 
process, the user might choose to send a subset of the 
measurement results to one or more CSs, or perhaps view one 
or more results sets directly.  In this example, the user will 
wait until both sets are available. 

After both sets of measurement comparisons are complete 
and the user has chosen a CS to use, the UIS sends a set of 
messages.  To the CS it indicates that it is requesting action, 
and provides a list of the results sets, by identifier, that it is to 
receive.  To each AS it sends the address of the chosen CS 
and a request to forward the results set.  Each AS responds 
back to the UIS indicating that the request is received, and 
then another updating message once the data transfer is 

completed.  The CS responds with similar messages to the 
UIS, one indicating that the request was received, and one for 
each results set transferred. 

The AS does not automatically delete its results set at this 
time.  Once the user confirms via a message to the AS that 
those results are no longer needed (e.g. after having decided 
that no further analyses will be performed with that data), it 
can delete them.  Alternately (or perhaps additionally) the 
system can be set up such that results sets are deleted or 
archived after a certain amount of time to improve system 
performance. 

Once the CS has received all of the necessary data and 
sends the confirmation message to the UIS, it begins 
processing.  As with the attribute services above, it also can 
send periodic messages with progress reports to the UIS.  Like 
with the attribute services, the CS may also request 
equivalency details from the OEI.  When its processing is 
complete, another message is sent to the UIS indicating such 
(as before, results sets are not sent automatically). 

In this example, the user decides to view the results from 
the CS.  In the unlikely case that the user would view the raw 
results, it might direct the CS to provide data back to the UIS 
directly.  This is unlikely because it would leave the user 
examining a set of fusion results in terms of object identifiers 
that have no qualitative meaning to the user.  More 
commonly, the UIS would direct the CS to send some portion 
of the results (perhaps the N best matches) to several different 
attribute services with a second type of request.  Where the 
first request provided measurements and produced a ranked 
list of possible matches, this request provides object 
identifiers and returns measurement values. 

The specific attribute services accessed at this stage are 
based upon the user’s preference for how to view results.  It 
might be that the user wishes to see just a name associated 
with the object, or perhaps a whole range of attributes (names, 
images, other identifiers, etc.). 

As above, these attribute services alert the UIS when the 
data is available, and UIS now instructs the attribute services 
to send results sets back to the UIS.  Those sets are then 
formatted and finally displayed to the user (using other GUIs 
that are provided by the respective attribute services). 

This was a relatively straightforward example of the 
architecture information exchanges, intended to illustrate the 
basic concepts.  Additional information exchanges can also 
occur, such as when one AS has measurements that are 
functionally related to other attributes.  In those cases, 
additional calls are required, such as to the RS to obtain 
network addresses, and between attribute services to obtain 
the necessary information. 

IV. IMPLEMENTATION

To illustrate the architecture, a simple prototype 
implementation was developed using Microsoft .NET.  For 
clarity of concept, the prototype demonstrated correlation 
between two readily understood data types: person names and 
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social security numbers.  Person names were chosen because 
of their moderate complexity (people may have several names 
of various types – given names, family names, past names, 
aliases, etc.).  Social Security Numbers were selected for 
demonstration purposes because the construction of a person’s 
social security number includes information on the location 
where the number was issued, resulting in more complex 
results from this service (i.e. insight into a location that is 
affiliated with that person).  In this example, each type of data 
was given its own attribute service:  the Person Name 
Attribute Service (PN AS) and the Social Security Number 
Attribute Service (SSN AS).  In order to achieve more 
interesting statistical results, both attribute services were 
designed to use the Damerau-Levenshtein String Matching 
Algorithm [9].  If the string matched exactly, a confidence of 
“1” was returned.  Otherwise, the Damerau-Levenshtein 
distance is used to compute a confidence level. 

The prototype design was heavily influenced by the 
requirement that the UIS GUI must be able to remain 
unchanged as new attribute services are added.  Consequently, 
the attribute services provide their own GUI functionality to 
the user through the UIS’s GUI, at run-time.  This is 
accomplished by serializing .NET assemblies and transmitting 
them, in binary, via .NET remoting.   These assemblies carry, 
at a minimum, the GUIs that both accept user input (e.g., by 
way of a form) and provides user feedback (e.g., by way of a 
table of results).  For example, a nuclear spectra attribute 
service might have a mechanism for efficiently summarizing 
spectra, or a dropdown menu for the user to select an isotope 
of interest, etc. 

Aside from the two attribute services already mentioned, 
the prototype included a single CS that provided a simple 
linear correlation; the RS by which the other services could 
find each other; a basic UIS with a GUI that provides a 
framework for the user to view available attribute and 
correlation services, as well as a way to view custom graphical 
controls from those services; and an OI that provides a lookup 
of system unique identifiers to the attribute services. 

The prototype uses .NET interfaces to define the contract 
between services.  The only well-known (i.e. having a fixed 

port and IP address) service is the RS, the others finding each 
other dynamically through this service.  These interfaces are: 

IAttributeService – Implemented by attribute services; 
includes methods for the GUI to retrieve the attribute 
service’s assembly, and to submit the results of the form 
input. 
IAttributeServiceRegistrar – Implemented by the RS; 
includes methods for the attribute services to register 
themselves with the RS.  
ICorrelationService – Implemented by the correlation 
services; includes methods for providing data sets to the 
service for correlation. 
ICorrelationServiceRegistrar – Implemented by the RS; 
includes methods for the correlation services to register 
themselves with the RS. 
IPeopleServiceRegistrar – Implemented by the RS; 
includes methods for the OIS to register itself with the 
RS. 

The particular interactions of these services followed the 
model put forth in the previous section.  The user is presented 
with a list of available attribute services (Name and SSN), and 
chooses which to use.  For each selected, the AS custom GUI 
controls are displayed, and the user fills in the appropriate 
data.  The data are then sent to the respective attribute services 
for analysis.  When the results are completed, the user chooses 
which CS to use, if any, to correlate the two results sets.  In 
this case there is only one choice, the linear correlation 
service.  Either or both results sets can then be sent to that CS, 
where they are linearly combined into a single result set.  The 
results of the correlation service, or the original AS results 
sets, can then be returned directly to the user for evaluation. 

Figs. 1-4 are screen captures showing these various 
interfaces: 
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Fig. 1 Displaying available attribute services 

Fig. 2 Displaying GUI’s obtained from attribute services (top right panel) and existing results sets (lower left panel) 
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Fig. 3 Selecting results sets to send to a correlation service 

Fig. 4 Viewing results sets (bottom left panel) 

V. SUMMARY

The architecture described herein utilizes a basic SOA 
approach to support both simple and complex data fusion 
tasks.  Upstream data fusion can be implemented through 
dedicated attribute services that inherently address the 
interrelationships amongst heterogeneous data sources.  
Downstream fusion can be handled similarly, but also more 
generically through the use of either dedicated or generalized 
correlation services. 

Because the scope and format of the data is handled through 
the dedicated attribute services, the architecture is extensible 
both in terms of the types of new data that can be included, as 
well as the approaches/algorithms for manipulating the data.  
The modularity of the individual services facilitates the 
continued addition of computing resources, as well as the 
gradual replacement of computers and servers without 
requiring that the system be taken offline. 

The system is designed with the recognition of the 

importance of uncertainty in the data and the results, as well 
as the possibility that characteristics can apply to objects non-
absolutely (i.e. in terms of both likelihood and applicability).  
The system handles standard data types, such as numbers, 
strings, dates, times, and binary objects, but also 
multidimensional quantities like matrices and functional 
representations of relationships amongst data. 

Because there is significant flexibility in how a thin-client 
user interface can interact with the system, it is well-suited for 
use with business process modeling tools and approaches.  
This could include automating analysis processes for data 
flows, capturing and assessing expert knowledge and decision 
chains, and supporting complex data mining tasks. 

In applications where long term system evolution is 
expected, the ability of the architecture to support ongoing 
development can be significant.  For example, in commercial 
applications where data and computing resources are sold, the 
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capability of supporting multiple competing services enables a 
“survival of the fittest” mechanism for system growth.  Users 
can individually balance cost, response time, accuracy, data 
availability, etc., in order to optimize needs against their most 
significant constraints.  Services that perform poorly are left 
behind, and the development new services that provide 
performance improvements are motivated. 

Our experience suggests that the development costs for this 
type of data fusion architecture decrease over time.  Initial 
work is required to establish the foundational services and 
indices (OI and RS as a minimum, and the OEI in most cases).  
Secondary services, such as the EI and SI, are easier to 
develop as they are typically variants on the more fundamental 
services.  Similarly, the first AS and CS establish basic 
frameworks that, later ones can build upon speeding the 
development of the interfacing aspects of the newer services. 
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