
Abstract—In many applications there is a broad variety of
information relevant to a focal “object” of interest, and the fusion of
such heterogeneous data types is desirable for classification and
categorization. While these various data types can sometimes be
treated as orthogonal (such as the hull number, superstructure color,
and speed of an oil tanker), there are instances where the inference
and the correlation between quantities can provide improved fusion
capabilities (such as the height, weight, and gender of a person). A
service-oriented architecture has been designed and prototyped to
support the fusion of information for such “object-centric” situations.
It is modular, scalable, and flexible, and designed to support new
data sources, fusion algorithms, and computational resources without
affecting existing services. The architecture is designed to simplify
the incorporation of legacy systems, support exact and probabilistic
entity disambiguation, recognize and utilize multiple types of
uncertainties, and minimize network bandwidth requirements.

Keywords—Data fusion, distributed computing, service-oriented
architecture, SOA.

I. INTRODUCTION

T can be argued that the value of a service-oriented
architecture (SOA) is best illustrated by its applicability to a

wide range of business applications. Such breadth is easily
seen by simple Internet searches for exemplar SOAs, and
outlined by the overviews and case studies found in standard
reference books such as those by Erl [1], [2]. While many
people often associate SOAs with web services, SOA
encompasses a broader set of capabilities. We will not
provide an overview of the requirements or capabilities of
SOAs in this paper, as they are readily available elsewhere (a
simple overview, for example can be found online [3]).
Rather, this paper describes an SOA approach for facilitating
object-centric data fusion, in which a single “thing” – such as
a particular cargo ship, a computer system, an individual, or
even a category of persons – is the focal nexus of the
information of interest.

Data fusion applications can be described as falling into one
of two categories. Homogeneous data fusion applications take
similar types of information and combine them in a way that
best associates and reconciles the information. Basic target

Manuscript received April 30, 2008.
J. A. Dunne (phone: 443-778-4722; fax: 443-778-5950; e-mail:

jeffrey.dunne@jhuapl.edu) and K. Ligozio are with the Johns Hopkins
University Applied Physics Laboratory, Laurel, MD 20723 USA.

tracking1 is an example. Multiple position reports of similar
or identical nature are evaluated, and establish, or are assigned
to, tracks based upon fusion algorithms. Heterogeneous data
fusion, on the other hand, stitches together multiple types of
information in order to formulate a coherent picture. Tools
for establishing situational awareness are examples of these.
Position/track reports, object characteristics, behavior
prediction, etc. are all brought together to produce a fusion
product. A wealth of examples can be found in fields such as
law enforcement, maritime domain awareness/situational
awareness, etc.

Naturally, most real systems do not fall cleanly into one
category or the other. For example, consider the case of
syndromic surveillance in which one is searching for early
indicators of epidemics. The combination of similar data from
multiple hospitals to establish average admittance rates, or
perhaps multiple pharmacies to determine net over-the-
counter drug sales, represents homogeneous fusion, whereas
the combination of the two sources is a heterogeneous data
fusion task. Examples of such fusion activities and associated
requirements/challenges can also be found in the literature [6]-
[8].

To best illustrate the utility of this architecture, consider an
application in which various sensor measurements and
historical database archives provide estimates of one or more
attributes of an object. As an example, consider the desire to
specifically identify and classify a military aircraft that is
expected to soon launch, where the following information
sources are available: a) a low-resolution, black-and-white
reconnaissance photograph in which the aircraft is present; b)
an eye-witness report of a certain limited set of aircraft
markings; and c) databases identifying local airfield
capabilities (perhaps fueling equipment, runway lengths, etc.).
While the black-and-white photograph might provide
reasonable estimates on fuselage length or wingspan, these are
insufficient to identify a particular aircraft. Similarly, the
limited aircraft markings might aid in identifying the
nationality of the asset, but themselves do not indicate the
exact type of plane. Lastly, knowing the type of fuel the

1 The term “basic” here specifies target tracking that focuses solely upon
the process of best estimating tracks from noisy data, as opposed to systems
that seek to combine such tracks with other types of information. “Basic”
does not at all suggest simplicity, however. The development of effective
trackers is, even after decades of work, still an ongoing research effort. The
interested reader is referred to the abundance of research papers, as well as
standard references such as those by Bar-Shalom [4], [5].

Service-Oriented Architecture for Object-
Centric Information Fusion

Jeffrey A. Dunne, and Kevin Ligozio

I

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 454 © 2008 WASET.ORG

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1702International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

28
15

.p
df

aircraft uses, or being able to establish limitations on the
required runway length, themselves do not permit unique
identification. However, whereas each individual datum is
itself insufficient, the fusion of these data likely would enable
more exacting classification.

 This type of data fusion is of interest in many domains, of
which military capabilities as described above are just one
example. Another, which the prototype below is more closely
designed towards, is the fusion of human identifiers (in this
case name and social security number) to support automated
processes for the disambiguation of individual databases.

The description in this paper covers the exchange and
management system to support this type of object-centric
information fusion, i.e. the supporting architecture. It does
not address any details related to specific applications, such as
specifics of particular data archives, any implemented
fusion/correlation algorithms, or other case-specific business
process chain details. The paper is divided into several
sections. Section II summarizes the design requirements and
expectations that motivated this information architecture.
Section III provides an overview of the architecture in terms
of its basic elements and how they interact. Section IV
describes a prototyped Microsoft .NET implementation with
some basic examples of how the architecture was realized in
terms of specific interfaces. Finally, a summary is provided in
Section V.

II. DESIGN REQUIREMENTS

As mentioned in Section I, the SOA presented in this paper
was designed in support of a project in which disparate pieces
of raw data are assessed in order to reduce the ambiguity
associated with a particular object under consideration. Such
data might come from a database or a measurement, but in
either case are likely to contain multiple sub-pieces of data
related to individual object attributes. In the previous
examples, the photograph of an airplane (the measurement)
gave estimates for two object attributes, wingspan and
fuselage length. Similarly, a record from a database of
employee information might contain object attributes such as
name, age, duration of employment, salary, etc. Within this
architecture, each attribute is treated as the atomic unit for
consideration. As described later in this paper, combinations
of such atoms (molecules, if you will) can also be stored and
manipulated, but here we will focus on atomic attributes for
pedagogical reasons.

These estimates of attributes can be used in a variety of
ways. As a starting point, one might simply compare values
with historical data in one or more archives to identify what
known objects have matching characteristics. A more in-
depth analysis might rank, with some appropriate weighting, a
set of known objects based upon how many characteristics
matched, and how closely. Still more sophisticated systems
might use knowledge about the sensors and environmental
conditions in such matches. For example, suppose that a high
resolution photograph in good illumination showed a yellow

sinusoidal pattern marking on the side of an aircraft, and a low
resolution image in poor lighting displays a brown streak.
Without knowledge of the sensor capabilities and conditions
of the measurements, these features might be considered
incompatible, whereas a more informed algorithm could
recognize the possibility that they represent the same marking.

Very complex systems might seek to use inference to
improve performance. Suppose the presence of a propeller on
a plane in the photograph can be used to place limits on the
maximum speed of the aircraft. Representation of such
information within the system adds value by permitting the
exclusion of certain objects from consideration (in this case,
excluding all airplanes known to be able to travel faster than
the speed of sound).

The overall goal of this architecture is to support a broad
range of analyses based on the idea that there is a single object
to which observable attributes apply. Such objects might be
concrete (e.g. a specific physical object) or abstract (e.g. a
conceptual object or meaningful categorization of physical
objects), but in either case attribute estimates (direct or
inferred) must be addressed with the flexibility described
above. These analyses could aim to produce a variety of
outputs, as illustrated by the following questions (from most
to least direct):

1. What/who is this? (comparison against a potentially
large set of enrolled objects to identify the best match)

2. Is this ____? (comparison against a single object to
assess similarity)

3. Has this object been observed before/How likely is it
that this object has not been observed before?
(comparison against prior measurement sets)

4. Is this object atypical? (assessment of characteristics
against a norm standard)

5. What other characteristics should be measured to
improve classification? (evaluation of knowledge
dimensionality)

In addition to supporting the raw data and inference
capabilities described above, as well as the ability to answer
these kinds of queries, several other requirements were
identified. These are briefly summarized in the following
subsections.

A. Complex Data
Most legacy database archives contain relatively simple

data – strings, numbers, dates, etc. Newer systems are more
likely to include uncertainties or other qualifying metadata,
but they still represent comparatively straightforward
information compared with the actual measurements from
which the data were distilled. Even many transducers collect
raw data that can be represented in relatively straightforward
formats (binary or analog data that can be discretized).
However, the input to data fusion algorithms often require
more detail, and can come from sensor systems that, rather
than distilling measurements down to simple numbers, process

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 455 © 2008 WASET.ORG

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1703International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

28
15

.p
df

raw data into more complex structures. Consequently, this
information architecture must be designed to handle data that
has a variety of complexities. This is especially important for
probabilistic fusion engines. In order to support whatever
fusion algorithms are appropriate, the architecture was
designed to address multiple complexities in the data:

Fuzziness: Beyond discrete numbers, strings and
Booleans, the architecture must be able to handle
approximations, inequalities, etc.
Structure and higher dimensionality: The system must be
able to handle intervals and matrices in order to support
compound sets of values such as discontinuous ranges,
spectra, multiple string values, etc.
Uncertainty: The system must recognize and facilitate the
handling of uncertainty associated with the data. While
simple uncertainties might be addressed under the
previous bullet (i.e. using intervals), this is not uniformly
the case for all types of uncertainties. Two important
aspects that require specific handling are:
o Likelihood – Likelihood refers to the chance that a

measurement of an attribute of an object will match a
prior measurement. In some cases the likelihood is
high. For example, each time one measures the length
of an aircraft, it is likely that it can be meaningfully
compared with prior measurements. The likelihood is
not as great for an attribute such as the weight of the
plane (which would change slightly depending on
what was in it), and substantially less so for more
variable quantities like the speed of the aircraft, which
could change drastically depending upon the
conditions of the observation.

o Applicability – Applicability refers to the degree to
which an attribute applies to an object. To continue
the aircraft example with a somewhat contrived
example, suppose one side of a plane was painted blue
and the other side red. The assessment of whether the
skin color was blue or red depends on circumstance,
so one can assess the applicability of the characteristic
as being less than unity (for example, “the skin color
is red” is only 50% applicable).

To further elucidate upon the concept of applicability, a
more meaningful example is the following. Suppose a
particular (previously unseen) person is known to have
descended from two ethic backgrounds, A and B. Further,
suppose it has been determined that people of ethnicity A have
some likelihood of having blue eyes. Now assume that a
measurement (perhaps a photograph) shows the existence of a
person having blue eyes. If we wished to use eye color as a
factor in determining the probability that this was the person
of interest, it is necessary to understand not only the
likelihood of a person of ethnicity A to have blue eyes, but the
degree of applicability of the assignment of that ethnicity to
the person. Even if the likelihood of blue eyes for ethnicity A
is 100%, the fact that that ethnicity is only somewhat

applicable to the specific person plays an important role in
making an accurate assessment of the situation.

Lastly, the system must be able to handle quantities not
only in terms of specified values, but also as functional
relationships to other values. For example, suppose a naval
vessel of a particular class can be identified by its length, but
that different ships of that class each carried different
armaments depending on when it was built. A functional
relationship provides the necessary “link” to connect
otherwise disparate pieces of information (e.g. knowing the
ship class and that it has already fired more than N surface-to-
air missiles might now be utilized to uniquely classify the
vessel).

B. Legacy Data
For most applications a great deal of data already exists in

legacy systems. Consequently, the architecture should be able
to interact with and utilize those systems’ resources and
capabilities. Those capabilities can vary significantly, from
systems with substantial computational resources that can
support high query and data transfer rates, to older systems
that could take minutes or longer to respond to a single
request. This might even include non-automated legacy
systems, such as processes requiring human action/
intervention. Perhaps more so than any other, it was this
requirement for asynchronous operation that makes an SOA
ideal for the application.

The requirement to interact with these types of systems is
further constrained in that it is assumed that the legacy
systems will not necessarily change as a consequence of the
data consumer’s requirements. Therefore, an intermediate
capability must exist that “understands” the nature of the
information contained within the legacy system, and can
mediate the SOA’s requirements with the capabilities of the
data source. Such intermediate systems are also essential to
facilitate the disambiguation problem arising from the use of
multiple independent data sources.

C. Downsizing and Extensibility
As with SOAs in general, it is desirable that the system as a

whole be stable against problems with individual services.
For example, in a system that seeks to fuse person-related
data, one should not be restricted from using height and
weight data simply because the service that addresses blood
type is down for repair. In other words, since there is no
guarantee that all resources will be available all of the time –
whether it is due to service-specific issues, network
accessibility, bandwidth restrictions, policy/governance issues,
etc. – the system must continue to operate when individual
capabilities are removed. Similarly, different use cases will
dictate how many computation resources can be applied to a
situation. The addition or removal of such resources should
only impact the efficiency of the system and the scope of the
processing that it can perform, not whether the architecture
will function.

 Of at least equal, but likely greater, importance is that the

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 456 © 2008 WASET.ORG

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1704International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

28
15

.p
df

architecture must be scalable, easily updated, and extensible.
This need is generally ubiquitous across all data fusion
applications, and is another reason why an SOA approach is
desirable, because it provides the ability to seamlessly a) add
new data sources as they become available, b) incorporate
new fusion algorithms and update existing ones, and c)
increase available computation resources. Moreover, such
changes must not require subsequent modification to other
portions of the system in order to utilize the new resources,
and the addition of improvements should not necessitate
shutting the system down.

III. ARCHITECTURE

The following subsections describe the architecture in terms
of its essential elements (Section III.A) and their interactions
(Section III.B).

A. Architecture Elements
 At the core of the architecture is a central database that
serves to establish a unique record for each object. For
illustrative purposes, throughout this section let us suppose
that the system is being used to fuse data regarding military
assets. In this case, any particular asset has one or more rows
in this Object Index (OI). Additionally, the idea of an object,
such as “tanks,” can also have a record (making this an index
of both concrete and abstract objects), so that one can assign
characteristics to the idea of a tank rather than to an
individual, specific tank.
 If all information was conclusive, an object would have
only a single row in the OI. In the absence of such conclusive
proof, however, it is necessary to retain the possibility that
there are multiple distinct objects. At the same time, though,
one still wants to capture the possibility that two objects might
be one and the same. The service that fills this need is the
Object Equivalency Index (OEI). This service tracks the
degree of belief that two records in the OI represent the same
thing.
 The value of the OEI is illustrated in the following
example. Consider a first observation of a tank reporting that
it has a 75 mm main gun. In a later observation of a tank –
which we think might be the same one, but we are not
completely sure – it is seen that the tank has twelve wheels
within its tread. A third observation now reports seeing a
World War II Comet Cruiser tank (which has 12 wheels and a
75 mm gun), and we want to know if this “third” tank has
been seen before. Without recording the possibility that the
first two observations were potentially both of the same tank,
we would only be able to return two matches with
comparatively low measures of confidence (each only
matched one piece of information). However, through the
OEI, we can recognize and utilize the possibility that those
two records actually represent the same object, enabling a
fusion algorithm to potentially report a single, higher
confidence conclusion.
 Although this was not implemented in our prototype, this
same OEI can also retain hierarchical information. For
example, if one record in the OI represents the category
“Comet Cruiser Tank,” and another the observation of a

particular tank that has some probability of belonging to that
category, the OEI could capture this information in order to
provide the functionality of inherited properties.
 Two other indices within the architecture are the Sensor
Index (SI) and the Environmental Index (EI). The former
maintains information about the sensors used to collect data.
This is important because the details of measurement
collection can be crucial in evaluating the data. As an
example, consider that different microphones can have
substantially different frequency response curves. Knowing
what microphone was used to collect a particular audio
recording can be essential for knowing how to meaningfully
compare that measurement against measurements made with
other microphones (or if such a comparison can meaningfully
be made at all!).
 Similarly, an EI is required for maintaining information
regarding the environmental conditions associated with
particular measurements. In certain applications it might be
necessary to have multiple EIs, or even multiple SIs,
depending on the nature of the system’s focus. In other cases,
perhaps where there are no measurements per se (such as in
the disambiguation of data from multiple databases), it is
possible that neither index would be required.
 The basis of system operation is that there exists an
Attribute Service (AS) for each attribute relevant to the
objects. For systems addressing fusion for people, one might
have a Name AS, a Date of Birth AS, a Social Security
Number AS, a Hair Color AS, and so forth. Each of these
attributes represent the information atoms described earlier.
In cases where attributes are appropriately linked together, an
AS might exist for that molecule of information (e.g. a
Height/Weight AS), but this will be discussed later.
 In general, each attribute has at least one corresponding AS.
Similarly, each interfaced legacy data system will have at least
one association AS. It is possible to have multiple attribute
services for a particular attribute (for example, if there are
many services offering to manipulate that kind of information)
or legacy system (for example if that system maintains
information on multiple attributes).
 The primary purpose of an AS is to “know about” a
particular attribute – what style of information is required to
specify it; how is that information best retrieved, stored, and
displayed; how are multiple values meaningfully compared
with each other. As such, the primary activity of an AS is
homogeneous data matching. Whenever information about a
particular attribute is being processed or requested, those
actions are carried out by the AS. It is possible to
denormalize a system in cases where certain requirements or
types of processing would benefit, but such is beyond the
scope of this paper. The AS is also the source/repository for
Graphical User Interfaces (GUIs) and other interface
mechanisms that are used to handle attribute data. A user’s
thin client actually obtains its GUI’s for inputting and
displaying specific attribute data directly from the AS.
 For attributes that are not tied to an external legacy system,
the AS is the repository for attribute data, and therefore will
generally have its own databases (that are linked to system
indices such as the OI, SI, EI, etc.). When external data is
used, the AS serves as the intermediary between the legacy

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 457 © 2008 WASET.ORG

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1705International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

28
15

.p
df

system and the information architecture. It encapsulates all of
the logic and processes necessary to access and utilize the
external data, to perform any caching or augmenting necessary
for system operation, and to interpret external data in the
context of the overall system. In this capacity, it retains the
information necessary to tie legacy system foreign keys to the
OI (and other indices as appropriate). As with most services
in an SOA, an AS represents a combination of database
technology and software applications.
 As alluded to above, an AS does not necessarily always
address a single attribute. In cases where sets of attributes are
best analyzed jointly, an AS can be developed to perform this
function. Consider, for example, the case where one is
considering both the height and weight of a person who
happens to be both very short and very heavy. One could
create a height AS and a weight AS, and perform matching
comparisons independently, combining the results within a
correlation service (see below). This, however, might not be
the most efficient mechanism for system performance, and it
would be preferable to treat the set of attributes as the
quantum of data and build a dedicated AS for that information
molecule. In general, molecular attribute services make sense
when a) a group of attributes are always measured, stored, and
processed as a logical entity, or b) the exploitation of complex
correlations amongst the attributes is more common than
working with the individual attributes separately2.
 Perhaps most importantly, attribute services are (in the
spirit of the archetypal SOA) instantiated independently of
each other, and can be designed to access and utilize other
known services. Multiple services for a single type of data
can be built and incorporated even when they “compete” with
existing services. This enables a competitive “survival of the
fittest” approach to system growth where services are utilized
(and discarded) based on their demonstrated capability, as
evaluated by individual users or via collected/tracked usage
and performance statistics.
 The attribute services play an important role in the data
fusion process, but to use them exclusively for this purpose
would result in an exponential number of services (one for
every possible combination of attributes to be considered). In
many cases, heterogeneous information can be treated
orthogonally by assuming that the individual data are
uncorrelated, or at least that the relationships between the data
can be treated as a separable problem, i.e. the comparison of a
height to a height is not directly dependent on a weight (even
though the value/meaning of the result of that comparison is
affected by the weight). For these reasons, the architecture
also includes the concept of a Correlation Service (CS).
 A CS takes the results from two or more other services
(each of which could be an AS or a CS), and fuses those
results using some algorithm. It is, in fact, the correlation (i.e.
fusion) algorithm that is the defining feature of any particular
CS. As an example, a simple CS might take two results sets3,

2 There are, of course, advantages and disadvantages to each approach, and
the architecture supports both in order to provide the greatest flexibility and
capability.

3 In most cases (but not all) a results set is a ranked list of comparisons for
known objects against the specified parameter(s). In this sentence’s example,
it might be a list for all military assets asserting the probability that the

one from a comparison of wingspans and the other from a
comparison of engine types, and determine what assets best
match both measurements. Because this kind of generic
fusion approach can be applied as meaningfully to aircraft
based on wingspan and engine type as it can for cargo vessels
using hull color and the cruising speed, a single CS can
replace N2 combined attribute services.
 CSs can also be designed to use more specific knowledge of
the data. For example, one could design a CS for the earlier
example of comparing height and weight4 that uses the
knowledge that tall people are more likely to weigh more, and
so would recognize the increased value of having matched
both height and weight for someone who is, for example, very
short and heavy or very tall and light.
 As new fusion approaches are developed, they can be
instantiated into new CSs, and registered within the
architecture. Like the attribute services, CSs can “compete,”
with the most useful and effective ones taking over processes
that were originally handled by the less robust services.
 The last two elements of the architecture are the Registry
Service (RS) and a thin client interface that connects to the
various other elements. The RS tracks the presence and
locations of available attribute and correlation services, as
well as the various indices (OI, OEI, SI, EI), connecting the
various services according to their requirements. The thin
client interface is what enables a user to take action within the
system, and is discussed in greater detail in the next section.

B. Element Interactions
Although the OI and other indices represent the true core of

the architecture, the RS and user client are the central
elements in coordinating the exchanges of information
between the indices and the attribute and correlation services.
In order to provide an overview of the interactions of the
various elements, we will outline the array of processes
involved from startup through the use of the system to identify
an object based upon a set of measurements. In this example
there will be two attribute services and a single correlation
service. For illustration purposes, we will assume that
measurements are inputted manually by a user rather than via
an automated process.

The first system to initialize is the RS. After that, the OI,
OEI, EIs, and SI all initialize, each contacting the RS to alert it
that they are active and to provide their respective addresses.
Next, each attribute and correlation service initializes and
exchanges messages with the RS to provide its address. All of
these services may continue to exchange messages with the
RS on a periodic basis to confirm that they are still active.
Additionally, the services request and obtain the addresses for
the different system indices.

Finally the user interface system (UIS) initializes and
connects to the RS in order to learn what attribute and
correlation services are currently available. In this example

measurement is in agreement with prior knowledge for that asset based on
how closely the measured wingspan agrees with the historically recorded
wingspan.

4 Because the specific comparison mechanism for each attribute is
independent, even if the net correlation is not.

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 458 © 2008 WASET.ORG

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1706International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

28
15

.p
df

the user wishes to enter measurements A and B, and so selects
the corresponding AS for each. The RS then provides the UIS
with the connection information for those two services.

For the thoroughness of the example, we will assume that
this is the first time the UIS is interacting with the AS for
measurement A. The UIS connects to the AS, and requests a
GUI and data object template for displaying and holding data
for measurement A. These are returned to the UIS as a
function library for instantiating the GUI and a class for the
data. If the UIS has not interacted with the other AS before, it
would do the same for measurement B.

The UIS now displays the received GUIs and the user
inputs the measurement data for attributes A and B. The UIS
now sends that data, in the form of serialized objects, to each
AS respectively. For the sake of this example, assume that the
user is seeking to identify the object via comparison with
previously archived measurements.

Each AS takes the data it receives and begins comparing it
against its archives of previous attribute measurements. As
necessary, it accesses the sensor and environmental indices to
request and receive any information needed to make
effective/correct measurement comparisons. Once an AS has
completed its internal comparisons, it might (depending on
system settings) also contact the OEI, providing a list of
object identifiers (as are stored in the OI) and requesting all
additional identifiers that might be alternate representations.

During this process, the AS can (again depending on
system settings) send periodic updates to the UIS to inform
the user of its progress. It might also accept requests from the
UIS to query regarding its status, or perhaps to cancel or
abbreviate its searching processes, depending upon the
sophistication of the capabilities provided by the AS.

Once the AS has completed its processing, it sends a
message to the UIS (with a unique results set identifier)
indicating that it has completed its comparisons and is
awaiting further instructions. Note that it does not
automatically send its results to the UIS, as the user may not
wish to view them directly, and it is possible that the transfer
of the results set could be (depending on the circumstances)
bandwidth intensive.

When the alert arrives the user is prompted that one or more
sets of results are completed, and s/he can decide what to do
with the output. If numerous measurements were being
processed, and some are expected to take a long time to
process, the user might choose to send a subset of the
measurement results to one or more CSs, or perhaps view one
or more results sets directly. In this example, the user will
wait until both sets are available.

After both sets of measurement comparisons are complete
and the user has chosen a CS to use, the UIS sends a set of
messages. To the CS it indicates that it is requesting action,
and provides a list of the results sets, by identifier, that it is to
receive. To each AS it sends the address of the chosen CS
and a request to forward the results set. Each AS responds
back to the UIS indicating that the request is received, and
then another updating message once the data transfer is

completed. The CS responds with similar messages to the
UIS, one indicating that the request was received, and one for
each results set transferred.

The AS does not automatically delete its results set at this
time. Once the user confirms via a message to the AS that
those results are no longer needed (e.g. after having decided
that no further analyses will be performed with that data), it
can delete them. Alternately (or perhaps additionally) the
system can be set up such that results sets are deleted or
archived after a certain amount of time to improve system
performance.

Once the CS has received all of the necessary data and
sends the confirmation message to the UIS, it begins
processing. As with the attribute services above, it also can
send periodic messages with progress reports to the UIS. Like
with the attribute services, the CS may also request
equivalency details from the OEI. When its processing is
complete, another message is sent to the UIS indicating such
(as before, results sets are not sent automatically).

In this example, the user decides to view the results from
the CS. In the unlikely case that the user would view the raw
results, it might direct the CS to provide data back to the UIS
directly. This is unlikely because it would leave the user
examining a set of fusion results in terms of object identifiers
that have no qualitative meaning to the user. More
commonly, the UIS would direct the CS to send some portion
of the results (perhaps the N best matches) to several different
attribute services with a second type of request. Where the
first request provided measurements and produced a ranked
list of possible matches, this request provides object
identifiers and returns measurement values.

The specific attribute services accessed at this stage are
based upon the user’s preference for how to view results. It
might be that the user wishes to see just a name associated
with the object, or perhaps a whole range of attributes (names,
images, other identifiers, etc.).

As above, these attribute services alert the UIS when the
data is available, and UIS now instructs the attribute services
to send results sets back to the UIS. Those sets are then
formatted and finally displayed to the user (using other GUIs
that are provided by the respective attribute services).

This was a relatively straightforward example of the
architecture information exchanges, intended to illustrate the
basic concepts. Additional information exchanges can also
occur, such as when one AS has measurements that are
functionally related to other attributes. In those cases,
additional calls are required, such as to the RS to obtain
network addresses, and between attribute services to obtain
the necessary information.

IV. IMPLEMENTATION

To illustrate the architecture, a simple prototype
implementation was developed using Microsoft .NET. For
clarity of concept, the prototype demonstrated correlation
between two readily understood data types: person names and

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 459 © 2008 WASET.ORG

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1707International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

28
15

.p
df

social security numbers. Person names were chosen because
of their moderate complexity (people may have several names
of various types – given names, family names, past names,
aliases, etc.). Social Security Numbers were selected for
demonstration purposes because the construction of a person’s
social security number includes information on the location
where the number was issued, resulting in more complex
results from this service (i.e. insight into a location that is
affiliated with that person). In this example, each type of data
was given its own attribute service: the Person Name
Attribute Service (PN AS) and the Social Security Number
Attribute Service (SSN AS). In order to achieve more
interesting statistical results, both attribute services were
designed to use the Damerau-Levenshtein String Matching
Algorithm [9]. If the string matched exactly, a confidence of
“1” was returned. Otherwise, the Damerau-Levenshtein
distance is used to compute a confidence level.

The prototype design was heavily influenced by the
requirement that the UIS GUI must be able to remain
unchanged as new attribute services are added. Consequently,
the attribute services provide their own GUI functionality to
the user through the UIS’s GUI, at run-time. This is
accomplished by serializing .NET assemblies and transmitting
them, in binary, via .NET remoting. These assemblies carry,
at a minimum, the GUIs that both accept user input (e.g., by
way of a form) and provides user feedback (e.g., by way of a
table of results). For example, a nuclear spectra attribute
service might have a mechanism for efficiently summarizing
spectra, or a dropdown menu for the user to select an isotope
of interest, etc.

Aside from the two attribute services already mentioned,
the prototype included a single CS that provided a simple
linear correlation; the RS by which the other services could
find each other; a basic UIS with a GUI that provides a
framework for the user to view available attribute and
correlation services, as well as a way to view custom graphical
controls from those services; and an OI that provides a lookup
of system unique identifiers to the attribute services.

The prototype uses .NET interfaces to define the contract
between services. The only well-known (i.e. having a fixed

port and IP address) service is the RS, the others finding each
other dynamically through this service. These interfaces are:

IAttributeService – Implemented by attribute services;
includes methods for the GUI to retrieve the attribute
service’s assembly, and to submit the results of the form
input.
IAttributeServiceRegistrar – Implemented by the RS;
includes methods for the attribute services to register
themselves with the RS.
ICorrelationService – Implemented by the correlation
services; includes methods for providing data sets to the
service for correlation.
ICorrelationServiceRegistrar – Implemented by the RS;
includes methods for the correlation services to register
themselves with the RS.
IPeopleServiceRegistrar – Implemented by the RS;
includes methods for the OIS to register itself with the
RS.

The particular interactions of these services followed the
model put forth in the previous section. The user is presented
with a list of available attribute services (Name and SSN), and
chooses which to use. For each selected, the AS custom GUI
controls are displayed, and the user fills in the appropriate
data. The data are then sent to the respective attribute services
for analysis. When the results are completed, the user chooses
which CS to use, if any, to correlate the two results sets. In
this case there is only one choice, the linear correlation
service. Either or both results sets can then be sent to that CS,
where they are linearly combined into a single result set. The
results of the correlation service, or the original AS results
sets, can then be returned directly to the user for evaluation.

Figs. 1-4 are screen captures showing these various
interfaces:

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 460 © 2008 WASET.ORG

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1708International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

28
15

.p
df

Fig. 1 Displaying available attribute services

Fig. 2 Displaying GUI’s obtained from attribute services (top right panel) and existing results sets (lower left panel)

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 461 © 2008 WASET.ORG

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1709International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

28
15

.p
df

Fig. 3 Selecting results sets to send to a correlation service

Fig. 4 Viewing results sets (bottom left panel)

V. SUMMARY

The architecture described herein utilizes a basic SOA
approach to support both simple and complex data fusion
tasks. Upstream data fusion can be implemented through
dedicated attribute services that inherently address the
interrelationships amongst heterogeneous data sources.
Downstream fusion can be handled similarly, but also more
generically through the use of either dedicated or generalized
correlation services.

Because the scope and format of the data is handled through
the dedicated attribute services, the architecture is extensible
both in terms of the types of new data that can be included, as
well as the approaches/algorithms for manipulating the data.
The modularity of the individual services facilitates the
continued addition of computing resources, as well as the
gradual replacement of computers and servers without
requiring that the system be taken offline.

The system is designed with the recognition of the

importance of uncertainty in the data and the results, as well
as the possibility that characteristics can apply to objects non-
absolutely (i.e. in terms of both likelihood and applicability).
The system handles standard data types, such as numbers,
strings, dates, times, and binary objects, but also
multidimensional quantities like matrices and functional
representations of relationships amongst data.

Because there is significant flexibility in how a thin-client
user interface can interact with the system, it is well-suited for
use with business process modeling tools and approaches.
This could include automating analysis processes for data
flows, capturing and assessing expert knowledge and decision
chains, and supporting complex data mining tasks.

In applications where long term system evolution is
expected, the ability of the architecture to support ongoing
development can be significant. For example, in commercial
applications where data and computing resources are sold, the

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 462 © 2008 WASET.ORG

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1710International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

28
15

.p
df

capability of supporting multiple competing services enables a
“survival of the fittest” mechanism for system growth. Users
can individually balance cost, response time, accuracy, data
availability, etc., in order to optimize needs against their most
significant constraints. Services that perform poorly are left
behind, and the development new services that provide
performance improvements are motivated.

Our experience suggests that the development costs for this
type of data fusion architecture decrease over time. Initial
work is required to establish the foundational services and
indices (OI and RS as a minimum, and the OEI in most cases).
Secondary services, such as the EI and SI, are easier to
develop as they are typically variants on the more fundamental
services. Similarly, the first AS and CS establish basic
frameworks that, later ones can build upon speeding the
development of the interfacing aspects of the newer services.

REFERENCES

[1] T. Erl, “Service-Oriented Architecture: Concepts, Technology, and
Design,” Prentice Hall, 2005

[2] T. Erl, “SOA: Principles of Service Design,” Prentice Hall, 2007
[3] http://en.wikipedia.org/wiki/Service-oriented_architecture
[4] Y. Bar-Shalom, T. E. Fortmann, “Tracking and Data Association,”

Academic Press, 1988
[5] “Multitarget-Multisensor Tracking,” (three volumes), Y. Bar-Shalom

(Ed.), Artech House
[6] H. S. Burkom, S. P. Murphy, J. S. Coberly., and K. Hurt-Mullen, “Public

Health Monitoring Tools for Multiple Data Streams,” Morbidity and
Mortality Weekly Report (MMWR), Vol. 54 “Supplement, Syndromic
Surveillance: Reports from a National Conference, 2004,” 2005

[7] Z. R. Mnatsakanyan, H. S. Burkom, J. S. Coberly, and J. S. Lombardo,
“Bayesian Information Fusion Networks for Biosurveillance
Applications”, submitted to Journal of the American Medical
Informatics Association, 2007

[8] H. S. Burkom, “Biosurveillance Applying Scan Statistics with Multiple,
Disparate Data Sources,” Journal of Urban Health, Proceedings of the
2002 National Syndromic Surveillance Conference, Vol. 80, No. 2,
Supplement 1, 2003

[9] F.J. Damerau, “A technique for computer detection and correction of
spelling errors,” Communications of the ACM, 1964

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 31 JULY 2008 ISSN 1307-6884

PWASET VOLUME 31 JULY 2008 ISSN 1307-6884 463 © 2008 WASET.ORG

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:5, 2008

1711International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

28
15

.p
df

