Search results for: notch effect
4287 Method to Improve Channel Coding Using Cryptography
Authors: Ayyaz Mahmood
Abstract:
A new approach for the improvement of coding gain in channel coding using Advanced Encryption Standard (AES) and Maximum A Posteriori (MAP) algorithm is proposed. This new approach uses the avalanche effect of block cipher algorithm AES and soft output values of MAP decoding algorithm. The performance of proposed approach is evaluated in the presence of Additive White Gaussian Noise (AWGN). For the verification of proposed approach, computer simulation results are included.Keywords: Advanced Encryption Standard (AES), Avalanche Effect, Maximum A Posteriori (MAP), Soft Input Decryption (SID).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19474286 Receive and Transmit Array Antenna Spacingand Their Effect on the Performance of SIMO and MIMO Systems by using an RCS Channel Model
Authors: N. Ebrahimi-Tofighi, M. ArdebiliPour, M. Shahabadi
Abstract:
In this paper, the effect of receive and/or transmit antenna spacing on the performance (BER vs. SNR) of multipleantenna systems is determined by using an RCS (Radar Cross Section) channel model. In this physical model, the scatterers existing in the propagation environment are modeled by their RCS so that the correlation of the receive signal complex amplitudes, i.e., both magnitude and phase, can be estimated. The proposed RCS channel model is then compared with classical models.Keywords: MIMO system, Performance of system, Signalcorrelation, SIMO system, Wireless channel model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19354285 The Effect of Aerobic Training and Taxol Consumption on IL 8 and PAI-1 in Cervical Cancer
Authors: Alireza Barari, Maryam Firoozi, Maryam Ebrahimzadeh, Romina Roohani Ardeshiri, Maryam Kamarloeei
Abstract:
Background: The purpose of this study was to analyze the effect of six-week aerobic training and taxol consumption on interleukin-8 and Plasminogen Activator Inhibitor-1 (PAI-1) in mice with cervical cancer. Materials and Methods: In this experimental study, 40 female C57 mice with cervical cancer, eight weeks old, were randomly divided into 4 groups including: control, taxol supplement, training, and training-taxol supplement. The implantation of cancerous tumors was performed under the skin at the upper of the pelvis. The program training was included: endurance training for six weeks, 3 sessions per week and 50 minutes per session, at the speed of 14-18 m/s. Taxol supplement at a dose of 60 mg/kg per day was injected intraperitoneally. Data analysis was performed using t-test and one-way ANOVA and if statistically significant, Bonferroni post hoc was used at the significance level p < .05. Results: The results showed that there was a significant difference between the levels of interleukin 8 (P < 0.05, F = 12.25) and the PAI-1 (P < 0.05, P = 0.10737 between the 4 groups. The results of this study showed a significant difference between the control group and the training - complementary group. Six weeks of aerobic training and taxol consumption have a significant effect on the level of PAI-1 and interleukin-8 mice with cervical cancer. Conclusion: Considering the effect of training on these variables, this type of exercise can be used as a complementary therapeutic approach with other therapies for cervical cancer.
Keywords: Cervical cancer, taxol, endurance training, interleukin 8, plasminogen activator inhibitor-1.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3744284 The Effect of e-learning on the Promotion of Optoelectronics Technology and Daily Livings Literacy among Students in Universities of Technology
Authors: Chin-Pin Chen, David W.S. Tai, Wen-Jong Chen, Hui-Min Lai
Abstract:
This study aims to analyze the effect of e-learning on photonics technology and daily livings among college students. The course contents of photonics technology and daily livings are first drafted based on research discussions and expert interviews. Having expert questionnaires with Delphi Technique for three times, the knowledge units and items for the course of photonics technology and daily livings are established. The e-learning materials and the drafts of instructional strategies, academic achievement, and learning attitude scales are then developed. With expert inspection, reliability and validity test, and experimental instructions, the scales and the material are further revised. Finally, the formal instructions are implemented to test the effect of different instructional methods on the academic achievement of photonics technology and daily livings among students in universities of technology. The research results show that e-learning could effectively promote academic achievement and learning attitude, and the students with e-learning obviously outperform the ones with trandition instructions.Keywords: E-learning, Photonics Technology and Daily Livings, Academic Achievement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17154283 Effect of Scalping on the Mechanical Behavior of Coarse Soils
Authors: Nadine Ali Hassan, Ngoc Son Nguyen, Didier Marot, Fateh Bendahmane
Abstract:
This paper aims at presenting a study of the effect of scalping methods on the mechanical properties of coarse soils by resorting to numerical simulations based on the discrete element method (DEM) and experimental triaxial tests. Two reconstitution methods are used, designated as scalping method and substitution method. Triaxial compression tests are first simulated on a granular materials with a grap graded particle size distribution by using the DEM. We study the effect of these reconstitution methods on the stress-strain behavior of coarse soils with different fine contents and with different ways to control the densities of the scalped and substituted materials. Experimental triaxial tests are performed on original mixtures of sands and gravels with different fine contents and on their corresponding scalped and substituted samples. Numerical results are qualitatively compared to experimental ones. Agreements and discrepancies between these results are also discussed.Keywords: Coarse soils, scalping, substitution, discrete element method, triaxial test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6534282 Critical Cylindrical Effect and Space-Time Exchange in Rotational Reference Frames of Special Relativity
Authors: Rui Yin, Ming Yin, Yang Wang
Abstract:
For a rotational reference frame of the theory of special relativity, the critical radius is defined as the distance from the axis to the point where the tangential velocity is equal to the speed of light, and the critical cylinder as the set of all points separated from the axis by this critical radius. Based on these terms, two relativistic effects of rotation are discovered: (i) the tangential velocity in the region of Outside Critical Cylinder (OCC) is not superluminal, due to the existence of space-time exchange; (ii) some of the physical quantities of the rotational body have an opposite mathematic sign at OCC versus those at Inside Critical Cylinder (ICC), which is termed as the Critical Cylindrical Effect (CCE). The laboratory experiments demonstrate that the repulsive force exerted on an anion by electrons will change to an attractive force by the electrons in precession while the anion is at OCC of the precession. 36 screenshots from four experimental videos are provided. Theoretical proofs for both space-time exchange and CCE are then presented. The CCEs of field force are also discussed.
Keywords: Critical radius, critical cylindrical effect, special relativity, space-time exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664281 Effect of Concentration of Sodium Borohydrate on the Synthesis of Silicon Nanoparticles via Microemulsion Route
Authors: W. L. Liong, Srimala Sreekantan, Sabar D. Hutagalung
Abstract:
The effect of concentration of reduction agent of sodium borohydrate (NaBH4) on the properties of silicon nanoparticles synthesized via microemulsion route is reported. In this work, the concentration of the silicon tetrachloride (SiCl4) that served as silicon source with sodium hydroxide (NaOH) and polyethylene glycol (PEG) as stabilizer and surfactant, respectively, are keep fixed. Four samples with varied concentration of NaBH4 from 0.05 M to 0.20 M were synthesized. It was found that the lowest concentration of NaBH4 gave better formation of silicon nanoparticles.Keywords: Microelmusion, nanoparticles, reduction, silicon
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19744280 An Experimental Study on the Tensile Behavior of the Cracked Aluminum Plates Repaired with FML Composite Patches
Authors: A. Pourkamali Anaraki, G. H. Payganeh, F. Ashena ghasemi, A. Fallah
Abstract:
Repairing of the cracks by fiber metal laminates (FMLs) was first done by some aeronautical laboratories in early 1970s. In this study, experimental investigations were done on the effect of repairing the center-cracked aluminum plates using the FML patches. The repairing processes were conducted to characterize the response of the repaired structures to tensile tests. The composite patches were made of one aluminum layer and two woven glassepoxy composite layers. Three different crack lengths in three crack angles and different patch lay-ups were examined. It was observed for the lengthen cracks, the effect of increasing the crack angle on ultimate tensile load in the structure was increase. It was indicated that the situation of metal layer in the FML patches had an important effect on the tensile response of the tested specimens. It was found when the aluminum layer is farther, the ultimate tensile load has the highest amount.Keywords: Crack, Composite patch repair, Fiber metal laminate (FML), Patch Lay-up, Repair surface, Ultimate load
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18444279 Effect of Jet Diameter on Surface Quenching at Different Spatial Locations
Authors: C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee
Abstract:
An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 C initial temperature. A round water jet of 22 ± 1 oC temperature was injected over the hot surface through straight tube type nozzles of 2.5- 4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000 -24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.
Keywords: Hot-Surface, Jet Impingement, Quenching, Stagnation Point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22984278 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents
Authors: M. Sajjadnejad, H. Karimi Abadeh
Abstract:
In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.
Keywords: Corrosion, duty cycle, pulsed current, zinc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8364277 The Effect of Ageing on Impact Toughness and Microstructure of 2024 Al-Cu-Mg Alloy
Authors: Swami Naidu Gurugubelli
Abstract:
The present study aims at determining the effect of ageing on the impact toughness and microstructure of 2024 Al-Cu - Mg alloy. Following the 2 h solutionizing treatment at 450°C and water quench, the specimens were aged at 200°C for various periods (1 to 18 h). The precipitation stages during ageing were monitored by hardness measurements. For each specimen group, Charpy impact and hardness tests were carried out. During ageing the impact toughness of the alloy first increased, and then, following a maxima decreased due to the precipitation of intermediate phases, finally it reached its minimum at the peak hardness. Correlations between hardness and impact toughness were investigated.
Keywords: Ageing, alloy, hardness, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21424276 Study of the Effect of Rotation on the Deformation of a Flexible Blade Rotor
Authors: Aref Maalej, Marwa Fakhfakh, Wael Ben Amira
Abstract:
We present in this work a numerical investigation of fluid-structure interaction to study the elastic behavior of flexible rotors. The principal aim is to provide the effect of the aero/hydrodynamic parameters on the bending deformation of flexible rotors. This study is accomplished using the strong two-way fluid-structure interaction (FSI) developed by the ANSYS Workbench software. This method is used for coupling the fluid solver to the transient structural solver to study the elastic behavior of flexible rotors in water. In this study, we use a moderately flexible rotor modeled by a single blade with simplified rectangular geometry. In this work, we focus on the effect of the rotational frequency on the flapwise bending deformation. It is demonstrated that the blade deforms in the downstream direction and the amplitude of these deformations increases with the rotational frequencies. Also, from a critical frequency, the blade begins to deform in the upstream direction.
Keywords: Numerical simulation, flexible blade, fluid-structure interaction, ANSYS Workbench, flapwise deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294275 Effect of Load Ratio on Probability Distribution of Fatigue Crack Propagation Life in Magnesium Alloys
Authors: Seon Soon Choi
Abstract:
It is necessary to predict a fatigue crack propagation life for estimation of structural integrity. Because of an uncertainty and a randomness of a structural behavior, it is also required to analyze stochastic characteristics of the fatigue crack propagation life at a specified fatigue crack size. The essential purpose of this study is to find the effect of load ratio on probability distribution of the fatigue crack propagation life at a specified grown crack size and to confirm the good probability distribution in magnesium alloys under various fatigue load ratio conditions. To investigate a stochastic crack growth behavior, fatigue crack propagation experiments are performed in laboratory air under several conditions of fatigue load ratio using AZ31. By Anderson-Darling test, a goodness-of-fit test for probability distribution of the fatigue crack propagation life is performed. The effect of load ratio on variability of fatigue crack propagation life is also investigated.Keywords: Load ratio, fatigue crack propagation life, Magnesium alloys, probability distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17214274 The Effect of Vertical Shear-Link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems
Authors: Mohammad Reza Baradaran, Farhad Hamzezarghani, Mehdi Rastegari Ghiri, Zahra Mirsanjari
Abstract:
Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample.Keywords: Vertical shear-link, passive control, cyclic analysis, energy dissipation, honeycomb beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27464273 Effect of Silver Nanoparticles on Seed Germination of Crop Plants
Authors: Zainab M. Almutairi, Amjad Alharbi
Abstract:
The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.Keywords: Citrullus lanatus, Cucurbita pepo, seed germination, seedling growth, silver nanoparticles, Zea mays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63664272 Effect of Silver Nanoparticles on Seed Germination of Crop Plants
Authors: Zainab M. Almutairi, Amjad Alharbi
Abstract:
The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.Keywords: Citrullus lanatus, Cucurbita pepo, seed germination, seedling growth, silver nanoparticles, Zea mays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26304271 A Refined Nonlocal Strain Gradient Theory for Assessing Scaling-Dependent Vibration Behavior of Microbeams
Authors: Xiaobai Li, Li Li, Yujin Hu, Weiming Deng, Zhe Ding
Abstract:
A size-dependent Euler–Bernoulli beam model, which accounts for nonlocal stress field, strain gradient field and higher order inertia force field, is derived based on the nonlocal strain gradient theory considering velocity gradient effect. The governing equations and boundary conditions are derived both in dimensional and dimensionless form by employed the Hamilton principle. The analytical solutions based on different continuum theories are compared. The effect of higher order inertia terms is extremely significant in high frequency range. It is found that there exists an asymptotic frequency for the proposed beam model, while for the nonlocal strain gradient theory the solutions diverge. The effect of strain gradient field in thickness direction is significant in low frequencies domain and it cannot be neglected when the material strain length scale parameter is considerable with beam thickness. The influence of each of three size effect parameters on the natural frequencies are investigated. The natural frequencies increase with the increasing material strain gradient length scale parameter or decreasing velocity gradient length scale parameter and nonlocal parameter.Keywords: Euler-Bernoulli Beams, free vibration, higher order inertia, nonlocal strain gradient theory, velocity gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10064270 Experimental and Numerical Simulation of Fire in a Scaled Underground Station
Authors: Nuri Yucel, Muhammed Ilter Berberoglu, Salih Karaaslan, Nureddin Dinler
Abstract:
The objective of this study is to investigate fire behaviors, experimentally and numerically, in a scaled version of an underground station. The effect of ventilation velocity on the fire is examined. Fire experiments are simulated by burning 10 ml isopropyl alcohol fuel in a fire pool with dimensions 5cm x 10cm x 4 mm at the center of 1/100 scaled underground station model. A commercial CFD program FLUENT was used in numerical simulations. For air flow simulations, k-ω SST turbulence model and for combustion simulation, non-premixed combustion model are used. This study showed that, the ventilation velocity is increased from 1 m/s to 3 m/s the maximum temperature in the station is found to be less for ventilation velocity of 1 m/s. The reason for these experimental result lies on the relative dominance of oxygen supply effect on cooling effect. Without piston effect, maximum temperature occurs above the fuel pool. However, when the ventilation velocity increased the flame was tilted in the direction of ventilation and the location of maximum temperature moves along the flow direction. The velocities measured experimentally in the station at different locations are well matched by the CFD simulation results. The prediction of general flow pattern is satisfactory with the smoke visualization tests. The backlayering in velocity is well predicted by CFD simulation. However, all over the station, the CFD simulations predicted higher temperatures compared to experimental measurements.Keywords: Fire, underground station, flame propagation, CFDsimulation, k-ω SST turbulence model, non-premixed combustionmodel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26434269 Effect of Magnetic Field on the Biological Clock through the Radical Pair Mechanism
Authors: Chathurika D. Abeyrathne, Malka N. Halgamuge, Peter M. Farrell
Abstract:
There is an ongoing controversy in the literature related to the biological effects of weak, low frequency electromagnetic fields. The physical arguments and interpretation of the experimental evidence are inconsistent, where some physical arguments and experimental demonstrations tend to reject the likelihood of any effect of the fields at extremely low level. The problem arises of explaining, how the low-energy influences of weak magnetic fields can compete with the thermal and electrical noise of cells at normal temperature using the theoretical studies. The magnetoreception in animals involve radical pair mechanism. The same mechanism has been shown to be involved in the circadian rhythm synchronization in mammals. These reactions can be influenced by the weak magnetic fields. Hence, it is postulated the biological clock can be affected by weak magnetic fields and these disruptions to the rhythm can cause adverse biological effects. In this paper, likelihood of altering the biological clock via the radical pair mechanism is analyzed to simplify these studies of controversy.Keywords: Bio-effect, biological clock, magnetoreception, radical pair mechanism, weak magnetic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23264268 Effect of Dietary α-Cellulose Levels on the Growth Parameters of Nile Tilapia Oreochromis niloticus Fingerlings
Authors: Keri Alhadi Ighwela, Aziz Bin Ahmad, A. B. Abol-Munafi
Abstract:
Three purified diets were formulated using fish meal, soya bean, wheat flour, palm oil, minerals and maltose. The carbohydrate in the diets was increased from 5 to 15% by changing the cellulose content to study the effect of dietary carbohydrate level on the growth parameters of Nile tilapia Oreochromis niloticus. The protein and the lipid contents were kept constant in all the diets. The results showed that, weight gain, protein efficiency ratio, net protein utilisation and hepatosomatic index of fish fed the diet containing 15% cellulose were the lowest among all groups. Addition, the fish fed the diet containing 5% cellulose had the best specific growth rate, and food conversion ratio. While, there was no effect of the dietary cellulose levels on condition factor and survival rate. These results indicate that Nile tilapia fingerlings are able to utilize dietary cellulose does not exceed 10% in their feed for optimum growth.Keywords: Dietary cellulose, growth parameters, Nile Tilapia Oreochromis niloticus, purified diets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46994267 Frequency Regulation Support by Variable-Speed Wind Turbines and SMES
Authors: M. Saleh, H. Bevrani
Abstract:
This paper quantifies the impact of providing a shortterm excess active power support of a variable speed wind turbine (VSWT) and effect of super magnetic energy storage (SMES) unit on frequency control, particularly temporary minimum frequency (TMF) term. To demonstrate the effect of these factors on the power system frequency, a three-area power system is considered as a test system.Keywords: Frequency regulation, inertia, primary frequencycontrol, rotational energy, variable speed wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22224266 Social Media Research and Its Effect on Our Society
Authors: A. T. M Shahjahan, Kutub Uddin Chisty
Abstract:
Social media refers to the means of interactions among people in which they create share, exchange and comment contents among themselves in virtual communities and networks. Social media or "social networking" has almost become part of our daily lives and being tossed around over the past few years. It is like any other media such as newspaper, radio and television but it is far more than just about sharing information and ideas. Social networking tools like Twitter, Facebook, Flickr and Blogs have facilitated creation and exchange of ideas so quickly and widely than the conventional media. This paper shows the choices, communication, feeling comfort, time saving and effects of social media among the people.
Keywords: Media, Choice, Effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183744265 Effect of Miniature Cracks on the Fracture Strength and Strain of Tensile Armour Wires
Authors: Kazeem K. Adewole, Steve J. Bull
Abstract:
Tensile armour wires provide a flexible pipe's resistance to longitudinal stresses. Flexible pipe manufacturers need to know the effect of defects such as scratches and cracks, with dimensions less than 0.2mm which is the limit of the current nondestructive detection technology, on the fracture stress and fracture strain of the wire for quality assurance purposes. Recent research involving the determination of the fracture strength of cracked wires employed laboratory testing and classical fracture mechanics approach using non-standardised fracture mechanics specimens because standard test specimens could not be manufactured from the wires owing to their sizes. In this work, the effect of miniature cracks on the fracture properties of tensile armour wires was investigated using laboratory and finite element tensile testing simulations with the phenomenological shear fracture model. The investigation revealed that the presence of cracks shallower than 0.2mm is worse on the fracture strain of the wire.Keywords: Cracks, Finite Element Simulations, Fracture Mechanics, Shear Fracture Model, Tensile Armour Wire
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18534264 Seismic Base Shear Force Depending on Building Fundamental Period and Site Conditions: Deterministic Formulation and Probabilistic Analysis
Authors: S. Dorbani, M. Badaoui, D. Benouar
Abstract:
The aim of this paper is to investigate the effect of the building fundamental period of reinforced concrete buildings of (6, 9, and 12-storey), with different floor plans: Symmetric, mono-symmetric, and unsymmetric. These structures are erected at different epicentral distances. Using the Boumerdes, Algeria (2003) earthquake data, we focused primarily on the establishment of the deterministic formulation linking the base shear force to two parameters: The first one is the fundamental period that represents the numerical fingerprint of the structure, and the second one is the epicentral distance used to represent the impact of the earthquake on this force. In a second step, with a view to highlight the effect of uncertainty in these parameters on the analyzed response, these parameters are modeled as random variables with a log-normal distribution. The variability of the coefficients of variation of the chosen uncertain parameters, on the statistics on the seismic base shear force, showed that the effect of uncertainty on fundamental period on this force statistics is low compared to the epicentral distance uncertainty influence.
Keywords: Base shear force, fundamental period, epicentral distance, uncertainty, lognormal variable, statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13054263 Static Study of Piezoelectric Bimorph Beams with Delamination Zone
Authors: A. Zemirline, M. Ouali, A. Mahieddine
Abstract:
The FOSDT (the First Order Shear Deformation Theory) is taking into consideration to study the static behavior of a bimorph beam, with a delamination zone between the upper and the lower layer. The effect of limit conditions and lengths of the delamination zone are presented in this paper, with a PVDF piezoelectric material application. A FEM “Finite Element Method” is used to discretize the beam. In the axial displacement, a displacement field appears in the debonded zone with inverse effect between the upper and the lower layer was observed.
Keywords: Beam, Delamination, Piezoelectricity, Static.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20134262 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method
Authors: M. Najafi
Abstract:
In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.
Keywords: Rotor dynamic analysis, Finite element method, shaft train, Campbell diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12054261 Effect of Rotating Electrode
Authors: S. Gnapowski, H. Akiyama, S. Hamid R. Hosseini, C. Yamabe
Abstract:
A gold coated copper rotating electrode was used to eliminate surface oxidation effect. This study examined the effect of electrode rotation on the ozone generation process and showed that an ozonizer with an electrode rotating system might be a possible way to increase ozone-synthesis efficiency. Two new phenomena appeared during experiments with the rotating electrode. First was that ozone concentration increased to about two times higher than that of the case with no rotation. Second, input power and discharge area were found to increase with the rotation speed. Both ozone concentration and ozone production efficiency improved in the case of rotating electrode compared to the case with a non-rotating electrode. One possible reason for this was the increase in discharge length of micro-discharges during electrode rotation. The rotating electrode decreased onset voltage, while reactor capacitance increased with rotation. Use of a rotating-type electrode allowed earlier observation of the ozone zero phenomena compared with a non-rotating electrode because, during rotation, the entire electrode surface was functional, allowing nitrogen on the electrode surface to be evenly consumed. Nitrogen demand increased with increasing rotation s
Keywords: Rotating electrode, input power, onset voltage, discharge canal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21374260 Phase Equilibrium in Aqueous Two-phase Systems Containing Poly (propylene glycol) and Sodium Citrate at Different pH
Authors: Farshad Rahimpour, Ali Reza Baharvand
Abstract:
The phase diagrams and compositions of coexisting phases have been determined for aqueous two-phase systems containing poly(propylene glycol) with average molecular weight of 425 and sodium citrate at various pH of 3.93, 4.44, 4.6, 4.97, 5.1, 8.22. The effect of pH on the salting-out effect of poly (propylene glycol) by sodium citrate has been studied. It was found that, an increasing in pH caused the expansion of two-phase region. Increasing pH also increases the concentration of PPG in the PPGrich phase, while the salt-rich phase will be somewhat mole diluted.Keywords: Aqueous two-phase system, Phase equilibrium, Biomolecules purification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26474259 Oil Recovery Study by Low Temperature Carbon Dioxide Injection in High-Pressure High-Temperature Micromodels
Authors: Zakaria Hamdi, Mariyamni Awang
Abstract:
For the past decades, CO2 flooding has been used as a successful method for enhanced oil recovery (EOR). However, high mobility ratio and fingering effect are considered as important drawbacka of this process. Low temperature injection of CO2 into high temperature reservoirs may improve the oil recovery, but simulating multiphase flow in the non-isothermal medium is difficult, and commercial simulators are very unstable in these conditions. Furthermore, to best of authors’ knowledge, no experimental work was done to verify the results of the simulations and to understand the pore-scale process. In this paper, we present results of investigations on injection of low temperature CO2 into a high-pressure high-temperature micromodel with injection temperature range from 34 to 75 °F. Effect of temperature and saturation changes of different fluids are measured in each case. The results prove the proposed method. The injection of CO2 at low temperatures increased the oil recovery in high temperature reservoirs significantly. Also, CO2 rich phases available in the high temperature system can affect the oil recovery through the better sweep of the oil which is initially caused by penetration of LCO2 inside the system. Furthermore, no unfavorable effect was detected using this method. Low temperature CO2 is proposed to be used as early as secondary recovery.
Keywords: Enhanced oil recovery, CO2 flooding, micromodel studies, miscible flooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11494258 Effect of Blast Furnace Iron Slag on the Mechanical Performance of Hot Mix Asphalt (HMA)
Authors: Ayman M. Othman, Hassan Y. Ahmed
Abstract:
This paper discusses the effect of using blast furnace iron slag as a part of fine aggregate on the mechanical performance of hot mix asphalt (HMA). The mechanical performance was evaluated based on various mechanical properties that include; Marshall/stiffness, indirect tensile strength and unconfined compressive strength. The effect of iron slag content on the mechanical properties of the mixtures was also investigated. Four HMA with various iron slag contents, namely; 0%, 5%, 10% and 15% by weight of total mixture were studied. Laboratory testing has revealed an enhancement in the compressive strength of HMA when iron slag was used. Within the tested range of iron slag content, a considerable increase in the compressive strength of the mixtures was observed with the increase of slag content. No significant improvement on Marshall/stiffness and indirect tensile strength of the mixtures was observed when slag was used. Even so, blast furnace iron slag can still be used in asphalt paving for environmental advantages.Keywords: Blast furnace iron slag, HMA, Marshall/stiffness, indirect tensile strength, compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418